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Abstract: The main goal of this paper is to define a simple but effective method for approximating
solutions of multi-order fractional differential equations relying on Caputo fractional derivative and
under supplementary conditions. Our basis functions are based on some original generalization of
the Bessel polynomials, which satisfy many properties shared by the classical orthogonal polynomials
as given by Hermit, Laguerre, and Jacobi. The main advantages of our polynomials are two-fold:
All the coefficients are positive and any collocation matrix of Bessel polynomials at positive points
is strictly totally positive. By expanding the unknowns in a (truncated) series of basis functions
at the collocation points, the solution of governing differential equation can be easily converted
into the solution of a system of algebraic equations, thus reducing the computational complexities
considerably. Several practical test problems also with some symmetries are given to show the
validity and utility of the proposed technique. Comparisons with available exact solutions as well as
with several alternative algorithms are also carried out. The main feature of our approach is the good
performance both in terms of accuracy and simplicity for obtaining an approximation to the solution
of differential equations of fractional order.

Keywords: caputo fractional derivative; bessel functions; collocation method; multi-order fractional
differential equations

JEL Classification: 26A33; 65L60; 42C05; 65L05

1. Introduction

In recent years, fractional calculus has becoming an efficient and successful tool for the analysis of
several physical-mathematical problems. The main reason for the increasing number of papers dealing
with fractional problems is also explained by the intrinsic and natural possibility of the fractional
calculus to take into account also some memory effects, which is quite impossible by using the ordinary
differential operators [1]. In this work, we consider the nonlinear multi-order fractional differential
equations (MOFDEs) of the form

Dγ
‹ xptq “ F

´

t, xptq,Dβ1
‹ xptq, . . . ,Dβ`

‹ xptq
¯

, 0 ď t ď L, (1)

subjected by the following boundary or supplementary conditions

Hjpxpηjq, xp1qpηjq, . . . , xpm´1qpηjqq “ dj j “ 0, 1, . . . , m´ 1, (2)

where Hj are linear functions, dj P R, and ηj are some given points in r0, Ls. In (1), Dγ
‹ denotes the

Caputo fractional derivative operator such that m´ 1 ă γ ď m, m P N, and 0 ă β1 ă β2 ă . . . ă β` ă γ
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are real constants. The function F can be either linear or nonlinear function of its arguments. In [2], some
preliminary results both on the existence and uniqueness of the solution of MOFDEs (1) are obtained.

It is well-known that usually the exact solution of fractional differential equations cannot be
obtained analytically. Therefore, many authors have recently developed some suitable numerical
methods for such equations. Among the many approximation algorithms for (1) and (2), we mention
the systems-based decomposition approach [3], the Adomian decomposition method [4], the spectral
methods [5–8], the B-spline approach [9], and the generalized triangular function [10].

It is known that the traditional orthogonal polynomials such as Jacobi, Hermit, and Laguerre
are solution of a second order differential equation. In addition, the derivatives of these polynomials
constitute an orthogonal system. Moreover, there exist another set of polynomials with the two
aforementioned properties. They satisfy the following second order differential equation

x2 y2pxq ` 2px` 1q y1pxq ´ npn` 1q ypxq “ 0, (3)

where n is a positive integer. Krall and Frink [11] called these the Bessel polynomials thank to their close
relation with the Bessel functions of half-integral order. In fact, they have shown that these polynomials
occur naturally as the solutions of the classical wave equation in spherical coordinates. These
polynomials also appear in the study of various mathematical topics including transcendental number
theory [12,13] and student t-distributions [14]. These polynomials seem to have been considered first by
Bochner [15] as pointed in Grosswald [16]. However, Krall and Frink considered them in more general
setting so that to include also the polynomial solutions of the differential Equation (3). The properties
of Bessel polynomials such as recurrence relations, generating functions, and orthogonality were
investigated in [11]. The algebraic properties of these polynomials were considered by Grosswald [16].
Some more information about the theory and applications of Bessel polynomials can be found e.g.,
in [17].

In this research, we establish a new approximation algorithm based upon the Bessel polynomials
to obtain a solution of a fractional model (1). In fact, one of our motivation comes from a recent
paper [18], which proved the total positiveness of any collocation matrix of theses polynomials
evaluated at positive (collocation) points. To the best of our knowledge, this is the first attempt to
study these polynomials for approximating MOFDEs. In summary, the main idea behind the presented
approximation algorithm based on using the Bessel polynomials with together the collocation points is
that it transforms the differential operators in (1) to an equivalent algebraic form, thus greatly reducing
the numerical efforts. It should be mentioned that our Bessel polynomials are different from those
Bessel functions known as Bessel functions of the first kind that previously considered in the literature,
see [19] for a recent review.

The content of the paper is structured as follows. In Section 2 some relevant properties of the
Caputo fractional derivative and the generalized Taylor’s formula for the Caputo derivative are
presented. Section 3 is dedicated to the definitions of Bessel polynomials and their generalized
fractional-order counterpart. Moreover, the results about the convergence and error bound of these
polynomials are established. In Section 4, where a collocation method also shown to solve the MOFDEs.
By using these Bessel basis functions along with collocation points, the proposed method converts the
MOFDEs into a nonlinear matrix equation. Hence, the residual error function is introduced to assess
the accuracy of Bessel-collocation scheme when the exact solutions are not available. In Section 5,
some examples with various parameters together with error evaluation are given to show the utility
and applicability of the method. The obtained results are interpreted through tables and figures.
Finally, in Section 6, the report ends with a summary and conclusion.

2. Some Preliminaries

To continue, some definitions and theorems from fractional calculus theory are presented.



Symmetry 2020, 12, 1260 3 of 18

Definition 1. Let f ptq be a m-times continuously differentiable function. The fractional derivative Dq
‹ of f ptq

of order q ą 0 in the Caputo’s sense is defined as

Dq
‹ f ptq “

#

Im´q f pmqptq if m´ 1 ă q ă m,

f pmqptq, if q “ m, m P N,
(4)

where

Iq f ptq “
1

Γpqq

ż t

0

f psq
pt´ sq1´q ds, t ą 0.

The properties of the operator Dq
‹ can be found in [1]. Besides the linearity, the following properties

will be also used

Dq
‹pCq “ 0 pC is a constantq, (5)

Dq
‹ tβ “

$

’

&

’

%

Γpβ` 1q
Γpβ` 1´ qq

tβ´q, for β P N0 and β ě rqs, or β R N0 and β ą tqu,

0, for β P N0 and β ă rqs.
(6)

Now, we define a generalization of Taylor’s formula which involves Caputo fractional derivatives
(see a proof in [20]).

Theorem 1 (Generalized Taylor’s formula). Assuming that Dkα
‹ gpxq P Cp0, Ls, where k “ 0, 1, . . . , N,

0 ă α ď 1, and L ą 0. Then, there exists a 0 ă θ ď x such that

gpxq “
N´1
ÿ

j“0

xjα

Γpjα` 1q
D jα
‹ gp0`q `

xNα

ΓpNα` 1q
DNα
‹ gpθq, @x P r0, Ls.

Also, we have

ˇ

ˇ

ˇ
gpxq ´

N´1
ÿ

j“0

xjα

Γpjα` 1q
D jα
‹ gp0`q

ˇ

ˇ

ˇ
ď

xNα

ΓpNα` 1q
Mα,

where |DNα
‹ gpθq| ď Mα and DNα

‹ “ Dα
‹ ¨Dα

‹ ¨ ¨ ¨Dα
‹ (N-times).

Finally, we define the concept of the weighted norm used in the proof of Theorem 2:

Definition 2. Let assume that g P Cp0, Ls and wptq is a weight function. Then

}gptq}w “

˜

ż L

0
|gptq|2 wptqdt

¸
1
2

.

3. Fractional-Order Bessel Functions

In this section, definitions of Bessel polynomials as well as their generalized fractional-order
version are introduced. Hence, some properties and convergence results for them are established.

3.1. Bessel Polynomials

The Bessel polynomial Bnpxq of degree n and with constant term equal to 1 satisfies the following
differential equation

x2 y2pxq ` 2px` 1q y1pxq ´ npn` 1q ypxq “ 0, n “ 0, 1, . . . .
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Starting with B0pxq “ 1 and B1pxq “ 1` x, the three-terms recurrence relation for the Bessel
Polynomial is

Bn`1pxq “ p2n` 1qxBnpxq `Bn´1pxq, n “ 1, 2, . . . . (7)

Beside B0pxq and B1pxq, the next four of these polynomials are listed as follows

B2pxq “ 1` 3x` 3x2,

B3pxq “ 1` 6x` 15x2 ` 15x3,

B4pxq “ 1` 10x` 45x2 ` 105x3 ` 105x4,

B5pxq “ 1` 15x` 105x2 ` 420x3 ` 945x4 ` 945x5.

The coefficients of these polynomials are positive with Bnp0q “ 1 and B1np0q “ npn` 1q{2. The
explicit expression for the Bessel polynomials as the unique solution of the given differential equation
is defined by

Bnpxq “
n
ÿ

k“0

1
k!
pn` kq!
pn´ kq!

´x
2

¯k
, n “ 0, 1, . . . . (8)

These polynomials form an orthogonal system with respect to the weight function wpxq ”
expp´2{xq on the unite circle C, i.e.,

1
2πi

ż

C
BnpxqBmpxqwpxqdx “

2p´1qn`1δnm

2n` 1
, (9)

where δnm is the Kronecker delta function. Please note that the path of integration is not unique, and it
can be replaced by an arbitrary curve surrounding x “ 0. The same conclusion is true for the weight
function wpxq. This implies that an arbitrary analytic function may be added to wpxq and wpxqmay
be multiplied by a nonzero constant. By means of the orthogonality relation (9), one may expand a
function gpxq in terms of Bessel functions

gpxq «
8
ÿ

n“0

an Bnpxq,

where the coefficients an are

an “ p´1qn`1pn`
1
2
q

ż

C
Bnpxq gpxqwpxqdx.

3.2. Fractional Bessel Polynomials

The fractional-order Bessel functions can be defined by introducing the change of variable x “
tα{L, L, α ą 0 in (8). Let these polynomials will be denoted by Bα

nptq “ Bnpxq. By generalizing these
polynomials on the interval r0, Lswe obtain

Bα
nptq “

n
ÿ

k“0

ηk pn` kq!
k! pn´ kq!

tkα, 0 ď t ď L ă 8, (10)

where η “ 1
2L . It is not difficult to show that the set of fractional polynomial functions

tBα
0 ,Bα

1 , . . .u is orthogonal on r0, Ls with respect to the weight function wα
Lptq ” tα´1 expp´2L{tαq.

The fractional-order polynomials are useful in particular when the solutions of the underlying MOFDEs
have fractional behavior.
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3.3. Function Approximation and Convergence

Our goal is to obtain an approximate solution for the model problem (1) represented by the
truncated Bessel series

xN,αptq “
N
ÿ

n“0

an Bα
nptq, 0 ď t ď L, (11)

where the unknown coefficients an, n “ 0, 1, . . . , N must be sought. For this purpose, we express Bα
nptq

in the matrix representation as
BBBαptq “ TTTαptqDDDt, (12)

where
TTTαptq “

”

1 tα t2α . . . tNα
ı

, BBBαptq “ rBα
0ptq Bα

1ptq . . . Bα
Nptqs ,

and the lower triangular matrix DDD of size pN ` 1q ˆ pN ` 1q takes the form

DDD “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 . . . 0 0

1 1 0 . . . 0 0

1 3 3 . . . 0 0

...
...

. . . . . . . . .
...

1
η N!

pN ´ 2q! 1!
η2 pN ` 1q!
pN ´ 3q! 2!

. . .
ηN´1 p2N ´ 2q!

0! pN ´ 1q!
0

1
η pN ` 1q!
pN ´ 1q! 1!

η2 pN ` 2q!
pN ´ 2q! 2!

. . .
ηN´1 p2N ´ 1q!

1! pN ´ 1q!
ηN p2Nq!

0! N!

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

By expressing the relation (11) in a matrix form and exploiting (12), the approximate solution
xN,αptq in the matrix form can be rewritten as

xN,αptq “ BBBαptqAAA “ TTTαptqDDDt AAA, (13)

where the vector of unknown is AAA “ ra0 a1 . . . aNs
t. Our further aim is to establish the

convergence results of the fractional Bessel polynomials. Roughly speaking, the next theorem shows
that the approximate solution xN,αptq converges to the solution xptq of differential Equation (1) as
N Ñ8, see e.g., [21] for a similar proof.

Theorem 2. Let assume that Dkα
‹ gptq P Cp0, Ls for k “ 0, 1, . . . , N and let

Sα
N “ SpanxBα

0ptq,Bα
1ptq, . . . ,Bα

N´1ptqy.

Suppose that gN,αptq “ BBBαptqAAA is the best approximation out of Sα
N to g, then the following error bound

holds:

}gptq ´ gN,αptq}wα
L
ď

LNα Mα

expp 1
Lα´1 q ΓpNα` 1q

´ Lα

2Nα` α

¯1{2
,

where Mα ě |DNα
‹ gptq|, t P p0, Ls.
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Proof. According to Theorem 1, the generalized Taylor’s formula for gptq can be represented as
G “

řN´1
j“0

tjα

Γpjα`1qD
jα
‹ gp0`q, and satisfies

|g´ G| ď
tNα

ΓpNα` 1q
Mα.

Using the fact that BBBαptqAAA is the best approximation to g from Sα
N and G P Sα

N , we conclude that

}gptq ´ gN,αptq}
2
wα

L
ď }g´ G}2wα

L
ď

” Mα

ΓpNα` 1q

ı2
ż L

0
expp´

2L
tα
qt2Nαtα´1dt. (14)

Employing the inequality ´ 2Lα

tα ď ´2, which holds for all t P p0, Ls, one immediately find that
expp´ 2L

tα q ď expp ´2
Lα´1 q. Thus, by inserting this inequality into (14) and then integrating we conclude

that

}gptq ´ gN,αptq}
2
wα

L
ď

” Mα

ΓpNα` 1q

ı2 expp ´2
Lα´1 qLp2N`1qα

p2N ` 1qα
.

The proof is complete by taking the square roots of both sides.

Therefore, for obtaining an approximate solution of the form (11) for the solution of (1) the
following collocation points are used on 0 ă t ď L,

ti “
L
N

i, i “ 0, 1, . . . , N. (15)

4. The Collocation Scheme

To proceed, we approximate the solution xptq of MOFDEs (1) in terms of pN ` 1q-terms Bessel
polynomials series denoted by xN,αptq on the interval r0, Ls. In the matrix representation, we consider

xptq – xN,αptq “ TTTαptqDDDt AAA. (16)

By placing the collocation points (15) into (16), we get to a system of matrix equations as

xN,αptiq “ TTTαptiqDDDt AAA, i “ 0, 1, . . . , N.

Hence, we write the preceding equations compactly as

XXX “ TTT DDDt AAA, (17)

where

TTT “

»

—

—

—

—

–

TTTαpt0q

TTTαpt1q
...

TTTαptNq

fi

ffi

ffi

ffi

ffi

fl

, XXX “

»

—

—

—

—

–

xN,αpt0q

xN,αpt1q
...

xN,αptNq

fi

ffi

ffi

ffi

ffi

fl

.

To handle the fractional derivative of order γ in (1), we differentiate both sides of (16),

Dγ
‹ xN,αptq “ Dγ

‹ TTTαptqDDDt AAA. (18)

By means of the property (5) and (6), the calculation of Dγ
‹ TTTαptq can be easily obtained as follows

TTTpγqα ptq :“ Dγ
‹ TTTαptq “ r0 Dγ

‹ tα . . . Dγ
‹ tαNs.
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To write the fractional derivative Dγ
‹ involved in (1) in the matrix form, the collocation points (15)

will be inserted into (18) to have

Dγ
‹ xN,αptiq “ TTTpγqα ptiqDDDt AAA, i “ 0, 1 . . . , N,

which can be expressed equivalently as

XXXpγq “ TTTpγqDDDt AAA, (19)

where

XXXpγq “

»

—

—

—

—

–

Dγ
‹ xN,αpt0q

Dγ
‹ xN,αpt1q

...
Dγ
‹ xN,αptNq

fi

ffi

ffi

ffi

ffi

fl

, TTTpγq “

»

—

—

—

—

—

–

TTTpγqα pt0q

TTTpγqα pt1q
...

TTTpγqα ptNq

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Similarly, the fractional derivative operators Dβ j
‹ xptq in (1) for j “ 1, . . . , ` can be approximated as

XXXpβ jq “ TTTpβ jqDDDt AAA, (20)

where XXXpβ jq and TTTpβ jq are obtained as in (20) by replacing γ with β j.
By inserting the collocation points into (1), we have the system

Dγ
‹ xptiq “ F

´

ti, xptiq,D
β1
‹ xptiq, . . . ,Dβ`

‹ xptiq
¯

, i “ 0, 1, . . . , N. (21)

Considering these equations in a matrix form and substituting the relations (17), (19), and (20)
into the resulting system, a fundamental matrix equation is obtained to be solved. Let us assume that
the function F in (21) is the linear form

F “
ÿ̀

k“1

ckptqD
βk
‹ xptq ` c0ptq xptq ` hptq,

where ckptq for k “ 1, . . . , ` and c0ptq, hptq are given functions. In this case, the equations in (21) can be
rewritten in the matrix representation as

XXXpγq “
ÿ̀

k“1

CCCk XXXpβkq `CCC0 XXX`HHH, (22)

where the coefficient matrices CCCk, k “ 0, 1, . . . ` with size pN ` 1q ˆ pN ` 1q and the vector HHH of size
pN ` 1q ˆ 1 have the forms

CCCk “

»

—

—

—

—

–

ckpt0q 0 . . . 0
0 ckpt1q . . . 0
...

...
. . .

...
0 0 . . . ckptNq

fi

ffi

ffi

ffi

ffi

fl

, HHH “

»

—

—

—

—

–

hpt0q

hpt1q
...

hptNq

fi

ffi

ffi

ffi

ffi

fl

,

Substituting the relations (17), (19), and (20) into (22), the fundamental matrix equation is obtained

WWW AAA “ HHH, or rWWW; HHHs, (23)

where
WWW :“

´

TTTpγq ´CCC0 TTT´CCC1 TTTpβ1q ´ . . .´CCC` TTTpβ`q
¯

DDDt.
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Obviously, (23) is a linear matrix equation and an, n “ 0, 1, . . . , N are the unknowns Bessel
coefficients to be determined.

Next aim is to take into account the initial or boundary conditions (2). For the first condition
xp0q “ x0, we tend t Ñ 0 in (16) to get the following matrix representation

pXXX0 AAA “ x0, pXXX0 :“ TTTαp0qDDDt “ rx̂00 x̂01 . . . x̂0Ns.

For the remaining initial conditions, one needs to calculate the integer-order derivatives dk

dtk TTTαptq,
k “ 1, 2, . . . , n´ 1, which strictly depend on α as well as N. For example, by choosing α “ 1{2 and
N “ 7 we get

TTT 1
2
ptq “

”

1 t1{2 t t3{2 t2 t5{2 t3 t7{2
ı

.

Differentiation twice with respect to t reveals that

d
dt

TTT 1
2
ptq “

„

0 0 1
3
2

t1{2 2t
5
2

t3{2 3t2 7
2

t5{2


,

d2

dt2 TTT 1
2
ptq “

„

0 0 0 0 2
15
4

t1{2 6t
35
4

t3{2


.

Now, by differentiating k times in (16), and defining

TTTpkqα ptq :“
dk

dtk TTTαptq,

with the limit t Ñ 0, we conclude for k “ 1, 2, . . . , n´ 1 that

pXXXk AAA “ xk, pXXXk :“ TTTpkqα p0qDDDt “ rx̂k0 x̂k1 . . . x̂kNs.

Similarly, for the end conditions xpkqpLq “ xLk, k “ 0, . . . , n´ 1, the following matrix expressions
are obtained

pXXXLk AAA “ xTk, pXXXLk :“ TTTpkqα pLqDDDt “ rx̂L0 x̂L1 . . . x̂LNs.

Now, we replace the first n rows of the augmented matrix rWWW; HHHs in (23) by the row matrices
rpXXXk; xks or rpXXXLk; xLks, k “ 0, 1, . . . , n´ 1 to get the (nonlinear) algebraic system of equations

pWWW AAA “ pHHH, or r pWWW; pHHHs.

Thus, the unknown Bessel coefficients in (16) will be known through solving this (nonlinear)
system. This can be obtained by using the Newton’s iterative algorithm.

Remark 1. In numerical applications below, we frequently encounter the nonlinear terms like xsptq for s “
2, 3 . . .. To approximate the nonlinear term x2ptq in terms of x2

N,αptq, the collocation points (15) will be
substituted into x2

N,αptq. It can be easily seen that in the matrix representation we have

XXX2 “

»

—

—

—

—

–

x2
N,αpt0q

x2
N,αpt1q

...
x2

N,αptNq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

xN,αpt0q 0 . . . 0
0 xN,αpt1q . . . 0
...

...
. . .

...
0 0 . . . xN,αptNq

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

xN,αpt0q

xN,αpt1q
...

xN,αptNq

fi

ffi

ffi

ffi

ffi

fl

“ pXXX XXX.

Using (16), we further express the matrix pXXX as a product of three block diagonal matrices as follows

pXXX “ pTTT pDDD pAAA,
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where

pTTT “

»

—

—

—

—

–

TTTαpt0q 0 . . . 0
0 TTTαpt1q . . . 0
...

...
. . .

...
0 0 . . . TTTαptNq

fi

ffi

ffi

ffi

ffi

fl

, pDDD “

»

—

—

—

—

–

DDDt 0 . . . 0
0 DDDt . . . 0
...

...
. . .

...
0 0 . . . DDDt

fi

ffi

ffi

ffi

ffi

fl

, pAAA “

»

—

—

—

—

–

AAA 0 . . . 0
0 AAA . . . 0
...

...
. . .

...
0 0 . . . AAA

fi

ffi

ffi

ffi

ffi

fl

.

Analogously, the higher-order nonlinear terms can be treated recursively XXXs “ ppXXXqs´1 X, s “ 3, 4, . . ..

4.1. Error Estimation

In general, the exact solution of most MOFDEs cannot be explicitly obtained. Thus, we need some
measurements to test the accuracy of the proposed scheme. Since the truncated Bessel series (11) as an
approximate solution is satisfied in (1), our expectation is that the residual error function denoted by
RN,αptq becomes approximately small. Here, RN,αptq : r0, Ls Ñ R obtained by inserting the computed
approximated solution xN,αptq into the differential equation (1). More precisely, for testing accuracy of
some numerical models we calculate

RN,αptq “
ˇ

ˇ

ˇ
Dγ
‹ xN,αptq ´ F

´

t, xN,αptq,D
β1
‹ xN,αptq, . . . ,Dβ`

‹ xN,αptq
¯ ˇ

ˇ

ˇ
– 0, t P r0, Ls. (24)

It should be noticed that the fractional derivatives of order γ, β j, j “ 1, . . . , ` of the approximate
solution xN,αptq in (24) are calculated by using the properties (5) and (6). Obviously, the residual
function is vanished at the collocation points (15), so our expectation is that RN,αptq Ñ 0 as N tends
to infinity. This implies that the smallness of the residual error function shows the closeness of the
approximate solution to the true exact solution.

5. Illustrative Test Problems

Now, we show the benefits of the presented Bessel-collocation scheme by simulating some case
examples including various linear and nonlinear initial and boundary value problems. The numerical
models and calculations are verified through a comparison with existing computational schemes
and experimental measurements. Our computations were carried out using MATLAB software
version R2017a.

Problem 1. In the first problem, we consider the following inhomogeneous Bagley–Torvik equation modelling
the motion of an immersed plate in a Newtonian fluid [5–7]

xp2qptq `D
3
2
‹ xptq ` xptq “ t` 1,

with the initial conditions xp0q “ 1 and xp1qp0q “ 1. The exact solution of this problem is xptq “ t` 1.

By employing N “ 2 and L “ 1, we are looking for an approximate solution in the form
xN,αptq “

ř2
n“0 anBα

nptq. To this end, we calculate the unknown coefficients a0, a1, and a2. For this
example we set α “ 1 and the collocation points t0 “ 0, t1 “

1
2 , t3 “ 0 are used. Using γ “ 2 and

β1 “
3
2 , the corresponding matrices and vectors in the fundamental matrix Equation (23) become

TTTp
3
2 q “

»

—

–

0 0 0
0 0 1358{851
0 0 167{74

fi

ffi

fl

, TTTp2q “

»

—

–

0 0 2
0 0 2
0 0 2

fi

ffi

fl

, TTT “

»

—

–

1 0 0
1 1{2 1{4
1 1 1

fi

ffi

fl

,
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DDD “

»

—

–

1 0 0
1 1 0
1 3 3

fi

ffi

fl

, HHH “

»

—

–

1
3{2
2

fi

ffi

fl

,
”

pWWW; pHHH
ı

“

»

—

–

1 1 1 ; 1
1 3{2 1881{134 ; 3{2
0 1 3 ; 1

fi

ffi

fl

.

By solving the linear system pWWW AAA “ pHHH, the coefficients matrix is found as

AAA “ r0 1 0st.

Afterwards, by inserting the obtained coefficients into x2,1ptqwe get the approximate solution

x2,1ptq “
”

1 1` t 3t2 ` 3t` 1
ı

AAA “ 1` t,

which is the desired exact solution.

Problem 2. In the next example, the following nonlinear initial-value problem will be considered [5,7]

xp3qptq `D
5
2
‹ xptq ` x2ptq “ t4.

The initial conditions are xp0q “ 0, xp1qp0q “ 0, and xp2qp0q “ 2. It can be easily checked that the exact
true solution is xptq “ t2.

For this example, we take N “ 3, α “ 1, and the collocation points are t0, 1
3 , 2

3 , 1u. To obtain the
unknown coefficients a0, a1, a2, a3 in x3,1ptq, the following nonlinear algebraic system of equations to
be solved

$

’

’

’

’

’

&

’

’

’

’

’

%

a0 ` a1 ` a2 ` a3 “ 0,

a1 ` 3a2 ` 6a3 “ 0,

6a2 ` 30a3 “ 2,

90a3 `
180?

π
a3 ` pa0 ` 2a1 ` 7a2 ` 37a3q

2 “ 1.

By solving the above system, we get

a0 “
2
3

, a1 “ ´1, a2 “
1
3

, a3 “ 0.

Therefore, we get

x3,1ptq “
”

1 1` t 1` 3t` 3t2 1` 6t` 15t2 ` 15t3
ı

AAA “ t2,

which is obviously the exact solution.
In the next example, we show the advantage of using the fractional-order Bessel functions in the

computations.

Problem 3. In this test example, we solve the initial-value problem [7]

xp1qptq `D
1
2
‹ xptq ` xptq “ t

5
2 `

5
2

t
3
2 `

15
?

π

16
t2,

with initial condition xp0q “ 0. The exact solution is xptq “ t2?t.
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We first consider N “ 5 and α “ 1{2. The approximated solution x5, 1
2
ptq for t P r0, 1s takes

the form

x5, 1
2
ptq “ 3.55309ˆ 10´14 t2 ´ 2.20767ˆ 10´13 t` 2.38332ˆ 10´13 t1{2

` 4.17169ˆ 10´14 t3{2 ` 1.0 t5{2 ` 9.97959ˆ 10´111.

However, with a lower number of basis functions one can also obtain an accurate result. Using
N “ 2, α “ 5{2 and N “ 3, α “ 5{6, the following approximations are obtained

x2, 5
2
ptq “ 4.88118ˆ 10´17 t5 ` 1.0 t5{2,

x3, 5
6
ptq “ 1.0 t5{2 ´ 4.899133356ˆ 10´17 t5{3 ` 5.889017161ˆ 10´17 t5{6.

Moreover, to show the advantage of the presented approach and to validate our obtained
approximated solutions, we make a comparison in terms of errors in the L8 and L2 norms in Table 1.
We compare the Bessel-collocation approach and the Chelyshkov collocation spectral method [7].
In this comparison, we use different N “ 1, 2, 3 and α “ 1{2, 5{2, 5{6.

Table 1. Comparison of L8, L2 error norms for test Problem 3.

New Bessel Chelyshkov [7]

N “ 2, α “ 5
2 N “ 3, α “ 5

6 N “ 5, α “ 1
2 N “ 16 N “ 20

L8 3.17´17 2.50´17 8.05´14 2.45´06 8.59´07
L2 6.18´17 6.32´17 2.39´14 9.89´07 3.24´07

Problem 4. Consider the boundary value problem [22,23]

Dγ
‹ xptq ´Dβ

‹xptq “ ´p1` exp pt´ 1qq, 1 ă γ ď 2, 0 ă β ď 1,

with initial conditions xp0q “ 0 and xp1q “ 0. The exact solution corresponds to γ “ 2 and β “ 1 is given as
xptq “ t´ t exp pt´ 1q.

Let N “ 8 and set α “ 1. For γ “ 2, β “ 1, the approximate solution x8,1ptq of the model Problem 4
using Bessel functions in the interval 0 ď t ď 1 is

x8,1ptq “´ 0.0001286702494 t8 ´ 0.0003938666636 t7 ´ 0.003196278513 t6

´ 0.01524130813 t5 ´ 0.06134909192 t4 ´ 0.183930672 t3

´ 0.3678807668 t2 ` 0.6321206543 t´ 2.12897992ˆ 10´109.

In Table 2, we report the numerical results corresponding to these values of γ, β using different
N “ 8, 16 evaluated at some points t P r0, 1s. The corresponding absolute errors EN,αptq :“
|xptq ´ xN,αptq| are also reported in this table. Moreover, the numerical results based on Haar
wavelet operational matrices [22] are given in the last column of Table 2. As can see from Table 2,
our approximate solutions agree with the results obtained in [22]. The next observation is that more
accurate solutions are obtained if one increases the number of Bessel functions N.
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Table 2. Comparison of approximate solutions and the corresponding absolute errors for test Problem 4
using N “ 8, 16, and γ “ 2, β “ 1.

N “ 8 N “ 16 Haar Wavelet [22]

t x8,1ptq E8,1ptq x16,1ptq E16,1ptq J “ 10
0.1 0.0593430365264982 2.50´09 0.059343034025940 2.96´16 0.05934300
0.2 0.1101342091046447 1.93´09 0.110134207176555 3.02´16 0.11013418
0.3 0.1510244104291788 1.57´09 0.151024408862577 3.07´16 0.15102438
0.4 0.1804753466639111 1.10´09 0.180475345562389 2.63´16 0.18047531
0.5 0.1967346707501356 6.06´10 0.196734670143683 2.57´16 0.19673463
0.6 0.1978079724388553 6.02´11 0.197807972378616 2.13´16 0.19780792
0.7 0.1814272449585667 5.64´10 0.181427245522797 2.80´16 0.18142718
0.8 0.1450153963505055 1.19´09 0.145015397537614 1.73´16 0.14501532
0.9 0.0856463216234075 2.14´09 0.085646323767636 1.52´16 0.08564623

In Figure 1, x10,1ptq is plotted when γ “ 2 (β “ 1) is fixed and different values of β “

0.25, 0.5, 0.75, 1 (γ “ 1.25, 1.5, 1.75, 2) are examined. It is observed that as γ and β approached to
1 and 2 respectively, numerical solutions tend to the exact solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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x
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Figure 1. Numerical approximations for fixed β “ 1 and γ “ 1.25, 1.5, 1.75, 2 (left) and fixed γ “ 2 and
β “ 0.25, 0.5, 0.75, 1 (right) in test Problem 4 with N “ 10.

Problem 5. Let us consider the initial-value problem of Bagley–Torvik equation of fractional order with variable
coefficients [24,25]

xp2qptq `
1
2
?

πt2 D
3
2
‹ xptq ´ 4

?
t xptq “ 6t,

with initial conditions xp0q “ 0, xp1qp0q “ 0. The exact solution is xptq “ t3.

Clearly, the exact solution is a third-degree polynomial. Therefore, we take N “ 3 and α “ 1,
which are sufficient to get the desired approximations. Using the usual collocation points as in
Problem 2 and similar to Problem 1, we get the final augmented matrix

”

pWWW; pHHH
ı

“

»

—

—

—

–

1 1 1 1 ; 0
´1351{585 ´4782{1553 2691{2701 6598{129 ; 2
´1277{391 ´4801{882 ´2659{445 6090{97 ; 4

0 1 3 6 ; 0

fi

ffi

ffi

ffi

fl

.

Solving the resulting linear system, we find

AAA “ r´
1
3

3
5

´
1
3

1
15
st.
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Therefore, the approximated solution x3,1ptq is obtained as

x3,1ptq “
”

1 1` t 3t2 ` 3t` 1 1` 6t` 15t2 ` 15t3
ı

AAA “ t3,

which is the exact solution.

Problem 6. Consider the fractional Riccati equation [23,26]

Dγ
‹ xptq ` xptq ´ x2ptq “ 0, 0 ă γ ď 1,

on a long time interval with L “ 5 and initial condition xp0q “ 1{2. When γ “ 1, the exact solution is
xptq “ 1

expptq`1 .

We calculate the approximated solution xN,αptq using N “ 7 and γ equals to α “ 1{4. Thus, we get

x7, 1
4
ptq “ 0.1617950181136742 t

3
4 ´ 0.03445544072182753 t

1
2 ´ 0.2700823207417999 t

1
4

´ 0.009800299427063008 t
3
2 ´ 0.1204495580962043 t` 0.04675854257899483 t

5
4

` 0.0008798927221707359 t
7
4 ` 0.49999999999998357401.

To validate this solution, we also employ the old fractional-order Bessel polynomials as well as
Chelyshkov and Legendre functions from the previous works [26,27] with the same parameters as
above. The corresponding solutions take the forms respectively

xB
7, 1

4
ptq “ 0.1617932518503192 t

3
4 ´ 0.03445464899775196 t

1
2 ´ 0.27008246876491873 t

1
4

´ 0.0097998224671427077 t
3
2 ´ 0.1204474711992175 t` 0.04675716925988139 t

5
4

` 0.00087982440038136711651 t
7
4 ` 0.5,

xC
7, 1

4
ptq “ 0.16176395176134591 t

3
4 ´ 0.034436828673633131 t

1
2 ´ 0.27008706550355819 t

1
4

´ 0.0097962860256647 t
3
2 ´ 0.12042146216589336 t` 0.046744073064058187 t

5
4

` 0.00087942518183550405624 t
7
4 ` 0.5,

xL
7, 1

4
ptq “ 0.16179490530760574 t

3
4 ´ 0.034455365809483707 t

1
2 ´ 0.2700823428770175 t

1
4

´ 0.009800287282136090 t
3
2 ´ 0.12044946374788617 t` 0.04675849679405389 t

5
4

` 0.00087989135193320893222 t
7
4 ` 0.49999999947316410565

To further compare these collocation schemes based on various polynomials, we calculate the
estimated residual errors obtained by the relation (24). The graphs of RN,αptq on the interval r0, 5s
correspond to γ, α “ 1{4 and for N “ 7 are shown in Figure 2. With respect to Figure 2, it is obviously
seen that the residual error functions obtained by the presented Bessel-collocation method are smaller
compared to the errors of other polynomial-based numerical collocation schemes.



Symmetry 2020, 12, 1260 14 of 18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10−13

10−11

10−9

10−7

10−5

10−3

t-axis

R
7
,
1 4
(t

)

New Bessel

Old Bessel

Chelyshkov

Legendre

Figure 2. Comparing the error functions in test Problem 6 using old and new Bessel, Chelyshkov, and
Legendre functions with γ, α “ 1{4, and N “ 7.

Problem 7. Consider the following nonlinear boundary value problem with variable coefficients [6]

xp2qptq ` Γp
4
5
q

5
a

t6 D
6
5
‹ xptq `

11
9

Γp
5
6
q

6
?

tD
1
6
‹ xptq ´ rxp1qptqs2 “ 2`

1
10

t2, 0 ă t ă 1,

with boundary conditions xp0q “ 1 and xp1q “ 2. The exact solution of this example is xptq “ 1` t2.

In this example, we have γ “ 2, β1 “ 6{5, and β2 “ 1{6. First, we set α “ 1. The approximate
solutions xN,αptq of Problem 7 for N “ 2, 3 on 0 ď t ď 1 are obtained as follows, respectively

x2,1ptq “ 1.0000000000119503851 t2 ´ 2.98118ˆ 10´11 t` 1.0000000000072342687,

x3,1ptq “ 1.12820ˆ 10´9 t3 ` 1.0000000012230527969 t2 ´ 9.66432ˆ 10´11 t

` 1.0000000000012118324.

To show the gain of the proposed scheme, we compare our results with the collocation method
based on Bernstein operational matrix (BOM) of fractional derivative from [6]. Table 3 reports the errors
in L8 and L2 norms of the new Bessel-collocation procedure and the errors of the BOM algorithm.
This comparison shows the thoroughness of the proposed method.

Table 3. Comparison of L8, L2 error norms for test Problem 7.

New Bessel BOM [6]

N “ 2 N “ 3 N “ 3 N “ 6 N “ 12 N “ 15

L8 1.06271´11 1.45886´10 3.4´05 1.5´06 5.5´08 1.9´08
L2 3.00764´11 4.21226´10 2.0´05 7.6´07 2.3´08 7.9´09

Problem 8. We consider the following initial-value problem of multi-term nonlinear fractional differential
equation [6]

Dγ
‹ xptq `Dβ1

‹ xptq ¨Dβ2
‹ xptq ` rxptqs2 “ t6 `

6t3´γ

Γp4´ γq
`

36t6´β1´β2

Γp4´ β1qΓp4´ β2q
, 0 ă t ă 1,

where 2 ă γ ă 3, 0 ă β1 ă 1, and 1 ă β2 ă 2 and the initial conditions are xp0q “ 0, xp1qp0q “ 0, and
xp2qp0q “ 0. An easy calculation shows that xptq “ t3 is the exact solution.
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For this example, we set α “ 1. By applying the collocation technique based upon new Bessel
functions at C1: pγ, β1, β2q “ p5{2, 9{10, 3{2q and for N “ 3, 4, the following approximative solutions
on 0 ď t ď 1 are obtained

x3,1ptq “ 1.0000000000004519163 t3 ´ 5.55112ˆ 10´17 t´ 5.55112ˆ 10´17,

x4,1ptq “ 8.60154ˆ 10´13 t4 ` 0.9999999999992085443 t3 ´ 1.09400ˆ 10´16 t2

´ 9.83260ˆ 10´17 t` 1.79230ˆ 10´17.

A comparison between our collocation scheme at C1 and the method of shifted Jacobi operational
matrix (SJOM) [6] with N “ 24 is made in Table 4. Besides the cases C1 and C2: pγ, β1, β2q “

p2.000001, 0.000009, 1.000001q, the following values of pγ, β1, β2q are used in Table 5 for comparison
purposes

C3: p2.99, 0.99, 1.99q, C4: p2.75, 0.75, 1.75q, C5: p2.9999, 0.9999, 1.9999q.

Table 4. Comparison of L8 error norms for γ “ 5{2, β1 “ 9{10, β2 “ 3{2 in test Problem 8.

New Bessel SJOM (N “ 24) [6]

N “ 3 N “ 4 α, β “ 0 α, β “ 1
2 α, β “ 1 α, β “ 3

2

L8 4.51805´13 6.85082´14 3.37´05 3.50´05 3.39´05 3.15´05

Table 5. Comparison of L8 error norms for various pγ, β1, β2q in test Problem 8.

New Bessel SJOM (α, β “ 3
2 ) [6]

Case N “ 3 N “ 4 N “ 4 N “ 8 N “ 16 N “ 24

C2 4.14718´12 3.82214´15 1.47´09 2.43´10 2.62´11 6.29´12
C3 0 1.87623´16 1.85´04 5.32´05 3.50´05 1.95´05
C4 0 3.48011´14 2.02´03 5.93´04 2.40´04 1.06´04
C5 0 4.49186´16 1.91´06 5.46´07 3.67´07 2.06´07

Looking at Tables 4 and 5 reveals that our numerical solutions obtained via novel
Bessel-collocation method are in excellent agreement with the corresponding exact solutions. Moreover,
our proposed scheme is superior compared to the SJOM.

Problem 9. We consider the fractional relaxation-oscillation equation [5,6]

Dγ
‹ xptq ` xptq “ 0, 0 ă γ ă 2,

with the initial condition xp0q “ 1. If γ ą 1 we also have xp1qp0q “ 0. The exact solution in terms of
Mittag–Leffler function is given by xptq “ Eγp´tγq. Here, Eγpzq “

ř8
k“0

zk

Γp1`γkq .

First, we consider γ “ 85{100 and set α equals to γ. We get the approximated solution xN,αptq
using N “ 8 terms on r0, 1s as follows

x8, 85
100
ptq “ 0.0972690897737097 t

17
5 ´ 0.0264284381134049 t

17
4 ` 0.647219778384659 t

17
10

´ 1.05749619232596 t
17
20 ` 0.00525953072336809 t

51
10 ´ 0.284023703239741 t

51
20

´ 0.000568791172776014 t
119
20 ` 1.0.

In Table 6, we calculate the maximum absolute errors using N “ 8 and N “ 10. In addition,
a comparison is done in this table with the results obtained via SJOM [6]. Looking at Table 6 one can
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find that the achievement of good approximations to the exact solution is possible using only a few
terms of fractional Bessel polynomials.

Table 6. Comparison of L8 error norms for γ, α “ 85{100 in test Problem 9.

New Bessel SJOM (N “ 32) [6]

N “ 8 N “ 10 α, β “ ´ 1
2 α, β “ 0 α, β “ 1

2 α, β “ 1

L8 1.01411´06 6.16222´09 5.2´04 8.1´05 1.2´04 2.3´04

In the next experiments, we investigate the impact of varying γ on the maximum absolute
errors while N “ 10 is fixed. Table 7 presents the L8 errors for γ “ 0.2, 0.4, 0.6, 0.8 as well as
γ “ 1.2, 1.4, 1.6, 1.8. In all cases, we exploit α “ γ. Comparisons with existing approximation
techniques based on operational matrix of fractional derivatives via B-spline functions [9] and shifted
Jacobi functions [6] are also carried out in Table 7.

Table 7. Comparison of L8 error norms for N “ 10 and various γ in test Problem 9.

New Bessel B-Spline [9] SJOM (N “ 10) [6]

γ “ α N “ 10 J “ 8 α, β “ ´ 1
2 α, β “ 0 α, β “ 1

2 α, β “ 1

0.2 6.71097´07 5.3´03 0.2544 0.1684 0.1824 0.1907
0.4 1.05544´06 1.9´03 0.1002 0.0363 0.0489 0.0617
0.6 3.38325´07 1.5´03 0.0314 0.0100 0.0158 0.0202
0.8 1.64178´08 1.0´03 0.0069 0.0018 0.0034 0.0045
1.2 1.53515´12 2.5´03 0.0222 0.0046 0.0046 0.0061
1.4 8.04611´15 2.4´03 0.0085 0.0014 0.0026 0.0041
1.6 6.41447´16 ´ 0.0031 3.8´04 0.0016 0.0029
1.8 1.17134´15 ´ 0.0012 7.3´05 9.0´04 0.0016

Problem 10. In the last case example, let us consider the following singular fractional Lane-Emden type
equation [28,29]

#

Dγ
‹ xptq ` k

tγ´β1
Dβ1
‹ xptq ` 1

tγ´2 xptq “ gptq, 0 ă t ď 1,

xp0q “ 0, xp1qp0q “ 0,

where 1 ă γ ď 2, 0 ă β1 ď 1, k ě 0, and

gptq “ t2´γ

ˆ

6t
ˆ

t2

6
`

Γp4´ β1q ` k Γp4´ γq

Γp4´ β1qΓp4´ γq

˙

´ 2
ˆ

t2

2
`

Γp3´ β1q ` k Γp3´ γq

Γp3´ β1qΓp3´ γq

˙˙

.

The exact solution is xptq “ t3 ´ t2.

To proceed, we take γ “ 3{2, β1 “ 1{2, and k “ 2. Using the collocation points tj “ 0.001` j{N
for j “ 0, 1, . . . , N and with N “ 3, 4, the following approximation solutions are obtained by the
Bessel-collocation procedure

x3,1ptq “ 1.0 t3 ´ 1.0 t2 ` 6.23678ˆ 10´16 t` 3.40637ˆ 10´108,

x4,1ptq “ ´2.93410ˆ 10´15 t4 ` 1.0 t3 ´ 1.0 t2 ` 1.28989ˆ 10´15 t` 3.06104ˆ 10´108.

Obviously, these approximations are accurate up to machine epsilon. Table 8 reports the
comparison of the absolute errors evaluated at some points t P r0, 1s obtained by the Bessel-collocation
method. For comparison, the results obtained by the collocation method (CM) [29] and the reproducing
kernel method (RKM) [28] are also shown in Table 8. The comparisons show that the proposed method
is considerably more accurate than other methods.
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Table 8. Comparison of absolute errors for γ “ 3{2, β1 “ 1{2 in test Problem 10.

New Bessel CM [29] RKM [28]

t N “ 3 N “ 4 N “ 5 N “ 10 N “ 5 N “ 10

0.25 8.25341´17 1.32991´16 1.3345´03 1.3232´05 8.7370´04 8.4636´06
0.50 6.41715´17 1.23861´16 1.5000´03 2.6000´05 9.9000´04 2.9000´06
0.75 1.37231´17 1.21568´16 5.0673´03 1.5634´06 7.6702´04 8.5754´06
1.00 3.40637´108 3.75169´108 3.6339´03 4.1443´05 5.4736´04 5.4345´06

6. Conclusions

A practical matrix approach based on novel (orthogonal) Bessel polynomials is presented to solve
multi-order fractional-order differential equations (MOFDEs). Using the matrix representations of the
generalized Bessel polynomials and their derivatives with the aid of collocation points, the scheme
transforms MOFDEs to a fundamental matrix equation, which corresponds to a system of (non)linear
algebraic equations. To assess the efficiency and accuracy of the presented technique, several numerical
examples with initial and boundary conditions are investigated. Comparisons with the exact solutions
and with various alternative numerical simulations and experimental measurements have also been
made. Based on the experiments, it is found that the numerical approximations are in an excellent
agreement, which demonstrate the reliability and the great potential of the presented technique.
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