A Decision-Making Algorithm Based on the Average Table and Antitheses Table for Interval-Valued Fuzzy Soft Set
Abstract
:1. Introduction
2. Preliminary and Related Work
- U is the set including six car candidates, and then U = {h1, h2, h3, h4, h5, h6};
- A is the set of parameters, and A = {ε1, ε2, ε3, ε4, ε6} = {power, cheap, security, ride comfort, braking performance}.
- Give the interval-valued fuzzy soft set (F, A).
- hi U, figure out the choice value ci for each object hi such that .
- hi U, achieve the score ri of hi such that .
- Choose any one of the objects hk U such that as the best candidate.
- Input the (resultant) interval-valued fuzzy soft set and an opinion weighting vector ;
- Work out Weighted Reduct Fuzzy Soft Set(WRFS) of with respect to ;
- Choose an aggregation operation G;
- Figure out and display the level soft set in tables;
- Work out the choice value ci of oi, i;
- Select hk if as the optimal choice.
3. The Proposed Decision-Making Algorithm
3.1. The Related Definitions
3.2. The Proposed Algorithm
- Input the interval-valued fuzzy soft set (F, A).
- Obtain the average table, in which entry is denoted as aij, by calculating the mean degree of membership given by the above definition.
- Find the maximum mean membership value, called Qj (j = 1, 2, 3, …, m), for each parameter in each column in the average table.
- Construct the antitheses table. Each element bij in the table is defined as the sum of the non-negative values of the below-mentioned limited list:,,,……,
- Compute the row-sum Mi and column-sum Ni in the antitheses table and the score Si for each object hi, i = 1, 2, 3, …, n.
- The final decision is any object hk which has the highest score value, i.e., any hk such that Sk = maxi Si.
3.3. Example
4. Comparison with the Method
4.1. Using Yang et al.’s Algorithm
4.2. Using Feng et al.’s Algorithm
4.3. Using Our Proposed Algorithm
5. Application of Our Algorithm in a Practical Situation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Molodtsov, D. Soft set theory—First results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
- Gorzalzany, M.B. A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 1987, 21, 1–17. [Google Scholar] [CrossRef]
- Yang, X.; Lin, T.Y.; Yang, J.; Dongjun, Y.L.A. Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 2009, 58, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Qin, H. A distance-based parameter reduction algorithm of fuzzy soft sets. IEEE Access 2018, 7, 10530–10539. [Google Scholar] [CrossRef]
- Alcantud, J.C.R. A novel algorithm for fuzzy soft set based decision making from multiobserver input parameter data set. Inf. Fusion 2016, 29, 142–148. [Google Scholar] [CrossRef]
- Gitinavard, H.; Makui, A.; Jabbarzadeh, A. Interval-valued hesitant fuzzy method based on group decision analysis for estimating weights of decision makers. J. Ind. Syst. Eng. 2016, 9, 96–110. [Google Scholar]
- Agarwal, M.; Biswas, K.; Hanmandlu, M. Generalized intuitionistic fuzzy soft sets with applications in decision-making. Appl. Soft Comput. 2013, 13, 3552–3566. [Google Scholar] [CrossRef]
- Maji, P.K.; Roy, A.R.; Biswas, R. On intuitionistic fuzzy soft sets. Fuzzy Math. 2004, 12, 669–683. [Google Scholar]
- Sujit, D.; Samarjit, K. Group decision making in medical system: An intuitionistic fuzzy soft set approach. Appl. Soft Comput. 2015, 24, 196–211. [Google Scholar]
- Deli, I.; Çagman, N. Intuitionistic fuzzy parameterized soft set theory and its decision making. Appl. Soft Comput. 2015, 28, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Tang, Y.; Chen, Q.; Liu, H.; Tang, J. Interval-valued intuitionistic fuzzy soft sets and their properties. Comput. Math. Appl. 2010, 60, 906–918. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, S. A novel approach to multi-attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets. Appl. Math. Model. 2013, 37, 4948–4971. [Google Scholar] [CrossRef]
- Zhan, J.; Liu, Q.; Herawan, T. A novel soft rough set: Soft rough hemirings and corresponding multicriteria group decision making. Appl. Soft Comput. 2017, 54, 393–402. [Google Scholar] [CrossRef]
- Zhana, J.; Ali, M.I.; Mehmood, N. On a novel uncertain soft set model: Z-soft fuzzy rough set model and corresponding decision making methods. Appl. Soft Comput. 2017, 56, 446–457. [Google Scholar] [CrossRef]
- Zhan, J.; Zhu, K. A novel soft rough fuzzy set: Z-soft rough fuzzy ideals of hemirings and corresponding decision making. Soft Comput. 2017, 21, 1923–1936. [Google Scholar] [CrossRef]
- Gong, K.; Wang, P.; Xiao, Z. Bijective soft set decision system based parameters reduction under fuzzy environments. Appl. Math. Model. 2013, 37, 4474–4485. [Google Scholar] [CrossRef]
- Gong, K.; Wang, P.; Peng, Y. Fault-tolerant enhanced bijective soft set with applications. Appl. Soft Comput. 2017, 54, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Li, Y.M.; Leoreanu-Fotea, V. Application of level soft sets in decision making based on interval-valued fuzzy soft sets. Comput. Math. Appl. 2010, 60, 1756–1767. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Ma, X.A. Complete model for evaluation system based on interval-valued fuzzy soft set. IEEE Access 2018, 6, 35012–35028. [Google Scholar] [CrossRef]
- Qin, H.; Ma, X. Data analysis approaches of interval-valued fuzzy soft sets under incomplete information. IEEE Access 2018, 7, 3561–3571. [Google Scholar] [CrossRef]
- Ma, X.; Qin, H.; Sulaiman, N.; Herawan, T.; Abawajy, J.H. The parameter reduction of the interval-valued fuzzy soft sets and its related algorithms. IEEE Trans. Fuzzy Syst. 2014, 22, 57–71. [Google Scholar] [CrossRef]
- Peng, X.; Garg, H. Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measure. Comput. Ind. Eng. 2018, 119, 439–452. [Google Scholar] [CrossRef]
- Liu, Y.; Rodriguez, R.M.; Alcantud, J.C.R.; Qin, K.; Martinez, L. Hesitant linguistic expression soft sets: Application to group decision making. Comput. Ind. Eng. 2019, 136, 575–590. [Google Scholar] [CrossRef]
- Muhammad, A.; Arooj, A.; Alcantud, J.C.R. Group decision-making methods based on hesitant N-soft sets. Expert Syst. Appl. 2019, 115, 95–105. [Google Scholar]
- Biswas, B.; Ghosh, S.K.; Bhattacharyya, S.; Platos, J.; Snasel, V.; Chakrabarti, A. Chest x-ray enhancement to interpret pneumonia malformation based on fuzzy soft set and dempster–shafer theory of evidence. Appl. Soft Comput. 2020. To be published. [Google Scholar] [CrossRef]
- Chen, W.; Zou, Y. Group decision making under generalized fuzzy soft sets and limited cognition of decision makers. Eng. Appl. Artif. Intell. 2020, 87, 103344. [Google Scholar] [CrossRef]
- Wen, T.; Chang, K.; Lai, H. Integrating the 2-tuple linguistic representation and soft set to solve supplier selection problems with incomplete information. Eng. Appl. Artif. Intell. 2020. To be published. [Google Scholar] [CrossRef]
- Vijayabalaji, S.; Ramesh, A. Belief interval-valued soft set. Expert Syst. Appl. 2019, 119, 262–271. [Google Scholar] [CrossRef]
- Hu, J.; Pan, L.; Yang, Y.; Chen, H. A group medical diagnosis model based on intuitionistic fuzzy soft sets. Appl. Soft Comput. 2019, 77, 453–466. [Google Scholar] [CrossRef]
- Aggarwal, M. Confidence soft sets and applications in supplier selection. Comput. Ind. Eng. 2018, 127, 614–624. [Google Scholar] [CrossRef]
- Xie, T.; Gong, Z. A Hesitant Soft Fuzzy Rough Set and its Applications. IEEE Access 2019, 7, 167766–167783. [Google Scholar] [CrossRef]
- Khalil, A.M.; Li, S.; Garg, H.; Li, H.; Ma, S. New Operations on Interval-Valued Picture Fuzzy Set, Interval-Valued Picture Fuzzy Soft Set and Their Applications. IEEE Access 2019, 7, 51236–51253. [Google Scholar] [CrossRef]
U | ε1 | ε2 | ε3 | ε4 | ε5 |
---|---|---|---|---|---|
h1 | [0.3,0.5] | [0.5,0.6] | [0.4,0.6] | [0.3,0.5] | [0.7,0.9] |
h2 | [0.5,0.7] | [0.6,0.7] | [0.6,0.7] | [0.1,0.2] | [0.5,0.8] |
h3 | [0.4,0.5] | [0.1,0.3] | [0.4,0.5] | [0.6,0.7] | [0.2,0.4] |
h4 | [0.5,0.6] | [0.2,0.3] | [0.7,0.9] | [0.2,0.4] | [0.1,0.3] |
h5 | [0.8,1.0] | [0.0,0.2] | [0.7,0.8] | [0.7,0.9] | [0.4,0.6] |
h6 | [0.5,0.8] | [0.5,0.7] | [0.5,0.8] | [0.4,0.5] | [0.3,0.4] |
U | ε1 | ε2 | ε3 | ε4 | ε5 | ci | ri |
---|---|---|---|---|---|---|---|
h1 | [0.3,0.5] | [0.5,0.6] | [0.4,0.6] | [0.3,0.5] | [0.7,0.9] | [2.2,3.1] | 1.3 |
h2 | [0.5,0.7] | [0.6,0.7] | [0.6,0.7] | [0.1,0.2] | [0.5,0.8] | [2.3,3.1] | 1.9 |
h3 | [0.4,0.5] | [0.1,0.3] | [0.4,0.5] | [0.6,0.7] | [0.2,0.4] | [1.7,2.4] | −5.9 |
h4 | [0.5,0.6] | [0.2,0.3] | [0.7,0.9] | [0.2,0.4] | [0.1,0.3] | [1.7,2.5] | −5.3 |
h5 | [0.8,1.0] | [0.0,0.2] | [0.7,0.8] | [0.7,0.9] | [0.4,0.6] | [2.6,3.5] | 6.1 |
h6 | [0.5,0.8] | [0.5,0.7] | [0.5,0.8] | [0.4,0.5] | [0.3,0.4] | [2.2,3.2] | 1.9 |
U | ε1 | ε2 | ε3 | ε4 | ε5 |
---|---|---|---|---|---|
h1 | 0.3 | 0.5 | 0.4 | 0.3 | 0.7 |
h2 | 0.5 | 0.6 | 0.6 | 0.1 | 0.5 |
h3 | 0.4 | 0.1 | 0.4 | 0.6 | 0.2 |
h4 | 0.5 | 0.2 | 0.7 | 0.2 | 0.1 |
h5 | 0.8 | 0.0 | 0.7 | 0.7 | 0.4 |
h6 | 0.5 | 0.5 | 0.5 | 0.4 | 0.3 |
U | ε1 | ε2 | ε3 | ε4 | ε5 | ci |
---|---|---|---|---|---|---|
h1 | 0 | 0 | 0 | 0 | 1 | 1 |
h2 | 0 | 1 | 0 | 0 | 0 | 1 |
h3 | 0 | 0 | 0 | 0 | 0 | 0 |
h4 | 0 | 0 | 1 | 0 | 0 | 1 |
h5 | 1 | 0 | 1 | 1 | 0 | 3 |
h6 | 0 | 0 | 0 | 0 | 0 | 0 |
U | ε1 | ε2 | ε3 | ε4 | ε5 |
---|---|---|---|---|---|
h1 | 0.40 | 0.55 | 0.50 | 0.40 | 0.80 |
h2 | 0.60 | 0.65 | 0.65 | 0.15 | 0.65 |
h3 | 0.45 | 0.20 | 0.45 | 0.65 | 0.30 |
h4 | 0.55 | 0.25 | 0.80 | 0.30 | 0.20 |
h5 | 0.90 | 0.10 | 0.75 | 0.80 | 0.50 |
h6 | 0.65 | 0.60 | 0.65 | 0.45 | 0.35 |
U | ε1 | ε2 | ε3 | ε4 | ε5 |
---|---|---|---|---|---|
h1 | 0.40 | 0.55 | 0.50 | 0.40 | 0.80 |
h2 | 0.60 | 0.65 | 0.65 | 0.15 | 0.65 |
h3 | 0.45 | 0.20 | 0.45 | 0.65 | 0.30 |
h4 | 0.55 | 0.25 | 0.80 | 0.30 | 0.20 |
h5 | 0.90 | 0.10 | 0.75 | 0.80 | 0.50 |
h6 | 0.65 | 0.60 | 0.65 | 0.45 | 0.35 |
Qj | 0.90 | 0.65 | 0.80 | 0.80 | 0.80 |
h1 | h2 | h3 | h4 | h5 | h6 | |
---|---|---|---|---|---|---|
h1 | 0 | 0.50 | 1.23 | 1.34 | 1.07 | 0.56 |
h2 | 0.56 | 0 | 1.55 | 1.23 | 1.03 | 0.45 |
h3 | 0.37 | 0.63 | 0 | 0.56 | 0.15 | 0.25 |
h4 | 0.54 | 0.38 | 0.63 | 0 | 0.29 | 0.19 |
h5 | 1.37 | 1.27 | 1.31 | 1.39 | 0 | 1.03 |
h6 | 0.60 | 0.43 | 1.15 | 1.02 | 0.77 | 0 |
Row-Sum Mi | Column-Sum Ni | Score Si | |
---|---|---|---|
h1 | 4.7 | 3.44 | 1.26 |
h2 | 4.82 | 3.21 | 1.61 |
h3 | 1.96 | 5.87 | −3.91 |
h4 | 2.03 | 5.54 | −3.51 |
h5 | 6.37 | 3.31 | 3.06 |
h6 | 3.97 | 2.48 | 1.49 |
U | e1 | e2 | e3 | e4 | e5 |
---|---|---|---|---|---|
h1 | [0.6,0.8] | [0.4,0.5] | [0.3,0.5] | [0.7,0.9] | [0.1,0.5] |
h2 | [0.2,0.7] | [0.3,0.5] | [0.5,0.6] | [0.4,0.8] | [0.6,0.7] |
U | e1 | e2 | e3 | e4 | e5 | ci | ri |
---|---|---|---|---|---|---|---|
h1 | [0.6,0.8] | [0.4,0.5] | [0.3,0.5] | [0.7,0.9] | [0.1,0.5] | [2.1,3.2] | 0 |
h2 | [0.2,0.7] | [0.3,0.5] | [0.5,0.6] | [0.4,0.8] | [0.6,0.7] | [2.0,3.3] | 0 |
U | e1 | e2 | e3 | e4 | e5 |
---|---|---|---|---|---|
h1 | 0.80 | 0.50 | 0.50 | 0.90 | 0.50 |
h2 | 0.70 | 0.50 | 0.60 | 0.80 | 0.70 |
U | e1 | e2 | e3 | e4 | e5 | c1 |
---|---|---|---|---|---|---|
h1 | 1 | 1 | 0 | 1 | 0 | 3 |
h2 | 0 | 1 | 1 | 0 | 1 | 3 |
U | e1 | e2 | e3 | e4 | e5 |
---|---|---|---|---|---|
h1 | 0.70 | 0.45 | 0.40 | 0.80 | 0.30 |
h2 | 0.45 | 0.40 | 0.55 | 0.60 | 0.65 |
Qj | 0.70 | 0.45 | 0.55 | 0.80 | 0.65 |
h1 | h2 | |
---|---|---|
h1 | 0 | 0.72 |
h2 | 0.81 | 0 |
Row-Sum Mi | Column-Sum Ni | Score Si | |
---|---|---|---|
h1 | 0.72 | 0.81 | −0.09 |
h2 | 0.81 | 0.72 | 0.09 |
U | e1 | e2 | e3 | e4 | e5 | e6 |
---|---|---|---|---|---|---|
h1 | [0.72, 0.88] | [0.78, 0.89] | [0.84, 0.96] | [0.79, 0.88] | [0.75, 0.85] | [0.75, 0.85] |
h2 | [0.78, 0.91] | [0.88, 0.89] | [0.93, 0.97] | [0.80, 0.92] | [0.78, 0.89] | [0.77, 0.86] |
h3 | [0.90, 0.93] | [0.89, 0.93] | [0.95, 0.98] | [0.85, 0.92] | [0.88, 0.92] | [0.84, 0.89] |
h4 | [0.85, 0.95] | [0.83, 0.95] | [0.84, 0.96] | [0.81, 0.94] | [0.82, 0.93] | [0.78, 0.94] |
h5 | [0.67, 1.00] | [0.60, 1.00] | [0.85, 1.00] | [0.70, 1.00] | [0.70, 1.00] | [0.70, 1.00] |
h6 | [0.79, 1.00] | [0.75, 0.88] | [0.85, 1.00] | [0.83, 1.00] | [0.79, 0.88] | [0.75, 0.85] |
h7 | [0.89, 1.00] | [0.85, 0.94] | [0.93, 1.00] | [0.96, 1.00] | [0.89, 1.00] | [0.89, 0.97] |
h8 | [0.67, 0.96] | [0.58, 0.96] | [0.92, 1.00] | [0.50, 0.95] | [0.58, 0.96] | [0.58, 0.96] |
h9 | [0.54, 0.83] | [0.58, 0.84] | [0.67, 0.94] | [0.58, 0.83] | [0.54, 0.85] | [0.58, 0.83] |
h10 | [0.25, 1.00] | [0.75, 1.00] | [0.50, 1.00] | [0.50, 0.96] | [0.25, 1.00] | [0.25, 0.92] |
h11 | [0.84, 0.92] | [0.86, 0.90] | [0.89, 0.99] | [0.89, 0.92] | [0.86, 0.93] | [0.85, 0.89] |
h12 | [0.84, 1.00] | [0.79, 1.00] | [0.81, 1.00] | [0.84, 1.00] | [0.81, 1.00] | [0.81, 1.00] |
h13 | [0.38, 0.75] | [0.38, 0.75] | [0.75, 0.75] | [0.50, 0.75] | [0.50, 0.75] | [0.38, 0.75] |
h14 | [0.67, 0.80] | [0.83, 0.94] | [0.67, 0.85] | [0.67, 0.80] | [0.67, 0.75] | [0.67, 0.80] |
h15 | [0.75, 0.88] | [0.80, 0.95] | [0.81, 1.00] | [0.74, 1.00] | [0.72, 0.92] | [0.68, 0.88] |
h16 | [0.73, 0.93] | [0.83, 0.96] | [0.79, 0.96] | [0.67, 0.93] | [0.65, 0.89] | [0.65, 0.93] |
h17 | [0.75, 0.89] | [0.83, 0.91] | [0.80, 0.89] | [0.73, 0.85] | [0.70, 0.83] | [0.68, 0.83] |
h18 | [0.71, 0.89] | [0.86, 0.93] | [0.88, 0.96] | [0.79, 0.93] | [0.75, 0.89] | [0.67, 0.88] |
h19 | [0.70, 0.92] | [0.78, 0.83] | [0.80, 0.92] | [0.78, 0.92] | [0.73, 0.85] | [0.65, 0.84] |
U | e1 | e2 | e3 | e4 | e5 | e6 |
---|---|---|---|---|---|---|
h1 | 0.80 | 0.84 | 0.90 | 0.84 | 0.80 | 0.80 |
h2 | 0.85 | 0.89 | 0.95 | 0.86 | 0.84 | 0.82 |
h3 | 0.92 | 0.91 | 0.97 | 0.89 | 0.90 | 0.87 |
h4 | 0.90 | 0.89 | 0.90 | 0.88 | 0.88 | 0.86 |
h5 | 0.84 | 0.80 | 0.93 | 0.85 | 0.85 | 0.85 |
h6 | 0.90 | 0.82 | 0.93 | 0.92 | 0.84 | 0.80 |
h7 | 0.95 | 0.90 | 0.97 | 0.98 | 0.95 | 0.93 |
h8 | 0.82 | 0.77 | 0.96 | 0.73 | 0.77 | 0.77 |
h9 | 0.69 | 0.71 | 0.81 | 0.71 | 0.70 | 0.71 |
h10 | 0.63 | 0.88 | 0.75 | 0.73 | 0.63 | 0.59 |
h11 | 0.88 | 0.88 | 0.94 | 0.91 | 0.90 | 0.87 |
h12 | 0.92 | 0.90 | 0.91 | 0.92 | 0.91 | 0.91 |
h13 | 0.57 | 0.57 | 0.75 | 0.63 | 0.63 | 0.57 |
h14 | 0.74 | 0.89 | 0.76 | 0.74 | 0.71 | 0.74 |
h15 | 0.82 | 0.88 | 0.91 | 0.87 | 0.82 | 0.78 |
h16 | 0.83 | 0.90 | 0.88 | 0.80 | 0.77 | 0.79 |
h17 | 0.82 | 0.87 | 0.85 | 0.79 | 0.77 | 0.76 |
h18 | 0.80 | 0.90 | 0.92 | 0.86 | 0.82 | 0.78 |
h19 | 0.81 | 0.81 | 0.86 | 0.85 | 0.79 | 0.75 |
Qj | 0.95 | 0.91 | 0.97 | 0.98 | 0.95 | 0.93 |
U | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | h10 | h11 | h12 | h13 | h14 | h15 | h16 | h17 | h18 | h19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
h1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.02 | 0.00 | 0.25 | 0.69 | 0.85 | 0.00 | 0.00 | 1.33 | 0.47 | 0.02 | 0.10 | 0.18 | 0.02 | 0.14 |
h2 | 0.24 | 0.00 | 0.00 | 0.05 | 0.14 | 0.12 | 0.00 | 0.42 | 0.93 | 1.05 | 0.02 | 0.04 | 1.58 | 0.66 | 0.15 | 0.26 | 0.37 | 0.15 | 0.36 |
h3 | 0.51 | 0.26 | 0.00 | 0.16 | 0.36 | 0.30 | 0.01 | 0.68 | 1.19 | 1.31 | 0.11 | 0.07 | 1.84 | 0.92 | 0.40 | 0.51 | 0.63 | 0.40 | 0.62 |
h4 | 0.35 | 0.16 | 0.00 | 0.00 | 0.24 | 0.18 | 0.00 | 0.58 | 1.04 | 1.16 | 0.03 | 0.00 | 1.68 | 0.76 | 0.25 | 0.37 | 0.47 | 0.27 | 0.47 |
h5 | 0.19 | 0.04 | 0.00 | 0.03 | 0.00 | 0.06 | 0.00 | 0.35 | 0.83 | 1.04 | 0.00 | 0.02 | 1.48 | 0.66 | 0.15 | 0.26 | 0.35 | 0.16 | 0.27 |
h6 | 0.26 | 0.11 | 0.03 | 0.07 | 0.16 | 0.00 | 0.00 | 0.44 | 0.92 | 1.11 | 0.03 | 0.02 | 1.57 | 0.73 | 0.20 | 0.33 | 0.42 | 0.22 | 0.36 |
h7 | 0.74 | 0.49 | 0.24 | 0.39 | 0.59 | 0.50 | 0.00 | 0.91 | 1.42 | 1.54 | 0.32 | 0.22 | 2.07 | 1.15 | 0.63 | 0.74 | 0.86 | 0.63 | 0.85 |
h8 | 0.08 | 0.01 | 0.00 | 0.06 | 0.03 | 0.03 | 0.00 | 0.00 | 0.52 | 0.76 | 0.02 | 0.05 | 1.16 | 0.39 | 0.05 | 0.08 | 0.12 | 0.06 | 0.14 |
h9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.65 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
h10 | 0.04 | 0.00 | 0.00 | 0.00 | 0.09 | 0.07 | 0.00 | 0.12 | 0.21 | 0.00 | 0.00 | 0.00 | 0.53 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.08 |
h11 | 0.42 | 0.20 | 0.02 | 0.10 | 0.28 | 0.21 | 0.00 | 0.61 | 1.11 | 1.23 | 0.00 | 0.03 | 1.76 | 0.85 | 0.32 | 0.45 | 0.54 | 0.34 | 0.54 |
h12 | 0.52 | 0.32 | 0.08 | 0.17 | 0.39 | 0.30 | 0.00 | 0.74 | 1.20 | 1.32 | 0.13 | 0.00 | 1.85 | 0.93 | 0.41 | 0.52 | 0.64 | 0.42 | 0.64 |
h13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
h14 | 0.05 | 0.00 | 0.00 | 0.00 | 0.10 | 0.08 | 0.00 | 0.14 | 0.32 | 0.39 | 0.01 | 0.00 | 0.92 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.09 |
h15 | 0.13 | 0.01 | 0.00 | 0.01 | 0.11 | 0.07 | 0.00 | 0.33 | 0.79 | 0.91 | 0.00 | 0.00 | 1.44 | 0.53 | 0.00 | 0.15 | 0.23 | 0.03 | 0.22 |
h16 | 0.10 | 0.01 | 0.00 | 0.01 | 0.11 | 0.09 | 0.00 | 0.25 | 0.68 | 0.80 | 0.02 | 0.00 | 1.33 | 0.41 | 0.04 | 0.00 | 0.12 | 0.04 | 0.18 |
h17 | 0.05 | 0.00 | 0.00 | 0.00 | 0.08 | 0.05 | 0.00 | 0.17 | 0.56 | 0.69 | 0.00 | 0.00 | 1.21 | 0.31 | 0.00 | 0.00 | 0.00 | 0.02 | 0.09 |
h18 | 0.13 | 0.01 | 0.00 | 0.03 | 0.12 | 0.09 | 0.00 | 0.34 | 0.79 | 0.91 | 0.02 | 0.01 | 1.44 | 0.52 | 0.03 | 0.16 | 0.25 | 0.00 | 0.23 |
h19 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.19 | 0.57 | 0.77 | 0.00 | 0.00 | 1.22 | 0.38 | 0.00 | 0.07 | 0.09 | 0.01 | 0.00 |
U | Row-Sum Mi | Column-Sum Ni | Score Si |
---|---|---|---|
h1 | 4.11 | 3.83 | 0.28 |
h2 | 6.54 | 1.62 | 4.92 |
h3 | 10.28 | 0.37 | 9.91 |
h4 | 8.01 | 1.08 | 6.93 |
h5 | 5.89 | 2.85 | 3.04 |
h6 | 6.98 | 2.17 | 4.81 |
h7 | 14.29 | 0.01 | 14.28 |
h8 | 3.56 | 6.52 | −2.96 |
h9 | 1.03 | 13.77 | −12.74 |
h10 | 1.15 | 16.17 | −15.02 |
h11 | 9.01 | 0.71 | 8.30 |
h12 | 10.58 | 0.46 | 10.12 |
h13 | 0.00 | 25.06 | −25.06 |
h14 | 2.13 | 9.72 | −7.59 |
h15 | 4.96 | 2.66 | 2.30 |
h16 | 4.19 | 4.00 | 0.19 |
h17 | 3.23 | 5.30 | −2.07 |
h18 | 5.08 | 2.77 | 2.31 |
h19 | 3.33 | 5.28 | −1.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Wang, Y.; Qin, H.; Wang, J. A Decision-Making Algorithm Based on the Average Table and Antitheses Table for Interval-Valued Fuzzy Soft Set. Symmetry 2020, 12, 1131. https://doi.org/10.3390/sym12071131
Ma X, Wang Y, Qin H, Wang J. A Decision-Making Algorithm Based on the Average Table and Antitheses Table for Interval-Valued Fuzzy Soft Set. Symmetry. 2020; 12(7):1131. https://doi.org/10.3390/sym12071131
Chicago/Turabian StyleMa, Xiuqin, Yanan Wang, Hongwu Qin, and Jin Wang. 2020. "A Decision-Making Algorithm Based on the Average Table and Antitheses Table for Interval-Valued Fuzzy Soft Set" Symmetry 12, no. 7: 1131. https://doi.org/10.3390/sym12071131
APA StyleMa, X., Wang, Y., Qin, H., & Wang, J. (2020). A Decision-Making Algorithm Based on the Average Table and Antitheses Table for Interval-Valued Fuzzy Soft Set. Symmetry, 12(7), 1131. https://doi.org/10.3390/sym12071131