
symmetryS S

Article

Color Image Quantization Based on the Artificial Bee
Colony and Accelerated K-means Algorithms

Shu-Chien Huang

Department of Computer Science, National Pingtung University, Pingtung City, Pingtung County 90003, Taiwan;
schuang@mail.nptu.edu.tw

Received: 20 June 2020; Accepted: 23 July 2020; Published: 25 July 2020
����������
�������

Abstract: Color image quantization techniques have been widely used as an important approach
in color image processing and data compression. The key to color image quantization is a good
color palette. A new method for color image quantization is proposed in this study. The method
consists of three stages. The first stage is to generate N colors based on 3D histogram computation,
the second is to obtain the initial palette by selecting K colors from the N colors based on an artificial
bee colony algorithm, and the third is to obtain the quantized images using the accelerated K-means
algorithm. In order to reduce the computation time, the sampling process is employed. The closest
color in the palette for each sampled color pixel in the color image is efficiently determined by the
mean-distance-ordered partial codebook search algorithm. The experimental results show that the
proposed method can generate high-quality quantized images with less time consumption.

Keywords: color image quantization; image compression; artificial bee colony algorithm; accelerated
K-means algorithm; swarm intelligence

1. Introduction

Color image quantization is one of the digital image processing techniques [1]. Color image
quantization consists of two steps. The first step is to generate a set of representative colors in order
to obtain a color palette. The second is to map each pixel in the color image to one color in the color
palette. The main purpose of color image quantization is to reduce the storage requirements and the
transfer time of the image.

Hsieh and Fan [2] proposed a method for color image quantization based on an adaptive clustering
algorithm and a pixel-mapping algorithm. Omran et al. [3] developed a color image quantization
algorithm based on particle swarm optimization and the K-means algorithm. The main disadvantage
of their method is the high computational cost. Hu and Lee [4] introduced the use of stable flags for
palette entries in order to accelerate the K-means algorithm for palette design. Celebi [5] implemented
the fast and exact variants of K-means with several initialization schemes. Su and Hu [6] proposed
a color image color quantization algorithm based on self-adaptive differential evolution. El-Said [7]
proposed a fuzzy clustering algorithm, which combines the artificial fish swarm algorithm and an
efficient extension of fuzzy c-means (FCM), for color image quantization. Schaefer and Nolle [8]
introduced a new approach to color image quantization. In their method, the color palette is derived
by the simulated annealing algorithm in order to provide good image quality according to S-CIELAB.
In 2015, a color quantization method, called ATCQ, was proposed by Pérez-Delgado [9]. ATCQ adapted
some of the features of the basic Ant-tree to obtain a quicker algorithm for color image quantization.
Ueda et al. [10] described a modification of the median cut algorithm. In their method, a combination
of linear discriminant analysis and principal analysis was used to accomplish effective partitioning of
the color space. In 2019, application of the shuffled-frog leaping algorithm to perform color image

Symmetry 2020, 12, 1222; doi:10.3390/sym12081222 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-0051-8347
http://dx.doi.org/10.3390/sym12081222
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/8/1222?type=check_update&version=2

Symmetry 2020, 12, 1222 2 of 14

quantization was proposed by Pérez-Delgado [11]. Each frog represented a quantized palette and the
objective function considered is the mean square error.

Although some existing methods can obtain high-quality quantized images, these methods suffer
from the drawback of high computational cost. In order to obtain the quantized images with high
image quality and low computational cost, a color image quantization technique is proposed in this
study. Experimental results show that the proposed method can generate high-quality quantized
images with less time consumption.

The rest of this paper is organized as follows. In Section 2, some related works are reviewed.
In Section 3, the color image quantization method is described. In Section 4, some experimental results
are presented. Finally, some conclusions are given in Section 5.

2. Related Works

In this section, the artificial bee colony algorithm and the mean-distance-ordered partial codebook
search algorithm will be reviewed.

2.1. Artificial Bee Colony (ABC) Algorithm

The artificial bee colony algorithm [12–22] was first proposed by Karaboga and was inspired by the
foraging behaviors of bee colonies. In this study, the number of food sources is denoted by SN, and the
position of a food source represents a possible solution to the optimization problem. Each solution si
(i = 0, 1, 2, . . . , SN − 1) is a K-dimensional vector. Here, K is the color number of a color palette.

In the employed bee phase, a new solution vi is produced by the i-th employed bee as follows:

vi, j = si, j + ϕi j(si, j − st, j) (1)

where st is a food source selected randomly, j is selected from the set {0, 1, 2, . . . , K − 1}, and ϕi j is a
random number within the range [−1, 1]. In the onlooker bee phase, each onlooker bee selects a food
source depending on probi which is calculated by the following expression:

probi =
f itness(si)

SN−1∑
j=0

f itness(s j)

(2)

where fitness(si) is the fitness value of the solution si. Then, the onlooker bees try to improve the
solutions by using Equation (1).

The main steps of the ABC algorithm (Algorithm 1) are shown as follows:

Algorithm 1: ABC algorithm [12]

Step 1: Generate the initial population si, i = 0, 1, 2, . . . , SN − 1
triali = 0, i = 0, 1, 2, . . . , SN − 1. In the ABC algorithm, trial is a vector holding trial numbers
through which solutions cannot be improved
Set cycle to 1

Step 2: Evaluate the fitness fitness(si) of the population and memorize the best solution so far
Repeat

Step 3: Employed bee phase
Step 4: Compute the values probi (i = 0, 1, 2, . . . , SN − 1) by using Equation (2)
Step 5: Onlooker bee phase
Step 6: Memorize the best solution so far
Step 7: Scout bee phase

cycle = cycle + 1
Until cycle ≤ ABC_cycle

Symmetry 2020, 12, 1222 3 of 14

2.2. Mean-Distance-Ordered Partial Codebook Search (MPS) Algorithm

The MPS algorithm is a fast search algorithm for vector quantization [23,24]. Here, the MPS
algorithm is employed to achieve reduction in computation time for color image quantization. For each
color pixel in the color image, the closest color in the palette can be efficiently determined by the
MPS algorithm.

For the color pixel x and the palette color c in the palette, the squared Euclidean distance (SED)
and the squared sum distance (SSD) are defined as follows.

SED(x, c) =
3∑

j=1

(x j − c j)
2 (3)

SSD(x, c) = (
3∑

j=1

x j −

3∑
j=1

c j)
2 (4)

The following inequality that holds true for the color pixel x and the palette color c is described as
follows [23]:

SSD(x, c) ≤ 3× SED(x, c) (5)

In the MPS algorithm, the test condition was employed to reject some impossible palette colors:

3× dmin < SSD(x, c) (6)

where dmin denotes the minimal SED between the color pixel x and the closest color cmin found so far.
The inequality dmin < SED(x,c) can be derived from Equations (5) and (6), and thus the palette color c
cannot be the closest color.

If the color pixel x = (100, 50, 80), the sorted palette of K colors is as depicted in Figure 1a. In this
study, the initial searched palette color for the color pixel x is the palette color with the closest mean
value to x. The initial searched palette color can be found by the binary search technique. In this case,
the palette color with the closest mean value to x is (101, 52, 78); therefore, the searching order of colors
in the palette is depicted in Figure 1b.

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 16

(a) (b)

Figure 1. (a) The sorted palette of K colors; (b) the searching order of colors if the color pixel x = (100,

50, 80).

3. Proposed Color Image Quantization Algorithm

The method consists of three stages. The system flowchart is shown in Figure 2. The three stages

are described in this section.

Figure 2. The system flowchart.

3.1. Generate N Initial Colors

The RGB color system is adopted in this study. The R, G and B values range from 0 to 255. For

the Lake image, Figure 3 shows its 3D histogram. The RGB values of each pixel in an image

correspond to a point of its 3D histogram. In the proposed scheme, the 3D RGB space is divided into

non-overlapping cubes, and the size of each cube is 16 × 16 × 16. There are (256 × 256 × 256)/(16 × 16 ×

16) = 4096 cubes in total. It is observed that many cubes contain no point. If the point number

contained in the cube is equal to or larger than the threshold PixelThr, then the cube will be

preserved. Assume that the number of the preserved cube is N. The point number contained in the

i-th preserved cube is denoted by initialn[i] (i = 0, 1, 2, …, N − 1), and the center of all the points in the

i-th preserved cube is denoted by initialc[i]. The colors initialc[0], initialc[1], …,initialc[N − 1] are

called the N initial colors.

For example, there are 8 cubes shown in Figure 4, and they contain 0, 0, 10, 1, 0, 12, 2, and 0

points, respectively. Assume the value of PixelThr is set to 5. Cubes 2 and 5 will be preserved because

the point numbers contained within them are equal to or larger than 5. Hence, the values of N,

Figure 1. (a) The sorted palette of K colors; (b) the searching order of colors if the color pixel x = (100,
50, 80).

Symmetry 2020, 12, 1222 4 of 14

It is noted that the MPS test condition has two properties. Here, mean (c), mean (c1), and mean (x)
denote the mean value of palette color c, the mean value of palette color c1, and the mean value of
color pixel x, respectively. The first property is that if mean (c) is less than mean (x), when the palette
color c is rejected, the palette color c1 is also rejected if mean (c1) is less than mean (c). The second
property is that if mean (c) is greater than mean (x), when the palette color c is rejected, the palette
color c1 is also rejected if mean (c1) is greater than mean (c).

3. Proposed Color Image Quantization Algorithm

The method consists of three stages. The system flowchart is shown in Figure 2. The three stages
are described in this section.

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 16

(a) (b)

Figure 1. (a) The sorted palette of K colors; (b) the searching order of colors if the color pixel x = (100,

50, 80).

3. Proposed Color Image Quantization Algorithm

The method consists of three stages. The system flowchart is shown in Figure 2. The three stages

are described in this section.

Figure 2. The system flowchart.

3.1. Generate N Initial Colors

The RGB color system is adopted in this study. The R, G and B values range from 0 to 255. For

the Lake image, Figure 3 shows its 3D histogram. The RGB values of each pixel in an image

correspond to a point of its 3D histogram. In the proposed scheme, the 3D RGB space is divided into

non-overlapping cubes, and the size of each cube is 16 × 16 × 16. There are (256 × 256 × 256)/(16 × 16 ×

16) = 4096 cubes in total. It is observed that many cubes contain no point. If the point number

contained in the cube is equal to or larger than the threshold PixelThr, then the cube will be

preserved. Assume that the number of the preserved cube is N. The point number contained in the

i-th preserved cube is denoted by initialn[i] (i = 0, 1, 2, …, N − 1), and the center of all the points in the

i-th preserved cube is denoted by initialc[i]. The colors initialc[0], initialc[1], …,initialc[N − 1] are

called the N initial colors.

For example, there are 8 cubes shown in Figure 4, and they contain 0, 0, 10, 1, 0, 12, 2, and 0

points, respectively. Assume the value of PixelThr is set to 5. Cubes 2 and 5 will be preserved because

the point numbers contained within them are equal to or larger than 5. Hence, the values of N,

Figure 2. The system flowchart.

3.1. Generate N Initial Colors

The RGB color system is adopted in this study. The R, G and B values range from 0 to 255. For the
Lake image, Figure 3 shows its 3D histogram. The RGB values of each pixel in an image correspond to
a point of its 3D histogram. In the proposed scheme, the 3D RGB space is divided into non-overlapping
cubes, and the size of each cube is 16 × 16 × 16. There are (256 × 256 × 256)/(16 × 16 × 16) = 4096 cubes
in total. It is observed that many cubes contain no point. If the point number contained in the cube
is equal to or larger than the threshold PixelThr, then the cube will be preserved. Assume that the
number of the preserved cube is N. The point number contained in the i-th preserved cube is denoted
by initialn[i] (i = 0, 1, 2, . . . , N − 1), and the center of all the points in the i-th preserved cube is denoted
by initialc[i]. The colors initialc[0], initialc[1], . . . ,initialc[N − 1] are called the N initial colors.

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 16

initialn[0] and initialn[1] are 2, 10 and 12, respectively. The center of the 10 points contained in cube 2

is called initialc[0]. Consequently, the center of the 12 points contained in cube 5 is called initialc[1].

Figure 3. An example of a 3D histogram.

Figure 4. Cubes 0–7 contain 0, 0, 10, 1, 0, 12, 2, and 0 points, respectively.

3.2. Select K Colors by an ABC Algorithm

In this study, an ABC algorithm is employed to select K colors from the N initial colors to form

the initial palette. The basic components of the artificial bee colony algorithm for solving this

problem are described in the following subsections.

3.2.1. Representation of Solutions and Fitness Function

The proposed method considers the N initial colors and their corresponding point numbers in

order to generate the initial palette. In the initialization phase, the SN solution si (i = 0, 1, 2, ..., SN −

1) is generated, where si = (si,0, si,1, si,2,…, si,K−1), si,j is an integer number and the 0 ≤ si,j < si,j+1 ≤ N − 1 for j

= 0, 1, 2,…, K − 2. Solution si indicates that the set of initial palette colors is {initialc[si,0], initialc[si,1],

initialc[si,2], …,initialc[si,K−1]}. Then, the fitness, fitness(si), of a solution si is defined as

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑖) =
1

1 + 𝑀𝑆𝐸1
 ,

𝑀𝑆𝐸1 =
∑ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑛[𝑗] × 𝐷(𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑐[𝑗], 𝑠𝑖)

𝑁−1
𝑗=0

∑ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑛[𝑗]𝑁−1
𝑗=0

 ,

(7)

where D(initialc[j], si) = min{SED(initialc[j], initialc[si,0]), SED(initialc[j], initialc[si,1]), …,

SED(initialc[j], initialc[si,K−1])}.

Figure 3. An example of a 3D histogram.

For example, there are 8 cubes shown in Figure 4, and they contain 0, 0, 10, 1, 0, 12, 2, and 0 points,
respectively. Assume the value of PixelThr is set to 5. Cubes 2 and 5 will be preserved because the
point numbers contained within them are equal to or larger than 5. Hence, the values of N, initialn[0]
and initialn[1] are 2, 10 and 12, respectively. The center of the 10 points contained in cube 2 is called
initialc[0]. Consequently, the center of the 12 points contained in cube 5 is called initialc[1].

Symmetry 2020, 12, 1222 5 of 14

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 16

initialn[0] and initialn[1] are 2, 10 and 12, respectively. The center of the 10 points contained in cube 2

is called initialc[0]. Consequently, the center of the 12 points contained in cube 5 is called initialc[1].

Figure 3. An example of a 3D histogram.

Figure 4. Cubes 0–7 contain 0, 0, 10, 1, 0, 12, 2, and 0 points, respectively.

3.2. Select K Colors by an ABC Algorithm

In this study, an ABC algorithm is employed to select K colors from the N initial colors to form

the initial palette. The basic components of the artificial bee colony algorithm for solving this

problem are described in the following subsections.

3.2.1. Representation of Solutions and Fitness Function

The proposed method considers the N initial colors and their corresponding point numbers in

order to generate the initial palette. In the initialization phase, the SN solution si (i = 0, 1, 2, ..., SN −

1) is generated, where si = (si,0, si,1, si,2,…, si,K−1), si,j is an integer number and the 0 ≤ si,j < si,j+1 ≤ N − 1 for j

= 0, 1, 2,…, K − 2. Solution si indicates that the set of initial palette colors is {initialc[si,0], initialc[si,1],

initialc[si,2], …,initialc[si,K−1]}. Then, the fitness, fitness(si), of a solution si is defined as

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑖) =
1

1 + 𝑀𝑆𝐸1
 ,

𝑀𝑆𝐸1 =
∑ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑛[𝑗] × 𝐷(𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑐[𝑗], 𝑠𝑖)

𝑁−1
𝑗=0

∑ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑛[𝑗]𝑁−1
𝑗=0

 ,

(7)

where D(initialc[j], si) = min{SED(initialc[j], initialc[si,0]), SED(initialc[j], initialc[si,1]), …,

SED(initialc[j], initialc[si,K−1])}.

Figure 4. Cubes 0–7 contain 0, 0, 10, 1, 0, 12, 2, and 0 points, respectively.

3.2. Select K Colors by an ABC Algorithm

In this study, an ABC algorithm is employed to select K colors from the N initial colors to form the
initial palette. The basic components of the artificial bee colony algorithm for solving this problem are
described in the following subsections.

3.2.1. Representation of Solutions and Fitness Function

The proposed method considers the N initial colors and their corresponding point numbers in
order to generate the initial palette. In the initialization phase, the SN solution si (i = 0, 1, 2, . . . , SN − 1)
is generated, where si = (si,0, si,1, si,2, . . . , si,K−1), si,j is an integer number and the 0 ≤ si,j < si,j+1 ≤ N − 1
for j = 0, 1, 2, . . . , K − 2. Solution si indicates that the set of initial palette colors is {initialc[si,0],
initialc[si,1], initialc[si,2], . . . ,initialc[si,K−1]}. Then, the fitness, fitness(si), of a solution si is defined as

f itness(si) =
1

1+MSE1
,

MSE1 =

∑N−1
j=0 initialn[j]×D(initialc[j],si)∑N−1

j=0 initialn[j]
,

(7)

where D(initialc[j], si) = min{SED(initialc[j], initialc[si,0]), SED(initialc[j], initialc[si,1]), . . . ,
SED(initialc[j], initialc[si,K−1])}.

3.2.2. Generation of a New Solution vi

As described in Section 2.1, the structure of the original ABC is suitable for continuous problems.
Thus, Equation (1) needs to be modified for this specific problem. Let si = (si,0, si,1, si,2, . . . , si,K−1) be
the present solution, while st = (st,0, st,1, st,2, . . . ,st,K−1) is the randomly selected solution. The proposed
method will generate the new solution vi. The new solution vi is the same as si except that si,j is
replaced by vi,j, where j is selected from the set {0, 1, 2, . . . , K − 1}.

The value of vi,j (Algorithm 2) is computed by the following steps:

Algorithm 2: The steps of computing the value of vi,j

Step 1: Range1 = si,j − abs(si,j − st,j),
Range2 = si,j + abs(si,j − st,j),
If (Range1 < 0) { Range1 = 0; }
If (Range2 > (N − 1)) { Range2 = N − 1; }

Step 2: SetX = {};
for (y = Range1; y ≤ Range2; y++)

{ If (y is not an element of si) SetX = SetX ∪ {y}; }
Step 3: If (SetX == {}) { vi,j = si,j; }

else { Assume SetX = { y0, y1, . . . , ym−1}, the probability of the value of vi,j is set to yr being
initialn(yr)/(initialn[y0] + initialn[y1] + . . . + initialn[ym−1]) for r = 0, 1, . . . , m − 1; }

Symmetry 2020, 12, 1222 6 of 14

3.2.3. The Search Process

In the employed bee phase, the i-th employed bee produces a new solution vi by the method
described in Section 3.2.2. If fitness(vi) > fitness(si) then si is replaced by vi and triali is set to 0 else triali
= triali + 1. In the onlooker bee phase, each onlooker bee which selects a solution si depending on
probi also produces a new solution vi by the method described in Section 3.2.2. If fitness(vi) > fitness(si)
then si is replaced by vi and triali is set to 0 else triali = triali+1. In the scout bee phase, the scout bee
randomly produces the new solution to replace si if the triali of solution si is more than the parameter
‘limit’. In this study, the value of the parameter ‘limit’ is set to 10. The ABC algorithm is finished if the
criterion cycle > ABC_cycle is satisfied. The best solution found so far is output and it represents the
initial palette in this study.

In the second stage, the criterion N ≥ K must be satisfied. If the value of N obtained is less than
the value of K, the proposed method will decrease the value of PixelThr in order to satisfy the criterion
N ≥ K. When the value of PixelThr is set to 1 and the value of N obtained is less than the value of K,
the proposed method will skip the second stage and set K = N. That is, the color number of a color
palette is N.

3.3. Accelerated K-means Algorithm

The K-means algorithm is the most commonly used algorithm for data clustering. It is found that
the computational cost of the K-means algorithm for color image quantization is very high. Hence,
the accelerated K-means algorithm is employed for color image quantization in this study.

In order to achieve reduction in computation time, the sampling process is employed in this study.
First, the color image is divided into many non-overlapping blocks. When every pixel of the color
image is sampled it indicates that the sampling rate = 1, when only one pixel is sampled for a 2 × 2
block it indicates that the sampling rate = 0.25, when only two pixels are sampled for a 4 × 4 block
it indicates that the sampling rate = 0.125, and when only one pixel is sampled for a 4 × 4 block it
indicates that the sampling rate = 0.0625. Then, the sampled pixels and the initial palette serve as
the input of the accelerated K-means algorithm. Detailed descriptions of the accelerated K-means
algorithm (Algorithm 3) for color image quantization are given below.

Algorithm 3: Accelerated K-means algorithm for color image quantization

Step 1: The initial palette is generated by selecting K colors from the N initial colors based on an
ABC algorithm.
Set cycle to 1

Step 2: For each sampled color pixel in the color image, the closest color in the palette is efficiently
determined by the MPS algorithm. If the index value of its closest palette color is j, the
sampled color pixel is classified into the j-th group.

Step 3: The mean values of these K groups are computed. These K values are sorted in the
ascending order of their means in order to generate the new color palette.
cycle = cycle + 1

Step 4: If the stopping criterion cycle > K_means_cycle is satisfied, then the algorithm stops.
Otherwise, go to Step 2.

4. Experimental Results

The proposed algorithm was implemented in C language and executed on a PC running under
the operating system of Windows 7 with Intel Core 3.6 GHz CPU and 32 GBytes of RAM. The five color
images Lena, Baboon, Lake, Peppers and Airplane with a size of 512 × 512 were used for conducting
the experiments. The following parameters were used in the experiments: PixelThr = 30, SN = 20,
ABC_cycle = 15 and K_means_cycle = 20.

In the experiments, the proposed algorithm was executed 20 times for each given image. Table 1
shows the experimental results. The results presented are the solutions with the average mean square

Symmetry 2020, 12, 1222 7 of 14

error, the standard deviation (S.D.), and average computation time. The mean square error (MSE) was
defined as follows:

MSE =
1

512× 512

511∑
i=0

511∑
j=0

SED(f (i, j), f ′(i, j)), (8)

where f is the original color image, and f′ is the quantized image. It was observed that when K increased,
the average mean square error decreased and the average computation time increased. When the
sampling rate increased, the average computation time increased for all cases, and the average mean
square error decreased in most cases.

Table 1. Results of the proposed method with PixelThr = 30, SN = 20, ABC_cycle = 15 and
K_means_cycle = 20. (Sr: sampling rate, MSEa: average mean square error (MSE), T: average computation
time (milliseconds)).

K = 32 K = 64 K = 128 K = 256

Image Sr MSEa S.D. T MSEa S.D. T MSEa S.D. T MSEa S.D. T

Lena

1.0 121.33 1.52 527 73.84 1.02 848 47.53 0.53 1460 31.31 0.12 2484
0.25 121.36 1.67 170 74.13 0.89 252 47.66 0.43 414 31.71 0.14 644
0.125 121.66 1.83 93 74.17 0.73 156 48.03 0.48 237 32.03 0.11 422
0.0625 122.14 1.32 75 74.5 0.81 110 48.58 0.41 168 32.68 0.11 275

Baboon

1.0 382.57 4.7 835 242.19 1.7 1226 155.61 1.5 1962 100.16 0.8 3259
0.25 383.01 5.0 260 242.68 2.9 413 155.95 1.9 677 100.52 0.8 1145
0.125 383.42 4.7 193 242.76 2.5 273 157.06 1.6 461 101.85 0.8 783
0.0625 387.06 4.3 146 244.46 1.9 218 158.06 1.4 351 103.44 0.8 606

Peppers

1.0 236.77 3.2 659 141.73 4.0 1029 86.45 3.3 1644 55.46 0.4 2876
0.25 237.31 3.0 207 141.95 3.9 331 86.51 3.5 539 56.05 0.4 908
0.125 237.87 4.6 129 141.72 2.7 209 87.37 3.3 318 56.81 0.3 565
0.0625 239.28 6.9 87 143.03 3.5 137 88.34 3.2 237 58.07 0.4 408

Lake

1.0 207.73 3.2 651 134.88 1.6 1001 87.41 1.4 1538 57.09 0.5 2665
0.25 208.38 2.6 217 135.19 1.6 343 88.58 1.1 514 57.71 0.6 818
0.125 208.95 3.6 120 135.83 1.8 192 89.1 0.9 316 58.57 0.8 532
0.0625 210.29 3.5 100 137.59 2.4 132 90.45 1.0 222 60.24 0.7 387

Airplane

1.0 68.56 3.8 322 41.91 2.5 380 26.52 1.1 601 18.19 0.4 1136
0.25 68.97 2.6 105 41.62 2.0 123 27.11 1.0 224 18.46 0.4 440
0.125 69.69 3.5 56 42.26 2.1 83 27.05 1.4 146 18.82 0.4 292
0.0625 70.17 3.6 51 42.49 1.8 63 27.75 1.0 108 19.05 0.5 241

In the proposed method, the total computation time was the summation of computation time for
initial palette generation and computation time for clustering by the accelerated K-means algorithm.
Table 2 shows the computation time for color image quantization. These results were obtained by
the proposed method with a sampling rate of 0.125. It was observed that the computation time for
initial palette generation always increased with the increase in K. Similarly, the computation time for
clustering by accelerated K-means algorithm always increased with the increase in K.

Figures 5–9 illustrate the quantized images of Lena, Baboon, Lake, Peppers, and Airplane,
respectively, corresponding to K = 32, 64, 128 and 256. These figures were obtained by the proposed
method with a sampling rate of 0.125. It shows that the proposed method can generate high-quality
quantized images. We can observe that there is no visual difference between the original and the 256
colors quantized images. In Figure 8a, there is a red tree in the middle region. However, the color of
this tree is not red in Figure 8b. That is, there are some visual differences between the original and the
32 colors quantized images.

Symmetry 2020, 12, 1222 8 of 14

Table 2. The computation time (milliseconds) for color image quantization.

Image K Computation Time for
Initial Palette Generation

Computation Time for Clustering
by Accelerated K-means Algorithm Total Computation Time

Lena

32 31 62 93
64 46 110 156

128 78 159 237
256 141 281 422

Baboon

32 78 115 193
64 117 156 273

128 227 234 461
256 409 374 783

Peppers

32 63 66 129
64 84 125 209

128 115 203 318
256 222 343 565

Lake

32 52 68 120
64 78 114 192

128 146 170 316
256 224 308 532

Airplane

32 26 30 56
64 42 41 83

128 78 68 146
256 167 125 292

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 16

(a) (b)

(c) (d) (e)

Figure 5. (a) The Lena image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128

colors quantized image, (e) 256 colors quantized image.

(a) (b)

(c) (d) (e)

Figure 6. (a) The Baboon image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128

colors quantized image, (e) 256 colors quantized image.

Figure 5. (a) The Lena image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128
colors quantized image, (e) 256 colors quantized image.

Symmetry 2020, 12, 1222 9 of 14

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 16

(a) (b)

(c) (d) (e)

Figure 5. (a) The Lena image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128

colors quantized image, (e) 256 colors quantized image.

(a) (b)

(c) (d) (e)

Figure 6. (a) The Baboon image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128

colors quantized image, (e) 256 colors quantized image.

Figure 6. (a) The Baboon image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128
colors quantized image, (e) 256 colors quantized image.

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 16

(a) (b)

(c) (d) (e)

Figure 7. (a) The Pepper image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128

colors quantized image, (e) 256 colors quantized image.

(a) (b)

(c) (d) (e)

Figure 8. (a) The Lake image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128

colors quantized image, (e) 256 colors quantized image.

Figure 7. (a) The Pepper image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128
colors quantized image, (e) 256 colors quantized image.

Symmetry 2020, 12, 1222 10 of 14

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 16

(a) (b)

(c) (d) (e)

Figure 7. (a) The Pepper image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128

colors quantized image, (e) 256 colors quantized image.

(a) (b)

(c) (d) (e)

Figure 8. (a) The Lake image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128

colors quantized image, (e) 256 colors quantized image.
Figure 8. (a) The Lake image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128
colors quantized image, (e) 256 colors quantized image.

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 16

(a) (b)

(c) (d) (e)

Figure 9. (a) The Airplane image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d)

128 colors quantized image, (e) 256 colors quantized image.

4.1. The Effect of the Algorithm Parameters

This subsection analyzes the effect of the algorithm parameters on the solution. The comparison

was applied to the Lena image quantized to 32 and 256 colors. The following parameters were used

in the experiments: PixelThr = 30, SN = 20, ABC_cycle = 15 and K_means_cycle = 20. When a parameter

was analyzed, the other parameters remained unchanged, and the average MSE and the average

computation time (milliseconds) obtained will be shown in a figure for comparison.

As described in Section 3.1, the 3D RGB space was divided into non-overlapping cubes, and the

size of each cube was 16 × 16 × 16. If the point number contained in the cube was equal to or larger

than the threshold PixelThr, then the cube was preserved. The number of the preserved cube was N

in this study. Figure 10 compares the results of PixelThr = {5, 15, 30}. This figure shows that as

PixelThr increased, the computation time decreased slightly for all cases. When PixelThr increased,

the MSE value decreased slightly in most cases.

SN is the number of food sources in the ABC algorithm. The ABC algorithm was employed to

select K colors from the N initial colors to form the initial palette in this study. Figure 11 compares

the results of SN = {10, 20, 30}. This figure shows that as SN increased, the computation time

increased slightly for all cases. It was observed that the MSE value does not always decrease with the

increase in SN.

The ABC algorithm was finished if the criterion cycle > ABC_cycle was satisfied. Figure 12

compares the results of ABC_cycle = {5, 15, 30}. This figure shows that as ABC_cycle increased, the

computation time increased slightly for all cases. It was observed that the MSE value does not

always decrease with the increase in ABC_cycle.

In the accelerated K-means algorithm, the algorithm stops if the criterion cycle > K_means_cycle

is satisfied. Figure 13 compares the results of K_means_cycle = {5, 10, 20}. This figure shows that as

K_means_cycle increased, the computation time increased and the average MSE decreased for all

cases.

Figure 9. (a) The Airplane image, (b) 32 colors quantized image, (c) 64 colors quantized image, (d) 128
colors quantized image, (e) 256 colors quantized image.

4.1. The Effect of the Algorithm Parameters

This subsection analyzes the effect of the algorithm parameters on the solution. The comparison
was applied to the Lena image quantized to 32 and 256 colors. The following parameters were used in
the experiments: PixelThr = 30, SN = 20, ABC_cycle = 15 and K_means_cycle = 20. When a parameter
was analyzed, the other parameters remained unchanged, and the average MSE and the average
computation time (milliseconds) obtained will be shown in a figure for comparison.

As described in Section 3.1, the 3D RGB space was divided into non-overlapping cubes, and the
size of each cube was 16 × 16 × 16. If the point number contained in the cube was equal to or larger
than the threshold PixelThr, then the cube was preserved. The number of the preserved cube was N in
this study. Figure 10 compares the results of PixelThr = {5, 15, 30}. This figure shows that as PixelThr

Symmetry 2020, 12, 1222 11 of 14

increased, the computation time decreased slightly for all cases. When PixelThr increased, the MSE
value decreased slightly in most cases.Symmetry 2020, 12, x FOR PEER REVIEW 12 of 16

(a) MSE – 32 colors (b) Computation time – 32 colors

(c) MSE – 256 colors (d) Computation time – 256 colors

Figure 10. Comparing the results of PixelThr = {5, 15, 30} for the Lena image.

(a) MSE – 32 colors (b) Computation time – 32 colors

(c) MSE – 256 colors (d) Computation time – 256 colors

Figure 11. Comparing the results of SN = {10, 20, 30} for the Lena image.

Figure 10. Comparing the results of PixelThr = {5, 15, 30} for the Lena image.

SN is the number of food sources in the ABC algorithm. The ABC algorithm was employed to
select K colors from the N initial colors to form the initial palette in this study. Figure 11 compares the
results of SN = {10, 20, 30}. This figure shows that as SN increased, the computation time increased
slightly for all cases. It was observed that the MSE value does not always decrease with the increase
in SN.

Symmetry 2020, 12, x FOR PEER REVIEW 12 of 16

(a) MSE – 32 colors (b) Computation time – 32 colors

(c) MSE – 256 colors (d) Computation time – 256 colors

Figure 10. Comparing the results of PixelThr = {5, 15, 30} for the Lena image.

(a) MSE – 32 colors (b) Computation time – 32 colors

(c) MSE – 256 colors (d) Computation time – 256 colors

Figure 11. Comparing the results of SN = {10, 20, 30} for the Lena image.

Figure 11. Comparing the results of SN = {10, 20, 30} for the Lena image.

Symmetry 2020, 12, 1222 12 of 14

The ABC algorithm was finished if the criterion cycle > ABC_cycle was satisfied. Figure 12 compares
the results of ABC_cycle = {5, 15, 30}. This figure shows that as ABC_cycle increased, the computation
time increased slightly for all cases. It was observed that the MSE value does not always decrease with
the increase in ABC_cycle.

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 16

(a) MSE – 32 colors (b) Computation time – 32 colors

(c) MSE – 256 colors (d) Computation time – 256 colors

Figure 12. Comparing the results of ABC_cycle = {5, 15, 30} for the Lena image.

Figure 12. Comparing the results of ABC_cycle = {5, 15, 30} for the Lena image.

In the accelerated K-means algorithm, the algorithm stops if the criterion cycle > K_means_cycle
is satisfied. Figure 13 compares the results of K_means_cycle = {5, 10, 20}. This figure shows that as
K_means_cycle increased, the computation time increased and the average MSE decreased for all cases.

Symmetry 2020, 12, x FOR PEER REVIEW 14 of 16

(a) MSE – 32 colors (b) Computation time – 32 colors

(c) MSE – 256 colors (d) Computation time – 256 colors

Figure 13. Comparing the results of K_means_cycle = {5, 10, 20} for the Lena image.

4.2. Comparison with the Method Proposed by Pérez-Delgado

In 2019, the application of the shuffled-frog leaping algorithm to perform color quantization

was proposed by Pérez-Delgado [11], and this method is identified as SFLA-CQ. The SFLA-CQ

algorithm was coded in C language and executed on a PC running under the Linux operating

system with 8 GBytes of RAM and an AMD Ryzen 7 1800X Turbo processor (4.0 GHz). Table 3

shows the results obtained by SFLA-CQ.

The performance of the proposed method with sampling rate = 0.125 was compared to

SFLA-CQ with sampling rate = 0.1. For the Lena image, the average MSE obtained by the proposed

method was near to that obtained by SFLA-CQ. For the Baboon image, the average MSE obtained by

the proposed method was slightly higher than that obtained by SFLA-CQ. For the Pepper and Lake

images, the average MSE obtained by the proposed method was slightly lower than that obtained by

SFLA-CQ when K = 64, 128 and 256. For the Airplane image, the average MSE obtained by the

proposed method was lower than that obtained by SFLA-CQ. These results clearly show that the

computation time of SFLA-CQ is greater than that of the proposed method.

In summary, the proposed method can generate high-quality quantized images. These results

reveal that the proposed method is superior to SFLA-CQ in terms of average computation time.

Table 3. Results of the method proposed by Pérez-Delgado [11]. (Sr: sampling rate, MSEa: average

MSE, T: average computation time (milliseconds)).

 K = 32 K = 64 K = 128 K = 256

Image Sr MSEa S.D. T MSEa S.D. T MSEa S.D. T MSEa S.D. T

Lena

1.0 120.37 1.21 8654 73.76 0.98 17022 47.64 0.57 35134 31.06 0.24 70477

0.5 120.50 0.74 4579 74.32 1.52 8589 47.32 0.40 17888 31.19 0.39 35801

0.2 121.27 1.63 1908 73.87 0.53 3548 47.74 0.75 7193 31.56 0.25 14665

0.1 121.56 2.21 955 74.79 1.01 1865 48.23 0.76 3714 31.96 0.31 7626

Baboon

1.0 379.10 3.7 8089 238.87 1.6 15768 153.01 0.8 32843 98.05 0.4 65011

0.5 381.48 4.2 4102 239.03 1.8 7966 153.69 1.2 16734 98.55 0.5 31460

0.2 379.65 3.0 1688 239.69 1.6 3310 154.03 0.8 6722 99.41 0.5 12806

0.1 382.09 3.7 892 240.77 1.2 1721 154.77 0.7 3500 100.58 0.6 6586

Peppers

1.0 233.98 2.3 7962 140.55 3.6 14767 87.20 3.4 29386 55.60 0.5 58755

0.5 235.59 3.6 4026 141.83 3.7 7518 87.10 2.9 15149 55.89 0.6 30413

0.2 236.74 5.2 1678 141.25 4.3 3109 89.21 4.2 6069 56.56 0.6 12313

0.1 234.86 2.5 884 143.66 3.2 1635 88.45 3.3 3221 57.24 0.7 6323

Lake

1.0 205.86 1.8 8147 133.61 1.4 14749 88.14 1.0 29328 57.95 0.8 57507

0.5 205.92 1.6 4181 133.94 1.4 7430 88.51 1.1 14856 58.45 0.8 28967

0.2 206.64 1.9 1716 136.19 3.0 3075 89.40 1.1 6165 59.16 0.8 11931

Figure 13. Comparing the results of K_means_cycle = {5, 10, 20} for the Lena image.

4.2. Comparison with the Method Proposed by Pérez-Delgado

In 2019, the application of the shuffled-frog leaping algorithm to perform color quantization was
proposed by Pérez-Delgado [11], and this method is identified as SFLA-CQ. The SFLA-CQ algorithm
was coded in C language and executed on a PC running under the Linux operating system with
8 GBytes of RAM and an AMD Ryzen 7 1800X Turbo processor (4.0 GHz). Table 3 shows the results
obtained by SFLA-CQ.

Symmetry 2020, 12, 1222 13 of 14

Table 3. Results of the method proposed by Pérez-Delgado [11]. (Sr: sampling rate, MSEa: average
MSE, T: average computation time (milliseconds)).

K = 32 K = 64 K = 128 K = 256

Image Sr MSEa S.D. T MSEa S.D. T MSEa S.D. T MSEa S.D. T

Lena

1.0 120.37 1.21 8654 73.76 0.98 17022 47.64 0.57 35134 31.06 0.24 70477
0.5 120.50 0.74 4579 74.32 1.52 8589 47.32 0.40 17888 31.19 0.39 35801
0.2 121.27 1.63 1908 73.87 0.53 3548 47.74 0.75 7193 31.56 0.25 14665
0.1 121.56 2.21 955 74.79 1.01 1865 48.23 0.76 3714 31.96 0.31 7626

Baboon

1.0 379.10 3.7 8089 238.87 1.6 15768 153.01 0.8 32843 98.05 0.4 65011
0.5 381.48 4.2 4102 239.03 1.8 7966 153.69 1.2 16734 98.55 0.5 31460
0.2 379.65 3.0 1688 239.69 1.6 3310 154.03 0.8 6722 99.41 0.5 12806
0.1 382.09 3.7 892 240.77 1.2 1721 154.77 0.7 3500 100.58 0.6 6586

Peppers

1.0 233.98 2.3 7962 140.55 3.6 14767 87.20 3.4 29386 55.60 0.5 58755
0.5 235.59 3.6 4026 141.83 3.7 7518 87.10 2.9 15149 55.89 0.6 30413
0.2 236.74 5.2 1678 141.25 4.3 3109 89.21 4.2 6069 56.56 0.6 12313
0.1 234.86 2.5 884 143.66 3.2 1635 88.45 3.3 3221 57.24 0.7 6323

Lake

1.0 205.86 1.8 8147 133.61 1.4 14749 88.14 1.0 29328 57.95 0.8 57507
0.5 205.92 1.6 4181 133.94 1.4 7430 88.51 1.1 14856 58.45 0.8 28967
0.2 206.64 1.9 1716 136.19 3.0 3075 89.40 1.1 6165 59.16 0.8 11931
0.1 206.91 2.2 892 136.00 3.0 1580 89.37 1.1 3105 60.16 1.0 6257

Airplane

1.0 112.42 14.8 7755 59.76 8.1 15400 37.55 2.4 29939 23.39 1.2 60463
0.5 105.41 12.2 3885 60.55 7.1 7769 35.88 1.5 15081 23.21 1.0 30198
0.2 123.11 14.0 1672 58.61 4.4 3305 34.97 2.2 6180 23.34 1.0 12669
0.1 111.98 11.4 854 57.47 5.3 1649 36.49 1.9 3146 23.36 0.8 6507

The performance of the proposed method with sampling rate = 0.125 was compared to SFLA-CQ
with sampling rate = 0.1. For the Lena image, the average MSE obtained by the proposed method
was near to that obtained by SFLA-CQ. For the Baboon image, the average MSE obtained by the
proposed method was slightly higher than that obtained by SFLA-CQ. For the Pepper and Lake images,
the average MSE obtained by the proposed method was slightly lower than that obtained by SFLA-CQ
when K = 64, 128 and 256. For the Airplane image, the average MSE obtained by the proposed method
was lower than that obtained by SFLA-CQ. These results clearly show that the computation time of
SFLA-CQ is greater than that of the proposed method.

In summary, the proposed method can generate high-quality quantized images. These results
reveal that the proposed method is superior to SFLA-CQ in terms of average computation time.

5. Conclusions

A new method is presented for color image quantization in this study. The method consists of
three stages. The first stage is to generate N colors based on 3D histogram computation, the second
is to obtain the initial palette by selecting K colors from the N colors based on an ABC algorithm,
and the third is to obtain the quantized images using the accelerated K-means algorithm. In order to
achieve reduction in computation time, the sampling process and the MPS algorithm are employed in
this study.

Experimental results show that the proposed method can generate high-quality quantized images.
When the sampling rate = 0.125, the average computation time of the proposed method is less than
1 s for all cases. The main contributions of this paper are that the proposed method can generate
high-quality quantized images with less time consumption, and the experimental results reveal the
feasibility of the proposed approach.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the Ministry of Science and Technology, Taiwan, under Grant
MOST 104-2221-E-153-012.

Conflicts of Interest: The author declares that there is no conflict of interest.

Symmetry 2020, 12, 1222 14 of 14

References

1. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, NY, USA, 2018.
2. Hsieh, I.S.; Fan, K.C. An adaptive clustering algorithm for color quantization. Pattern Recognit. Lett. 2000,

21, 337–346. [CrossRef]
3. Omran, M.G.; Engelbrecht, A.P.; Salman, A. A color image quantization algorithm based on particle swarm

optimization. Informatica 2005, 29, 261–269.
4. Hu, Y.C.; Lee, M.G. K-means-based color palette design scheme with the use of stable flags. J. Electron. Imaging

2007, 16. [CrossRef]
5. Celebi, M.E. Improving the performance of k-means for color quantization. Image Vis. Comput. 2011,

29, 260–271. [CrossRef]
6. Su, Q.; Hu, Z. Color image quantization algorithm based on self-adaptive differential evolution.

Comput. Intell. Neurosci. 2013, 2013. [CrossRef]
7. El-Said, S.A. Image quantization using improved artificial fish swarm algorithm. Soft Comput. 2015,

19, 2667–2679. [CrossRef]
8. Schaefer, G.; Nolle, L. A hybrid color quantization algorithm incorporating a human visual perception model.

Comput. Intell. 2015, 31, 684–698. [CrossRef]
9. Pérez-Delgado, M.L. Colour quantization with ant-tree. Appl. Soft Comput. 2015, 36, 656–669. [CrossRef]
10. Ueda, Y.; Koga, T.; Suetake, N.; Uchino, E. Color quantization method based on principal component analysis

and linear discriminant analysis for palette-based image generation. Opt. Rev. 2017, 24, 741–756. [CrossRef]
11. Pérez-Delgado, M.L. Color image quantization using the shuffled-frog leaping algorithm. Eng. Appl.

Artif. Intell. 2019, 79, 142–158. [CrossRef]
12. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization:

Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
13. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput.

2008, 8, 687–697. [CrossRef]
14. Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009,

214, 108–132. [CrossRef]
15. Karaboga, D.; Ozturk, C. Neural networks training by artificial bee colony algorithm on pattern classification.

Neural Netw. World 2009, 19, 279–292.
16. Karaboga, D.; Ozturk, C. A novel clustering approach: Artificial bee colony (ABC) algorithm.

Appl. Soft Comput. 2011, 11, 652–657. [CrossRef]
17. Draa, A.; Bouaziz, A. An artificial bee colony algorithm for image contrast enhancement. Swarm Evol. Comput.

2014, 16, 69–84. [CrossRef]
18. Ozturk, C.; Hancer, E.; Karaboga, D. A novel binary artificial bee colony algorithm based on genetic operators.

Inf. Sci. 2015, 297, 154–170. [CrossRef]
19. Huang, S.C. High-quality codebook generation of vector quantization using the HT-ABC-LBG algorithm.

J. Inf. Sci. Eng. 2018, 34, 81–102.
20. Saad, E.; Elhosseini, M.A.; Haikal, A.Y. Culture-based artificial bee colony with heritage mechanism for

optimization of wireless sensors network. Appl. Soft Comput. 2019, 79, 59–73. [CrossRef]
21. Chen, X.; Tianfield, H.; Li, K. Self-adaptive differential artificial bee colony algorithm for global optimization

problems. Swarm Evol. Comput. 2019, 45, 70–91. [CrossRef]
22. Gorkemli, B.; Karaboga, D. A quick semantic artificial bee colony programming (qsABCP) for symbolic

regression. Inf. Sci. 2019, 502, 346–362. [CrossRef]
23. Ra, S.W.; Kim, J.K. A fast mean-distance-ordered partial codebook search algorithm for image vector

quantization. IEEE Trans. Circuits Syst. II Analog. Digit. Signal. Process. 1993, 40, 576–579. [CrossRef]
24. Hu, Y.C.; Su, B.H.; Tsou, C.C. Fast VQ codebook search algorithm for grayscale image coding.

Image Vis. Comput. 2008, 26, 657–666. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0167-8655(99)00165-8
http://dx.doi.org/10.1117/1.2762241
http://dx.doi.org/10.1016/j.imavis.2010.10.002
http://dx.doi.org/10.1155/2013/231916
http://dx.doi.org/10.1007/s00500-014-1436-0
http://dx.doi.org/10.1111/coin.12043
http://dx.doi.org/10.1016/j.asoc.2015.07.048
http://dx.doi.org/10.1007/s10043-017-0376-1
http://dx.doi.org/10.1016/j.engappai.2019.01.002
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1016/j.amc.2009.03.090
http://dx.doi.org/10.1016/j.asoc.2009.12.025
http://dx.doi.org/10.1016/j.swevo.2014.01.003
http://dx.doi.org/10.1016/j.ins.2014.10.060
http://dx.doi.org/10.1016/j.asoc.2019.03.040
http://dx.doi.org/10.1016/j.swevo.2019.01.003
http://dx.doi.org/10.1016/j.ins.2019.06.052
http://dx.doi.org/10.1109/82.257335
http://dx.doi.org/10.1016/j.imavis.2007.08.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Artificial Bee Colony (ABC) Algorithm
	Mean-Distance-Ordered Partial Codebook Search (MPS) Algorithm

	Proposed Color Image Quantization Algorithm
	Generate N Initial Colors
	Select K Colors by an ABC Algorithm
	Representation of Solutions and Fitness Function
	Generation of a New Solution vi
	The Search Process

	Accelerated K-means Algorithm

	Experimental Results
	The Effect of the Algorithm Parameters
	Comparison with the Method Proposed by Pérez-Delgado

	Conclusions
	References

