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Abstract: Millimeter-wave wireless networks of the new fifth generation (5G) have become a primary
focus in the development of the information and telecommunication industries. It is expected that 5G
wireless networks will increase the data rates and reduce network latencies by an order of magnitude,
which will create new telecommunication services for all sectors of the economy. New electronic
components such as 28 GHz (27.5 to 28.35 GHz) single-chip transmit radio frequency (RF) front-end
monolithic microwave integrated circuits (MMICs) will be required for the performance and power
consumption of millimeter-wave (mm-wave) 5G communication systems. This component includes
a 6-bit digital phase shifter, a driver amplifier and a power amplifier. The output power P3dB and
power-added efficiency (PAE) are 29 dBm and 19.2% at 28 GHz. The phase shifter root-mean-square
(RMS) phase and gain errors are 3◦ and 0.6 dB at 28 GHz. The chip dimensions are 4.35 × 4.40 mm.

Keywords: 5G communications; massive MIMO; transceivers; RF front-end; single-chip; mm-wave;
MMIC; GaAs; phase shifter; power amplifier

1. Introduction

The population of our planet is gradually increasing and has already exceeded 7 billion people.
The information needs of the population are growing; at the same time, new technologies such as the
Internet of Things (IoT), intelligent transport systems (such as Vehicular Ad hoc Network (VANETs))
and virtual and augmented reality are actively developing [1]. The growth of data traffic and device
connections will require data rates to increase by more than an order of magnitude [2]. Responding to
these requests, the International Telecommunication Union (ITU) decided to develop a new generation
of 5G wireless communications with high transmission speeds (>10 Gbit/s) and ultralow response times
(<1 ms). However, an increase in the transmission date rate is mainly possible due to the expansion of
the band that the frequencies use. The requirements for 5G networks can only be implemented in the
millimeter-wave frequency range [3].

The advantages of millimeter waves (mm-waves) when used for radio communications have
been well known for many years [4]. The advantageous features of millimeter-wave radio waves are
responsible for their widespread use in radar systems, remote sensing, navigation and communications.
Interest in millimeter waves has increased due to the need to expand the radio frequency spectrum for
commercial applications. Compared with previous generations, mm-wave 5G wireless communication
systems have higher data rates and data transfer density, millisecond latency and enhanced spectral
energy. The International Telecommunication Union (ITU) has specified a number of the mm-wave
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frequency bands for 5G [5] wireless networks, but the 27.5–28.35 GHz band was proposed for wide
usage in many countries and was licensed by the Federal Communications Commission (FCC) [6].

Power consumption is one of the most significant technical barriers for practical mm-wave 5G
wireless communications because multiple devices connected at the same time increase the power
consumption of the base stations and data centers. Photonic technologies can be utilized in order to solve
this problem. In data centers, chip-to-chip optical or electro-optical interconnects enable an increase in
the bandwidth and capacity of those systems as well as a reduction in power consumption [7,8].

In a conventional 4G communication system, one or more passive antennas are used. Wireless 5G
networks are based on active massive-element antenna systems that improve the capacity, efficiency
and coverage of RF streams [9] (Figure 1).

Symmetry 2020, 12, x FOR PEER REVIEW 2 of 13 

 

GHz band was proposed for wide usage in many countries and was licensed by the Federal 
Communications Commission (FCC) [6]. 

Power consumption is one of the most significant technical barriers for practical mm-wave 5G 
wireless communications because multiple devices connected at the same time increase the power 
consumption of the base stations and data centers. Photonic technologies can be utilized in order to 
solve this problem. In data centers, chip-to-chip optical or electro-optical interconnects enable an 
increase in the bandwidth and capacity of those systems as well as a reduction in power 
consumption [7,8]. 

In a conventional 4G communication system, one or more passive antennas are used. Wireless 
5G networks are based on active massive-element antenna systems that improve the capacity, 
efficiency and coverage of RF streams [9] (Figure 1). 

 
Figure 1. Conventional 4G and 5G antenna systems. 

To improve the bandwidth and data rate, the multiple-input multiple-output (MIMO) 
transceivers based on phased beamforming arrays are used [10−13]. Usually, active antenna systems 
consist of massive antenna arrays with integrated MIMO transceiver RF front-ends. 

Figure 2 shows the design of a multichannel transmit RF front-end (RFFE) module for 5G 
MIMO transceivers. There is a symmetrical antenna array where each channel consists of a phase 
shifter, a driver amplifier and a power amplifier. The input splitter divides the RF signal into a 
number of channels. The symmetry of the RFFE module architecture allows for a balance between 
input and output losses and power consumption. 
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Figure 1. Conventional 4G and 5G antenna systems.

To improve the bandwidth and data rate, the multiple-input multiple-output (MIMO) transceivers
based on phased beamforming arrays are used [10–13]. Usually, active antenna systems consist of
massive antenna arrays with integrated MIMO transceiver RF front-ends.

Figure 2 shows the design of a multichannel transmit RF front-end (RFFE) module for 5G MIMO
transceivers. There is a symmetrical antenna array where each channel consists of a phase shifter,
a driver amplifier and a power amplifier. The input splitter divides the RF signal into a number of
channels. The symmetry of the RFFE module architecture allows for a balance between input and
output losses and power consumption.
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The performance and power consumption of millimeter-wave 5G communication systems
are mainly dependent on the electrical parameters of using RF electronic components based
on semiconductor monolithic integrated circuits, which are the key elements for mm-wave RF
transmit/receive modules. The development of such elements is a difficult challenge.

A previous study presented the results of the development of a 28 GHz phase adjustable power
amplifier monolithic microwave integrated circuit (MMIC) for 5G front-ends [14]. It consisted of a 4-bit
digitally controlled phase shifter and power amplifier. The MMIC was designed by Plextek RFI and
fabricated by Win Semiconductors using a 0.15 µm GaAs pHEMT process. The main disadvantage of
this MMIC is a low phase shift resolution of 22.5◦, which results in reduced beamforming opportunities
and low antenna gain.

In this study, the design approach for a 28 GHz single-chip transmit RFFE MMIC with high phase
shift resolution (5.625◦) for multichannel 5G wireless communications is presented, along with its
electrical performance. The integrated circuit (IC) consists of a 6-bit digital phase shifter, a driver
amplifier and a power amplifier and was designed using a 0.25 µm GaAs pHEMT process of JSC
Micran (Tomsk, Russian Federation) for low-cost volume production.

2. Single-Chip RF Front-End MMIC

2.1. Design Approach

Figure 3 shows a photo of a fabricated one-channel single-chip transmit RF front-end MMIC.
The chip dimensions are 4.35 mm × 4.40 mm. The single-chip IC consists of a 6-bit phase shifter with a
transistor-transistor logic (TTL) driver, a driver amplifier and a power amplifier (PA) and was designed
using a 0.25 µm GaAs pHEMT process for low-cost volume production.
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Figure 3. Photo of one-channel single-chip transmit RF front-end (RFFE) monolithic microwave
integrated circuit (MMIC).

The phase shift level of a single-chip transmit RFFE MMIC is controlled by an integrated TTL
driver. The 6-bit digital driver can precisely adjust a phase from 0 to 360◦ with a step of 5.625◦. Table A1
in Appendix A shows the phase shifter state table. There are two control levels (0 and 1) for all bits.
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Low (0) and high (1) TTL control levels are 0 and +5 V. Applying different control levels for all 6 bits of
the digital phase shifter may change the phase shift across the full 360◦ range.

The high- and low-pass (HP-LP) RF filters were used to design the 6-bit digital phase shifter [15].
The applied TTL control voltages across all bits allowed the switching of states between HP-LP filters
to form the required output phase shift level. This solution exhibits good return losses, phase shift
performance in RMS phase and gain errors.

The electrical schemes and layout plots of 180, 90, 45, 22.5, 11.25 and 5.625◦ bits are presented
in Figures 4–9. For 180 and 90◦ bits, a circuit was selected with switchable filters using an inactive
arm in the filter. The classical solution of using switchable filters does not provide a sufficient level of
decoupling of the active and inactive arms, which leads to an increase in the initial bit losses. The 45
and 22.5◦ bits were designed according to the scheme with switched elements in the filter. This is the
only possible solution for the 27.5–28.35 GHz band. For 11.5 and 5.625◦ bits, a circuit was designed
with a serial connection of filters due to a very small inductance. In this circuit, the inductance is
shunted because the required phase shift requires a large length of the microstrip.
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coefficient. The most stable bits are 180 and 90◦, and the least stable bits are 11.25 and 5.625◦. Therefore,
the optimal bit ordering is selected as follows: 22.5 to 11.25 to 90 to 5.625 to 180 to 45◦. This ordering
allows the RMS phase shift error to be reduced.

The power amplifier (PA) of a single-chip transmit front-end MMIC consists of three power stages
and matching networks (Figure 10a). The base active element of the PA is a GaAs pHEMT with a
0.25 µm length gate. To achieve a balance between output power capability and cutoff frequency,
the transistor gate width is 100 µm (Figure 11). The increase in gate width can improve the output power
of the transistor, but higher parasitic capacitance will reduce the cutoff frequency. The peripheries of
the transistors are 1600 µm (16 × 100 µm) for the first stage (Q1), 3200 µm (32 × 100 µm) for the second
stage (Q2) and 3200 µm (32 × 100 µm) for the third stage (Q3). The supply voltage for all power stages
is Vd = 6 V.
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The matching networks of the power amplifier consist of thin-film NiCr-based resistors,
metal-insulator-metal (MIM) capacitors based on silicon nitride, Au-based transmission lines and
Lange quadrature couplers (LQCs). The proposed LQCs (Figure 10b) are used in input and output
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matching networks to improve the bandwidth and achieve a compact PA size. The symmetrical design
of the PA layout and electromagnetic simulation were completed at the AWR Microwave Office [16].

2.2. Electrical Performance

Figure 12 shows the dependences of the simulated phase shift performance on the frequency for
64 states of a one-chip RF front-end MMIC.
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Figure 13 shows the dependence of the RMS phase shift error (PSE) of the single-chip RF front-end
MMIC on frequency in the range of 26 to 30 GHz. The measured RMS PSE was calculated according to
Equation (1):

σϕ =

√
(εϕ1−〈εϕ〉)
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2+...+(εϕ(N−1)−〈εϕ〉)

2

N =

√
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i=1
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2
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where N is the number of phase states number, εϕ is the measured phase shift in degrees and <εϕ> is
the average phase shift for states of the 6-bit phase shifter.
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According to the results presented in Figure 13, RMS phase shift error is about 3◦ across the entire
27.5–28.35 GHz range.
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Figure 14 shows the dependence of small signal gain in all phase states of the single-chip RF
front-end MMIC on frequency in the 26 to 30 GHz frequency range. There is a nominal small signal
gain of over 20 dB in the frequency range of 27.5 to 28.35 GHz. The maximum gain of 22.7 dB is
achieved at 29 GHz.
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Figure 15 shows the dependence of RMS gain error (GE) of the single-chip RF front-end MMIC on
frequency in the 26 to 30 GHz frequency range. The measured RMS (GE) was calculated according to
Equation (2):
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where N is the number of phase states, |S21| is the measured gain in dB and <|S21|> is the average gain
for states of the 6-bit phase shifter.

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 13 

 

 
Figure 15. Dependence of RMS gain error of the single-chip RF front-end MMIC on the frequency. 

Figure 16 shows the dependence of the output power capability at 3 dB gain compression 
(P3dB) for the 0° phase state of the single-chip RF front-end MMIC on frequency. The output power 
P-3dB is 29 dBm across the full 27.5 to 28.35 GHz band. The maximum P3dB of about 29.5 dBm is 
achieved at 30 GHz. 

 

 
Figure 16. Dependence of output power (P-3dB) at the 0° phase state of the single-chip RF front-end 
MMIC on the frequency. 

Figure 17 shows the power-added efficiency (PAE) at 1 dB gain compression for the 0° phase 
state of the single-chip RF front-end MMIC frequency. A maximum PAE of 19.3% is achieved in the 
27.5 to 28.35 GHz frequency range. Further optimization of the input and output matching networks 
in power amplifier stages can improve the PAE and the output power capability. 

 

Figure 15. Dependence of RMS gain error of the single-chip RF front-end MMIC on the frequency.

According to the results presented in Figure 15, RMS GE is 0.6 dB for the entire 27.5–28.35
GHz range.
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Figure 16 shows the dependence of the output power capability at 3 dB gain compression (P3dB)
for the 0◦ phase state of the single-chip RF front-end MMIC on frequency. The output power P-3dB is
29 dBm across the full 27.5 to 28.35 GHz band. The maximum P3dB of about 29.5 dBm is achieved at
30 GHz.
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Figure 17 shows the power-added efficiency (PAE) at 1 dB gain compression for the 0◦ phase state
of the single-chip RF front-end MMIC frequency. A maximum PAE of 19.3% is achieved in the 27.5
to 28.35 GHz frequency range. Further optimization of the input and output matching networks in
power amplifier stages can improve the PAE and the output power capability.
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Table 1 shows the electrical performance of the developed single-chip transmit RFFE MMIC in
comparison with state-of-the-art single-chip transmit RFFE MMICs [14]. The fabricated MMIC has a
comparable performance and a higher phase shift resolution. The improved output power and PAE of
the RF front-end presented in [14] can be attributed to the use of the 0.15 µm GaAs pHEMT process of
Win Semiconductors, with lower gate length resulting in better high-frequency performance.
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Table 1. State-of-the-art single-chip transmit RFFE MMICs.

This Work Ref. [14]

Parameter Min Max Min Max Units

Frequency 27.5 28.35 27.5 28.35 GHz

RMS Phase Error 3 2.38 deg.

RMS Gain Error 0.63 0.23 dB

Gain 20.0 21.3 20.5 21.5 dB

P1dB at 0◦ - - 29.8 30.2 dBm

P3dB at 0◦ 28.7 29.0 - - dBm

PAE at P1dB at 0◦ 19.2 19.3 23 24.2 %

3. Conclusions

Millimeter-wave wireless networks have attracted the most interest as 5G communication systems
of the new generation (5G). The 27.5 to 28.35 GHz band was licensed for 5G wireless networks
by the FCC. The performance and power consumption of millimeter-wave 5G communication
systems mainly depend on the electrical parameters of the electronic RF components used inside RF
transmit/receive modules.

The design approach for a 28 GHz single-chip transmit RF front-end MMIC is presented in this
paper, along with its electrical performance. The IC includes a 6-bit digital phase shifter, a driver
amplifier and a power amplifier. It was designed using a 0.25 µm GaAs pHEMT process for low-cost
volume production. The output power P3dB and PAE are 29 dBm and 19.2% at 28 GHz. The phase
shifter RMS phase and gain errors are 3◦ and 0.6 dB at 28 GHz. The fabricated single-chip RF front-end
MMIC can be used in multichannel transmit 5G front-end modules based on phased antenna arrays.
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Appendix A

Table A1. Phase shifter state table («0» is low control level and «1» is high control level).

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Relative Phase Shift, deg.

0 0 0 0 0 0 0.000

1 0 0 0 0 0 5.625

0 1 0 0 0 0 11.250

1 1 0 0 0 0 16.875

0 0 1 0 0 0 22.500

1 0 1 0 0 0 28.125

0 1 1 0 0 0 33.750

1 1 1 0 0 0 39.375

0 0 0 1 0 0 45.000

1 0 0 1 0 0 50.625

0 1 0 1 0 0 56.250

1 1 0 1 0 0 61.875

0 0 1 1 0 0 67.500

1 0 1 1 0 0 73.125

0 1 1 1 0 0 78.750

1 1 1 1 0 0 84.375

0 0 0 0 1 0 90.000

1 0 0 0 1 0 95.625

0 1 0 0 1 0 101.250

1 1 0 0 1 0 106.875

0 0 1 0 1 0 112.500

1 0 1 0 1 0 118.125

0 1 1 0 1 0 123.750

1 1 1 0 1 0 129.375

0 0 0 1 1 0 135.000

1 0 0 1 1 0 140.625

0 1 0 1 1 0 146.250

1 1 0 1 1 0 151.875

0 0 1 1 1 0 157.500

1 0 1 1 1 0 163.125

0 1 1 1 1 0 168.750

1 1 1 1 1 0 174.375

0 0 0 0 0 1 180.000

1 0 0 0 0 1 185.625

0 1 0 0 0 1 191.250

1 1 0 0 0 1 196.875
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Table A1. Cont.

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Relative Phase Shift, deg.

0 0 1 0 0 1 202.500

1 0 1 0 0 1 208.125

0 1 1 0 0 1 213.750

1 1 1 0 0 1 219.375

0 0 0 1 0 1 225.000

1 0 0 1 0 1 230.625

0 1 0 1 0 1 236.250

1 1 0 1 0 1 241.875

0 0 1 1 0 1 247.500

1 0 1 1 0 1 253.125

0 1 1 1 0 1 258.750

1 1 1 1 0 1 264.375

0 0 0 0 1 1 270.000

1 0 0 0 1 1 275.625

0 1 0 0 1 1 281.250

1 1 0 0 1 1 286.875

0 0 1 0 1 1 292.500

1 0 1 0 1 1 298.125

0 1 1 0 1 1 303.750

1 1 1 0 1 1 309.375

0 0 0 1 1 1 315.000

1 0 0 1 1 1 320.625

0 1 0 1 1 1 326.250

1 1 0 1 1 1 331.875

0 0 1 1 1 1 337.500

1 0 1 1 1 1 343.125

0 1 1 1 1 1 348.750

1 1 1 1 1 1 354.375
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