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Abstract: One of the key performance requirements for different control systems is non-overshooting
step response, so that the controllable value should not overcome the reference value within a transient
process. The problem of providing a non-overshooting step response was examined in this paper.
Despite much scientific research being dedicated to the overshoot elimination problem, there are
little to no results regarding parametric uncertainty for the discussed problem. Consideration of
parametric uncertainty, particularly in the form of interval-given parameters, is essential, since in
many physical processes, electronic devices and control systems parameter values can be obtained
with acceptable error, and they can vary under different conditions. The main result of our research is
the development of a proportional-integral-derivative (PID)-controller tuning approach for systems
with interval-given parameters that provides a non-overshooting step response for such classes of
control systems. This paper investigates analytical conditions and constraints for linear time invariant
(LTI) systems in order to have no overshoot, enhances them with respect to parametric uncertainty,
and formulates rules for tuning choices of parameters.

Keywords: interval plant; overshoot elimination; PID controller; pole-zero configuration; robust control

1. Introduction

Regarding industrial process control, it is essential for control systems to meet the technological
requirements. One of the key performance indices is overshoot. Particularly, it is essential for
positioning control systems, machinery, and several thermal and chemistry processes to show no
overshoot. Considering linear time invariant (LTI) systems, there has been much research worldwide
that has been dedicated to the problem of overshoot. Papers [1,2] present approaches for achieving
acceptable overshoot percentages on the poles domination theory basis. Several research papers,
such as [3–6], have been focused on full overshoot elimination using Vandermonde-like matrices for
error function representation. Other ways were proposed in [7], where the problem was considered
with respect to impulse response behavior, and in [8], where minimizing of integrated absolute error
(IAE) was performed. In the context of industrial process control, it is worth noting different approaches
based on canonical proportional-integral-derivative (PID)-controller design methods. In particular,
several results in [9–13] were obtained using the Ziegler–Nichols tuning method. More theoretical
techniques take place as well, such as [14,15] that state and prove theorems for necessary and
sufficient pole-zero configuration of the transfer function, providing a non-overshooting step response.
As opposed to several analytical approaches, numeric optimization for the purpose of PID-controller
tuning was regarded as well in [16,17]. Another option for controller design and tuning is the initial
choice of a desired stability degree for each pole of a closed-loop control system.
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Considering real-world practical applications, it is worth mentioning that systems parameters
tend to be uncertain, due to measurement errors and varying conditions of functioning. Even slight
parameters variations can lead to significant changes in system dynamics. Parametric uncertainty
makes controller design significantly more difficult, since the controller has to meet the requirements
for varying states. In addition, a robust controller tuning procedure is challenging, since many existing
well-known methods become inapplicable under parametric uncertainty. Despite the high level of
complexity for a robust controller design, there have been several results presented, such as [18,19]
that are based on minimization of oscillatory degree for systems with interval-given parameters.
Regarding systems with interval-given parameters, one of the key techniques for analysis and control
design is the Kharitonov theorem. For example, the authors of [20–22] address vertex polynomial
properties for a robust PID-control design, but in many cases, vertex polynomials do not indicate
all behavior aspects of the system with interval-given parameters. Another example of a robust
PID-controller design was presented in [23,24] in the context of DC converters on the mixed approach
that involves Kharitonov polynomials and phase portraits.

2. Materials and Methods

The presented research is conducted on the basis of the canonical closed-loop control scheme,
depicted in Figure 1.
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In Figure 1, C(s) is the controller, G(s) is the plant, and u, ε, and y are the reference signal,
error signal, and output signal respectively.

The controller, C(s) in this case, is a classic PID controller, which is one of the most distributed
control solutions. The PID-controller transfer function is

C(s) =
Ds2 + Ks + I

s
,

where D, K and I are the coefficients of the PID controller. The plant G(s) is represented with the
second-order transfer function

G(s) =
KP

s2 + 2αs + α2 +ω2 , (1)

with poles s = α± jω and gain KP. In cases of plants with initially real poles, parameter ω is supposed
to be complex with a null real part.

At the first stage of the research, a stationary LTI system was examined. The task was to figure
out the rule for PID-controller coefficients, providing a non-overshoot step response. In previous
research [14], one of the necessary conditions for this was that the poles of the transfer function are
strictly real.

2.1. Providing Real Closed-Loop Pole Configuration

Regarding control systems structure, plant and controller transfer functions, the closed loop
transfer function is

W(s) =
KP

(
Ds2 + Ks + I

)
s3 + (2α+ DKP)s2 + (α2 +ω2 + KKP)s + IKP

(2)
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Conducting changing DKP = K′, KKP = K′, and IKP = I′, a characteristic equation of (2) can be
represented as:

s3 + (2α+ D′)s2 +
(
α2 +ω2 + K′

)
s + I′ (3)

According to the theorem in [14], it is necessary for transfer function poles to be exclusively
real. Since the roots type is defined with a discriminant sign, let us write a discriminant for (3) in the
following form [25]

∆CE(α,ω, K′, I′, D′) = (2α+ D′)2
(
α2 +ω2 + K′

)2
− 27I′2−

−4I′(2α+ D′)3
− 4

(
α2 +ω2 + K′

)3
+ 18I′(2α+ D′)

(
α2 +ω2 + K′

) (4)

Substituting arbitrary real positive values of α, ω, and K′ in (4), one can plot the surface of
∆CE(D′, I′). Since only positive values of ∆CE are of interest, in the same coordinates, let us plot plane
∆CE = 0 to visualize constraints of the region of interest.

Figure 2 illustrates that region where ∆CE > 0, denoted as Ω, is bounded with two curves (white
dashed lines). Expressing I′ from (4) yields two functions describing bounding curves for Ω: I′1(α,ω, K′, D′) =

18αK′+9D′K′+18ω2α+9ω2D′−12αD′2−15α2D′+2α3
−2D′+2

√
(α2−3ω2+4αD′+D′2−3K′)

3

27 ;

I′2(α,ω, K′, D′) =
18αK′+9D′K′+18ω2α+9ω2D′−12αD′2−15α2D′+2α3

−2D′−2
√
(α2−3ω2+4αD′+D′2−3K′)

3

27 .

(5)
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Figure 2. Surface of discriminant values with zero plane.

For further investigation, let us plot region Ω in the D′ − I′ plane as it is shown in Figure 3.
Lines of constraints for region Ω have an intersection point ξ(Dξ

′, Iξ′). Point ξ(Dξ
′, Iξ′) defines

peak values for parameters I′ and D′.
For generalization purposes, let us get analytical expressions for Iξ′ and Dξ

′ using (5)

Dξ
′ = −2α+

√
3(α2 +ω2 + K′) (6)
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In the same way, substitution of (6) in (5) gives the expression [25]

Iξ′ =

√
3(α2 +ω2 + K′)3

9
. (7)

Let us investigate region Ω in more detail. It is known that for the third-order polynomial, its roots
can be analytically calculated with the Cardano formula. Regarding the form of (2), the dominating
pole can be calculated as follows

SDOM =
3√u + v + 3√u− v− a, (8)

where:

u =
9(2α+ D′)

(
α2 +ω2 + K′

)
− 27I′ − 2(2α+ D′)3

54
,

v =

√
27

(
27I′ − 9(2α+ D′)(α2 +ω2 + K′) + 2(2α+ D′)3

)
+ 4

(
3(α2 +ω2 + K′) − (2α+ D′)2

)3

54
,

a =
(2α+ D′)

3
.

Investigating derivatives ∂SDOM
∂I′ and ∂SDOM

∂D′ in the field of real values states that (8) is a monotone,
non-increasing function and thus, the stability degree η(α,ω, K′, I′, D′) =

∣∣∣Re(SDOM(α,ω, K′, D′, D′))
∣∣∣

will increase according to I′. Regarding the I′ range of values, one can assume that the maximum
stability degree can be reached in ξ point. Substituting (5) and (7) in (8) gives the following expression

ηξMAX(α,ω, K′) =

√
3(α2 +ω2 + K′)

3
. (9)

Function (9) defines the maximum stability degree that can be reached for a given plant, with the
chosen PID-controller proportional coefficient with strictly real poles for a closed-loop transfer function.
In addition, it should be noticed that in ξ point, there is a triple pole T1 = T2 = T3 = T.
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2.2. Non-Overshoot Step Response Condition

Regarding special point ξ, let us check non-overshooting conditions that were formulated in [15].
According to [15], it is necessary and sufficient that if at least one of the following conditions holds,
then system step response has no overshoot. T2

(
K′
I′ − T

)
− T D′

I′ ≤ 0,
T
(

D′
I′ − T2

)
≤ 0;

(10)

 T2
(

K′
I′ − T

)
− T D′

I′ ≤ 0

T3
(
2T2

(
K′
I′ −

5
2 T

))
+

(
T
(

D′
I′ − 2T2

))2
≤ 0

(11)

For a more convenient robust controller synthesis procedure, let us find such a K′ value that
guarantees a non-overshoot step response for any p(D′∗, I′∗) ∈ Ω. Investigating (10) and (11), it is clear
that expression

ϕ(Ti, D′, K′, I′) = T2
i

(
K′

I′
− Ti

)
− Ti

D′

I′
, (12)

where Ti, i ∈ N, i ∈ 1, 3, is a part of each of the conditions (10) and (11). For generalization purposes, let
us solve (12) with respect to Ti. The solution is an expression that can be written as follows

Ti =
−K′ ±

√
K′2 − 4D′I′

2I′
. (13)

Regarding the highest coefficient sign and (13), one can infer that
ϕ(Ti, D′, K′, I′) ≥ 0, Ti ∈

[
−K′−
√

K′2−4D′I′
2I′ , −K′+

√
K′2−4D′I′
2I′

]
ϕ(Ti, D′, K′, I′) < 0, Ti ∈

(
−∞, −K′−

√
K′2−4D′I′
2I′

)
,
(
−K′+

√
K′2−4D′I′
2I′ ,+∞

)
.

(14)

Since K′, D′, and I′ are strictly positive, regarding (14), one can assume that the condition
ϕ(Ti, D′, K′, I′) < 0 will always hold, and it is a monotonic decreasing function of Ti. Next, substitution
of (6, 7, 9) into (11) yields that

K′ ≤ 2α2 + 6αω+ 2ω2 (15)

Regarding the case of real poles of plant transfer function and, thus, complex value of ω with a
null real part, the aforementioned substitution and expressing K′ gives:

K′ ≤ −
16
7
α2 +

30
7
α
(5

7
α+

1
7

√
4α2 − 7ω2

)
(16)

In other words, a proper choice of K′ provides a non-overshooting step response for a closed-loop
system within every point p(D′∗, I′∗) ∈ Ω.

2.3. Plant with Interval-Given Parameters

Regarding practical applications, the exact parameters values are unknown and, basically,
can be represented as a confidence limit. Moreover, parameters tend to vary due to temperature,
humidity, pressure, and mechanical deterioration. In addition, in the field of outdoor mobile robotics,
conditions of functioning are highly heterogeneous and demand special approaches regarding varying
parameters [26–28]. Thus, transfer function parameters basically have to be represented as an
interval value. Since further mathematical representation of the plant contains interval-given values,
the controller synthesis should be conducted accordingly.
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Let us consider second-order transfer function with parametric uncertainty as a plant model

W(s) =
KP

as2 + bs + c
, (17)

where a ∈ [a, a], b ∈
[
b, b

]
, c ∈ [c, c], and KP ∈

[
KP, KP

]
are given intervals.

According to [14,15], a system with interval-given parameters is basically a set of stationary LTI
systems, and its poles’ location can be represented as a region with borders defined by ranges of interval
parameters. For the purpose of analysis and control design for systems with interval-given parameters,
it is sufficient only to consider external borders of poles localization region (see Figure 4). A typical
well-known representation of the poles localization region is multiparametric interval root locus (MIRL).
Since possible plant pole configurations are real poles or a complex–conjugate pair, MIRL is always
symmetric with respect to the x-axis. The symmetry property of MIRL allows us to simplify further
research, i.e., for the second-order transfer function, it is sufficient to investigate only one half of the
MIRL. In other words, each symmetrical pair of points that belongs to MIRL is a poles pair for the same
LTI system. In addition, since only half of MIRL is sufficient, computational load is reduced.
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Since every point that belongs to MIRL is a single LTI system that has its own region Ω
with ξ point, the region of poles localization forms a corresponding region of ξ points on D′ − I′

plane. With accordance to (6) and (7), Iξ′ and Dξ
′ values are defined by K′ = KKP, and due to

the interval nature of KP, for every KP ∈
[
KP, KP

]
mapping, M(KP

∗), KP
∗
∈

[
KP, KP

]
can be obtained

(see Figure 5). According to (5), regions of positive discriminant values Ω can be obtained for
∀ξ ∈ M(KP

∗), KP
∗
∈

[
KP, KP

]
. The main aim of the research is to obtain PID-controller coefficient

values such that a closed-loop system has a non-overshooting step response for any plant parameter
value variations within given ranges. Since every point with coordinates (D′, I′) ∈ Ω provides strictly
real closed-loop poles for (2) for corresponding point ξ, then some pair of controller coefficient

values (D′∗, I′∗) gives
{
s ∈ R, s < 0

∣∣∣∣∀ξi
Kp ∈M(KP

∗), KP
∗
∈

[
KP, KP

]}
in case (D′∗, I′∗) ∈ Ω∗, such that

Ω∗ = ∩Ωi
Kp for every ξi

Kpi .
Similarly to each Ω region, for resultant region Ω∗, constraints are defined with (5) for particular

values of ξ. Thus, in order to choose (D′∗, I′∗) properly, it is sufficient to define points ξ1 and ξ2,
for which (5) forms constraints for the desired set Ω∗, which contains I′ and D′ values that provide a
non-overshooting step response under parameter variation.
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2.4. Constraints Clarification for Ω∗

The next problem in the research is to generalize constraints for Ω∗. It can be suggested that Ω∗ is
constrained with (5) for arguments providing the I′ξ value to be minimum according to (6) maximum
D′I0—the value of D′ that turns I′2(α,ω, k′, D′) into zero. The value of D′I0 is defined as follows:

D′I0(α,ω, K′) = −2α+ 2
√
(α2 +ω2 + K′). (18)

It should be noted that desired points ξ1 and ξ2 can either belong to vertices or edges mapping of
MIRL. For further convenience, (7) and (18) can be rewritten as functions of plant model parameters.
Since (1) and (17) are equivalent representations of the plant transfer function, (7) and (18) can be
represented as follows:

I′ξ(a, b, c, K′) =
1
a3

√
3(4a4 + 4K′a2 + 4ca− b2)3

72
, (19)

D′I0(a, b, c, K′) = 2

√
c
a
+ K′ −

b
a

. (20)

Regarding the assumption that desired points ξ1 and ξ2 belong to edges of MIRL mapping M
(
KPi

)
,

it should be noted that the only possible way of edge location for ξ1 and ξ2 is a nonmonotonic behavior
of (19) or (20). It is known that each edge of MIRL and, consequently, its mapping M(KP) are formed
by the varying of single interval parameters with others fixed in their limit values, and it turns (19) and
(20) into one-variable functions forming each edge.

In order to define whether (19) and (20) are monotonic or not along each interval parameter,
one can find partial derivatives for (19) and (20) with respect to a, b, c, and K′ for checking their
monotonicity property. Partial derivation for (19) yields:

∂I′ξ(a, b, c, K′)
∂a

=

√
3
(
4a4
− 2ca + b2

)(
4a4 + 4K′a2 + 4ca− b2

)2

24a4
√
(4a4 + 4K′a2 + 4ca− b2)3

(21)
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∂I′ξ(a, b, c, K′)
∂b

= −

√
3b

(
4a4 + 4K′a2 + 4ca− b2

)2

24a3
√
(4a4 + 4K′a2 + 4ca− b2)3

(22)

∂I′ξ(a, b, c, K′)
∂c

=

√
3
(
4a4 + 4K′a2 + 4ca− b2

)2

12a2
√
(4a4 + 4K′a2 + 4ca− b2)3

(23)

∂I′ξ(a, b, c, K′)
∂c

=

√
3
(
4a4 + 4K′a2 + 4ca− b2

)2

12a
√
(4a4 + 4K′a2 + 4ca− b2)3

(24)

Investigating (21)–(24), it can be concluded that if 4a4 + 4K′a2 + 4ca− b2 and 4a4
− 2ca + b2 possess

a non-zero value at any a ∈ [a, a], b ∈
[
b, b

]
, c ∈ [c, c], and K′ ∈

[
K′, K′

]
, then (19) has a monotonic

behavior. Alternatively, for solutions for one of (21), (22), (23), or (24) with respect to changing variables,
one can get the exact investigated parameter value that gives ξ1.

Similarly, partial derivation for (20) gives:

∂D′I0(a, b, c, K′)
∂a

=

b− c√
c
a+K′2

a2 , (25)

∂D′I0(a, b, c, K′)
∂b

= −
1
a

, (26)

∂D′I0(a, b, c, K′)
∂c

=
1

a
√

c
a + K′2

, (27)

∂D′I0(a, b, c, K′)
∂K′

=
1√

c
a + K′

. (28)

Functions (26)–(28) are always non-zero, so that it is sufficient to check the behavior of (25).
In addition, one has to check (25) only in the case of parameter a variation.

Regarding the aforementioned results, if (21)–(28) are monotonic functions within interval
parameters bounds, in special points ξ1(αL, ωL) and ξ2(αU, ωU) that define regions in which
intersection gives Ω∗, only two members of interval family form the set containing I′ and D′ values
that satisfies non-overshoot conditions for all the interval family. The two special members of the
family are defined as follows:

Wξ1(s) =
KP

as2 + bs + c
, (29)

Wξ2(s) =
KP

as2 + bs + c
. (30)

In case some of (21)–(28) are non-monotonic, one has to find the exact solution with respect to
varying parameters and substitute it to (29) or (30), instead of limiting the value of the parameter.

2.5. PID-Controller Coefficient Choice

The final problem within the present research is to find the exact values for the PID-controller
coefficients D and I. One has to note that D′ = KPD and I′ = KPI are interval values, since KP is a
given interval. Thus, it is essential to find D and I values such that:{

D′ ∈ Ω∗, I′ ∈ Ω∗
∣∣∣ ∀KP ∈ [KP; KP]

}
. (31)
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In order to satisfy (31), one can check two points denoted as PU
(
DKP, IKP

)
and PL

(
DKP, IKP

)
,

since any point (DKP
∗, IKP

∗), KP ∈ [KP; KP] belongs to the linear interval PLU. Let us investigate the
generalized condition for PLU to lay within the Ω∗ region. In other words, the following problem is to
choose D and I in such a way that PLU ∈ Ω∗ is as depicted in Figure 6.Symmetry 2020, 12, x FOR PEER REVIEW 11 of 16 
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According to Figure 6, one can observe that with a known range of gain KP and known expression
for constraints (5), D and I values providing PLU ∈ Ω∗ can be found from inequality of the form:

I′U(αU,ωU, K′U, D′U)

KP
≥

I′L(αL,ωL, K′L, D′L)
KP

Regarding the limit case, i.e., PL ∈ I2
′ and PU ∈ I1

′, the aforementioned inequality can be
represented as the following equality:

I′U(αU,ωU, K′U, D′U)

KP
=

I′L
(
αL,ωL, K′L, D′L

)
KP

. (32)

3. Example

In order to verify the obtained results, let us consider arbitrary second-order transfer functions
with interval-given parameters that are described with the expression:

W(s) =
[16, 18]

[1.2, 1.4]s2 + [8.3, 9.7]s + [28, 36]
(33)

Using MATLAB, let us plot the MIRL of (33). The MIRL for (33) is shown in Figure 7.
Regarding the results obtained in [19], one can obtain the external border of the MIRL presented

in Figure 7 by vertices numbered as 3, 4, 2, 6, 5, 7, and corresponding edges that connect external
vertices. The candidate transfer functions according to (29) and (30) for the plant are:

Wξ1(s) =
16

1.4s2 + 8.3s + 36

Wξ1(s) =
18

1.2s2 + 8.3s + 36
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Figure 7. Interval root locus for (33).

The investigation according to (21)–(28) yields that candidate functions are satisfied in the
aforementioned conditions and, thus, define Ω∗. Wξ1 and Wξ2 parameters are: αL = 3.4643,ωL = 2.8282,
αU = 3.4526, and ωU = 4.2461. With respect to Wξ1 and Wξ2 as proportional coefficients for PID
controllers, the lowest values should be chosen, and according to (14), one can obtain K = 6.5808,
and thus, K′ = KKP = [75.2091, 98.712].

For the investigated plant, regarding the external border presented in Figure 7, mapping M(KP)

for different KP values within its range was calculated and plotted (see Figure 8).
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Figure 8. Set of experimental mappings M(KPi ) of the MIRL external border for (33) and obtained ξ1

and ξ2.

Substituting αL = 3.4643, ωL = 2.8282, αU = 3.4526, and ωU = 4.2461 into (5), one can obtain
analytical expression for Ω∗ constraints and that gives:

I′U(D′) = 32.2913D′ −
2
√(

D′2 + 13.8104D′ − 338.3036
)3

27
− 1.54D′2 − 0.074D′3 + 271.756

I′L(D′) = 21.0685D′ +
2
√(

D′2 + 13.8527D′ − 237.6221
)3

27
− 1.53D′2 − 0.074D′3 + 195.251
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Next, solving (32) with respect to variable D′ yields PU(19.9695, 90.8278) and PL(17.1167, 77.8524),
calculation of the PID-controller coefficients gives the following results: D = 1.331, K = 6.5808,
and I = 6.055. For the obtained values, the condition PLU ∈ Ω∗ holds and provides a non-overshooting
closed-loop step response for (2). The obtained closed-loop transfer function has the following form

WCL(s) =
[11.43; 15]

(
1.331s2 + 6.581s + 6.055

)
s3 + [21.1379; 28.049] s2 + [95.2234; 128.712] s + [69.1985; 90.8226]

For confirmation results, let us obtain step responses for WCL(s) in different realizations, i.e.,
with different parameters value combinations. In Figure 9, fifty different members of the interval
family are presented.
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In Figure 9, there are a set of step responses for WCL(s) that are obtained with regular steps of
each parameter combination, and the overshoot value is zero for each of the responses.

4. Conclusions

This paper presents the approach for PID-controller tuning providing a non-overshoot step
response for a second-order transfer function with interval-given parameters. Designed for a stationary
LTI-system approach based on necessary conditions of closed-loop poles, a real configuration with
further application is necessary, and sufficient conditions within the region Ω of PID-controller
parameters guarantees strictly real closed-loop poles. Next, the rule for proportional coefficient
calculation was introduced while holding necessary and sufficient conditions in every point that belong
to region Ω. In addition, another key performance index in many control applications is the stability
degree [29,30]. In this paper, (9) defines the maximum stability with respect to plant parameters and
chosen proportional PID-controller coefficients and thus allows us to tune the PID controller according
to desired stability degree.

Considering parametric uncertainty and its interval representation, the approach was enhanced
and applied to this class of systems. Since in systems with interval-given parameters, poles move and
form regions of localization, the approach has to regard a certain set of cases. Using (5) and (6), one can
get mapping of poles’ localization regions into a PID-controller parameter plane. The next step was
getting the region of PID-controller coefficients that allows maintaining the aforementioned conditions
for each member of interval family. Finally, regarding all constraints and conditions, the equation
whose solution gives the exact PID-controller coefficient was formulated.
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One of the key disadvantages is difficulty of enhancing of the presented results for higher-order
systems due to lack of analytical methods for a higher-order equation solution. Using the Ferrari
method for a fourth-order equation, plant model objects can probably be third-order. On the other
hand, a wide class of typical industrial plants can be described with second- or third-order transfer
function [31] that makes the presented approach applicable for many problems.

One of the main advantages of the approach is a high degree of generality, since all basic functions
and expression are presented in general form, and one can investigate how exactly the parameters of
the controller or plant affect the design procedure and, thus, the final result. The generalization of
design techniques allows us to eliminate so-called “loss of insight”, in which [32] corresponded to a
numerical calculation. As a direction of further research, generalizing results for transfer functions of
higher order with zeros should be examined. Another topic of further research can be PID-controller
design with consideration of settling time, energy, and more complex kinds of uncertainties as well.
Moreover, regarding future directions of research, one thought is to enhance it to linear time-varying
(LTV) systems, since despite being in the class of LTV systems, its parameters are not just regular
intervals, but functions of time. Due to fundamental physical constraints, ranges of definition for such
kind of functions are constrained as well. The presented research forms the minimal necessary basis
for providing a required performance index within the given interval, and the possible next step is to
advance control quality with respect to law of parameters variation and other conditions [33].
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