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Abstract: We discuss the possibility of generalizing the Sturm comparison and oscillation theorems
to the case of singular quantum trees, that is, to Sturm-Liouville differential expressions with singular
coefficients acting on metric trees and subject to some boundary and interface conditions. As there
may exist non-trivial solutions of differential equations on metric trees that vanish identically on
some edges, the classical Sturm theory cannot hold globally for quantum trees. However, we show
that the comparison theorem holds under minimal assumptions and that the oscillation theorem
holds generically, that is, for operators with simple spectra. We also introduce a special Prüfer angle,
establish some properties of solutions in the non-generic case, and then extend the oscillation results
to simple eigenvalues.
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1. Introduction

In 1836, Charles Sturm published two seminar papers [1,2] that initiated the comparison and
oscillation theory for solutions of second order differential equations and also laid down foundations
of the spectral theory of differential operators. Since then, the Sturm comparison and oscillation
theory has developed into a broad mathematical field including the study of first order linear
differential systems [3], equations with singular coefficients [4,5], partial differential equations on
many-dimensional domains [6], higher order equations [7], difference equations [8] and so forth;
see the reviews in References [9,10] of the historical developments and the account on important recent
progress containing the exhaustive reference lists.

In modern terminology, the classical Sturm oscillation theory considers the Sturm-Liouville
eigenvalue problem

− (py′)′ + qy = λy (1)

on a finite interval I = [a, b], with real-valued functions p and q such that p > 0 and 1/p, q are
integrable over I, and subject to, for example, the Dirichlet boundary conditions

y(a) = y(b) = 0. (2)

Its results are that, firstly, the eigenvalues λn (n ∈ Z+) of (1)–(2) are real, form an infinite discrete set
in R that is bounded below (and thus accumulates at +∞) and, secondly, that the eigenfunction yn

corresponding to λn has exactly n zeros inside I interlacing those of yn+1. The Sturm comparison theorem
guarantees that if u and v are solutions of (1) corresponding to λ = µ and λ = ν with µ < ν, then each
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nodal domain for u (i.e., each maximal connected component of the set {x ∈ I | u(x) 6= 0}) contains at
least one zero of the solution v.

Over the few last decades, spectral properties of the so-called quantum graphs have been drawing
considerable attention. Quantum graphs are differential operators acting on functions defined on
metric graphs and satisfying special boundary and interface conditions at their vertices. The interest in
quantum graphs stems, in particular, from their wide applicability for modelling nanostructures and
networks in for example, nanotechnology, chemistry, superconductivity, optics and so forth; see the
review papers in References [11,12] and the books in References [13,14] for particulars of the theory.

One of the first analogues of the oscillation theory for quantum trees was suggested
in References [15,16]; it was proved in these papers that generic quantum trees are in many
regards similar to the usual Sturm-Liouville operators on an interval; in particular, an eigenfunction
corresponding to the nth eigenvalue λn has precisely νn = n interior zeros. Vice versa, it was proved
in Reference [17] that if the nodal count sequence νn of a quantum graph coincides with {0, 1, 2, . . . },
then it is a quantum tree.

There are several reasons why the Sturm theory for quantum graphs is much more complicated
than for the operators on intervals [18]. One of them is that non-simple eigenvalues are possible,
and then different eigenfunctions corresponding to them might have different number of interior
zeros; moreover, then there always are eigenfunctions that vanish identically on several edges
of the graph, which makes it impossible to count the number of zeros or to discuss zero
interlacing properties of solutions. Another complication arises from the cycles; the papers by
R. Band, G. Berkolaiko a.o. [19–23] discuss deep dependence between the nodal counts, Betty numbers,
and geometric structure of the underlying metric graphs.

The aim of this paper is to answer the question, which of the comparison and oscillation properties
continue to hold for the singular quantum graphs, that is, singular Sturm-Liouville operators on metric
graphs. Namely, we consider the Sturm-Liouville differential expression

− d2

dx2 + q

on a metric graph Γ, with a potential q belonging to the space W−1
2 (Γ). Generically, such a potential

is not a regular function but a distribution; among most typical and most important for applications
are the Dirac delta-functions δ(· − a) and Coulomb-like potentials (x− a)−1 that are widely used to
model interactions between various particles in quantum mechanics.

We shall show that for singular quantum trees the comparison result continues to hold, while the
oscillation properties hold generically, that is, for the case where the corresponding operator possesses
no non-simple eigenvalues. In addition, we explain that even in the presence of non-simple eigenvalues
the oscillation properties remain to hold for simple eigenvalues, by introducing the notion of zero
multiplicity of solutions at the tree vertices, thus extending some of the earlier results.

The paper is organized as follows. In Section 2, we collect basic notions and definitions on
quantum graphs, and then introduce generalized Prüfer angles in Section 3 and discuss their properties;
these are used in Section 4 to derive comparison results on quantum trees. In Section 5 we first prove
some spectral properties of singular quantum trees and establish oscillation properties of the generic
singular quantum trees. In the Section 6, we introduce the notion of a special solution and a special
Prüfer angle, which are then used to derive some spectral properties of non-generic quantum trees.
Section 7 contains a summary of the results and several comments on possible extensions, and, finally,
some auxiliary results of the Sturm theory for singular Sturm-Liouville operators are collected in
Appendix A.
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2. Basic Definitions

A quantum graph is a metric graph Γ with differential expression τ defined on its edges and with
interface and boundary conditions prescribed at the vertices. If the graph Γ is connected and contains no
loops and cycles, we obtain a quantum tree. Below, we recall the related concepts in more detail.

2.1. Metric Graphs

A geometric graph Γ = (V, E) consists of a set V = V(Γ) of points (vertices) and a set E = E(Γ) of
edges connecting some of the vertices. A metric graph is a geometric graph, on each edge γ of which
a metric is defined. Assume the graph Γ is finite and compact, and denote by N the total number of
its edges. We can enumerate the edges as γ1, . . . , γN ; under a natural parametrization, each γk can be
identified with an interval [x2k−1, x2k] of the real line. Then a vertex v is identified with a subset of
equivalent endpoints from {xk}2N

k=1, and its valency, or degree d(v) is the number of edges entering v.
We say a vertex v ∈ V is boundary if d(v) = 1 and interior otherwise. In what follows, ∂Γ will stand
for the set of all boundary vertices of Γ and I(Γ) for the set of all its interior vertices; also, we set
int(Γ) := Γ \ ∂Γ.

A loop is an edge with the same endpoints. We say vertices v∗ and v∗ are connected if there exists
a sequence of vertices v0, v1, . . . , vn such that v0 = v∗, vn = v∗, and every two successive vertices vj
and vj+1, j = 0, 1, . . . , n− 1, are connected by an edge. If v0 = vn and n > 1, the corresponding edges
form a cycle. A graph Γ is connected if every two its vertices are connected.

A metric tree is a connected metric graph without loops and cycles. The boundary ∂Γ of the tree Γ
is not empty; we take one vertex of ∂Γ and declare it the root v0 (see Figure 1). Once a vertex v0 has
been fixed, the tree gets a natural orientation outwards the root. In particular, every edge γ connects
its beginning (or starting vertex) aγ ∈ V and its end bγ ∈ V. Moreover, by saying that γk is identified
with [x2k−1, x2k] we mean that x2k−1 corresponds to the beginning of γk and x2k to its endpoint.

The orientation on the graph allows us to introduce the notion of vertex and edge level. The root v0

gets level zero. The edge starting with v0 is said to be of the first level, and it connects v0 with the
vertex of the first level. Similarly, for each k = 1, 2, . . . , any edge beginning with a vertex of level k is
then of level k + 1, and its endpoint is a vertex of level k + 1. The height of the tree equals the largest
level of its vertices (or edges).
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Figure 1. A metric tree with vertex v0.

2.2. Differential Operators

Since each edge of the tree Γ can be identified with an interval of R, the notions of differentiability
or integrability of a function on Γ \ V(Γ) are defined in a standard manner. In particular, for s ≥ 1,
we set

Ls(Γ) := ⊕γ∈E(Γ)Ls(γ)

to be the corresponding Lebesgue space on Γ. Every function f ∈ Ls(Γ) is uniquely determined by its
restrictions fγ onto the edges γ ∈ E(Γ) of the graph Γ.

As usual, we denote by Ws
2(γ) the Sobolev space of function of order s; in particular,

W1
2 (γ) consists of functions whose distributional derivative belongs to L2(γ). Functions in W1

2 (γ) are

absolutely continuous, and we denote by
◦

W 1
2 (γ) the subspace consisting of those of them that vanish



Symmetry 2020, 12, 1266 4 of 21

at the endpoints of the edge γ. Then W−1
2 (γ) is the space dual to

◦
W 1

2 (γ); every f ∈ W−1
2 (γ) can be

written as f = g′ for some g ∈ L2(γ). Finally, we set

W−1
2 (Γ) := ⊕γ∈E(Γ)W

−1
2 (γ).

Assume now that q is a real-valued distribution from W−1
2 (Γ) and introduce in the Hilbert space

L2(Γ) the differential expression τ,

τ := − d2

dx2 + q. (3)

The action of τ should be understood edge-wise, that is,

(τy)γ := −y′′γ + qγyγ

is the restriction of τy onto the edge γ ∈ Γ. The derivatives are taken in the distributional
sense; equivalently, one can define τ using the regularization by quasi-derivative technique,
see References [24,25]. Namely, we take a real-valued function u ∈ L2(Γ) such that q = u′ and
denote by y[1] := y′ − uy the quasi-derivative of an absolutely continuous function y. Now τ acts via

τy = −
(
y[1]
)′ − uy[1] − u2y

on its domain

dom τ := {y ∈ L2(Γ) | ∀γ ∈ E(Γ), yγ, y[1]γ ∈ AC(γ), (τy)γ ∈ L2(γ)}.

2.3. Boundary and Interface Conditions

We prescribe boundary and interface conditions in such a way that the operator on the tree is
self-adjoint and boundary/interface conditions are compatible with the vertex structure.

Assume that v ∈ I(Γ) is an interior vertex. We denote by γ+ a unique edge entering v and by
B(v) the (nonempty) set of edges starting from v. Then the interface condition at v is of δ-type and
reads as follows:

y is continuous at v; (4)

(y[1])γ+(v)− ∑
e∈B(v)

(y[1])e(v) = α(v)y(v), (5)

with y(v) denoting the common value of y at the vertex v. We observe that, without loss of generality,
one can assume that α(v) = 0 as otherwise this can be achieved by replacing the primitive uγ of q over
the edge γ+ with uγ+ + α(v). This procedure should be performed consecutively, choosing an interior
vertex of the smallest level at each step.

For α(v) = 0 the Equation (5) means conservation of the total flux through v and the
conditions (4)–(5) are then singular analogues of the standard Kirchhoff interface conditions.
In particular, if v is of degree 2, then B(v) consists of a single edge γ− starting from v, and (4)–(5) mean
that both y and y[1] are continuous at v. Then one can remove the vertex v and merge the edges γ+

and γ− to form a single edge γ+ ∪ {v} ∪ γ−. Therefore, without loss of generality the tree Γ will be
assumed to contain no edges of degree 2.

Definition 1. The differential expression ` is the restriction of τ onto the set of functions satisfying the interface
conditions (4) and (5) at every v ∈ I(Γ).
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At the nonroot boundary vertices v ∈ ∂Γ \ {v0}, we impose the Robin boundary conditions,
namely, with γ denoting the edge ending with v we set

(y[1])γ(v) sin α(v) = yγ(v) cos α(v), (6)

with α(v) ∈ [0, π]. The boundary condition at the root vertex v0 is introduced in the same manner.

Remark 1. If α(v) = 0 or α(v) = π, then we get the Dirichlet boundary conditions. Otherwise α(v) can be
made equal to π

2 by changing the primitive u of q over γ by a suitable constant; then the boundary condition
becomes of the Neumann type.

Definition 2. We denote by L the restriction of the differential expression ` by the boundary conditions (6).

Observe that L is self-adjoint in L2(Γ), see Section 5.1. We are now in a position to define the
quantum tree.

Definition 3. The quantum tree is a metric tree Γ with symmetric differential expression τ on its edges acting
on the functions in dom τ satisfying the interface conditions (4)–(5) at the interior vertices v ∈ I(Γ) and
boundary conditions (6) at the boundary vertices v ∈ ∂(Γ).

In other terms, a quantum tree is a metric tree Γ together with the self-adjoint operator L acting
in L2(Γ).

3. The Prüfer Angle for Quantum Trees

Unlike for the Sturm-Liouville problems on the intervals, non-trivial solutions of the
Sturm-Liouville equation `y = λy on the graph Γ may equal zero identically on several edges.

Example 1. Consider the star graph with 3 edges e1, e2, and e3 of length 1 joined at the vertex v∗, see Figure 2.
Take q ≡ 0, λ = π2, α(v∗) = 0, and prescribe the Dirichlet boundary condition at the boundary points. Then for
every edge ej there are non-trivial solutions of the equation `y = π2y vanishing identically on ej.

t e1 tv∗
�
�
�
��

Q
Q
Q
QQ

t
e2

te3

Figure 2. A quantum graph possessing degenerate eigenfunctions.

Definition 4. A solution y to equation `y = λy is called non-degenerate if the set nul(y) of its interior zeros
is discrete.

Given a non-degenerate real-valued solution y of `y = λy, we can define the Prüfer angle θ on the
tree Γ edge-wise, see Appendix A. On each edge γk = (x2k−1, x2k), set

y(x) = r(x) sin θ(x), y[1](x) = r(x) cos θ(x), x ∈ (x2k−1, x2k),

with real-valued r(x) and θ(x); then

cot θ(x) =
y[1](x)
y(x)

. (7)
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In general, θ is defined only modulo π; however, we can fix the continuous branch of θ by prescribing
its value at one point. In what follows, we shall usually fix θ by the condition that θ(x2k) ∈ (0, π] at
the endpoint x2k.

In this way we define the Prüfer angle θ on the whole tree Γ; as usual, θγ denotes the restriction of
θ onto the edge γ. We observe that although the solution y of `y = λy is continuous at every interior
vertex v due to the condition (4), the Prüfer angle θ need not be continuous there. The reason is that
the limiting values of y[1] at v along adjacent edges may be different, whence different may be the
limiting values of cot θ and thus of θ. If y(v) 6= 0, we divide the interface condition (5) by y(v) and get
the following matching condition for the limits of θ at v along the adjacent edges:

cot θγ+(v) = ∑
e∈B(v)

cot θe(v) (8)

(recall that α(v) was made zero for all interior vertices). If y(v) = 0, then θγ+(v) = π and θe(v) = 0
mod π for every e ∈ B(v).

Differentiating both sides of (7), one gets the following Riccati equation for cot θ

d cot θ

dx
= −(u + cot θ)2 − λ,

or, after multiplying through by sin2 θ,

θ′ = (u sin θ + cos θ)2 + λ sin2 θ. (9)

Remark 2. As explained in Appendix A, θ strictly increases at the interior points of every edge γ where it
assumes the values πn, n ∈ Z (i.e., at zeros of y on γ).

The differential equation for r reads

r′ = r
(1− λ− u2

2
sin 2θ − u cos 2θ

)
;

it can be solved for r once the Prüfer angle θ is found from (9).

4. The Sturm Comparison Theorem for Quantum Trees

In this section, we establish an analogue of the Sturm comparison theorem for singular quantum
trees. We start with the following auxiliary result, with Γ denoting a metric tree and a self-adjoint
operator L introduced on it as discussed in Section 2.

Lemma 1. Assume that y(·; λ1) and y(·; λ2) are non-degenerate solutions of the equations `y = λjy, λ1 < λ2,
on the tree Γ such that

(i) neither y(·; λ1) nor y(·; λ2) vanishes on int(Γ);
(ii) for every non-root boundary vertex v ∈ ∂Γ,

lim sup
x→v

y[1](x; λ1)

y(x; λ1)
≤ lim sup

x→v

y[1](x, λ2)

y(x; λ2)
.

Then
y[1](x; λ1)

y(x; λ1)
<

y[1](x, λ2)

y(x; λ2)

for all x ∈ int(Γ) ∪ {v0}. The inequality at the interior vertices should be understood edge-wise and at v0 the
inferior limits as x → v0 should be taken.
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Remark 3. In view of Lemma 2.1 of Reference [4], the superior limits in ii) exist also as the usual limits if
y(v, λj) 6= 0; if y(v, λj) = 0, then the corresponding superior limit is equal to −∞.

Proof. We start by introducing on Γ the Prüfer angles θ(·; λj) generated by the solutions y(·; λj),
j = 1, 2, as explained in the previous section. Thus the restriction θγ(·; λj) of θ(·; λj) onto every edge
γ = (a, b) is continuous on the closure γ = [a, b], satisfies the relation

cot θγ(·; λj) = y[1]γ (·; λj)/yγ(·; λj),

and is fixed by the terminal condition θγ(b; λj) ∈ (0, π]. Observe that the equality θγ(b; λj) = π holds
if and only if yγ(b; λj) = 0. Also, θ(·; λj) satisfy the matching condition (5) at every interior vertex of Γ.

In terms of the Prüfer angles θ(·; λj) assumptions (i) and (ii) of the lemma read

(i′) θ(·; λj) do not assume values πk, k ∈ Z, on int(Γ);
(ii′) θ(v; λ1) ≥ θ(v; λ2) for every non-root boundary vertex v ∈ ∂(Γ).

The properties of the Prüfer angle established in Appendix A guarantee that θγ(x; λj) ∈ (0, π) for
all x ∈ γ close enough to b, even if θγ(b; λj) = π. Assumption (i′) then implies that the values of
θ(·; λj) remain in the interval (0, π) on the whole interior int(Γ) of the tree Γ. Therefore, the claim of
the lemma is that under (i′) and (ii′)

0 ≤ θ(x; λ2) < θ(x; λ1) < π for all x ∈ int(Γ) ∪ {v0}, (10)

the inequality at the interior vertices being understood edge-wise. Note also that the equality
θ(x, λ2) = 0 can only hold for x = v0.

We shall prove (10) by induction on the number N of edges in the tree Γ.
A tree consisting of one edge is an interval (v0, v), and the statement then follows from Lemma A1.

Assume the claim is already proved for all trees consisting of less than n ≥ 2 edges, and let N = n for
a given Γ. Consider an edge of Γ of the largest level and denote by a its beginning. Clearly, a differs
from v0, whence there is one edge γ+ entering a and k := d(a)− 1 ≥ 1 edges γi = (a, vi), i = 1, . . . , k,
starting from a. Moreover, all vertices vi are in the boundary ∂Γ.

Now at every vertex vi, i = 1, . . . , k, we have the inequality θ(vi; λ1) ≥ θ(vi; λ2).
Applying Lemma A1 to the edge γi, we conclude that

0 < θγi (x; λ2) < θγi (x; λ1) < π, x ∈ γi ∪ {a}.

Using the interface condition (8) at the vertex a and the fact that the function cot decreases on (0, π),
we get the relations

cot θγ+(a; λ1) =
k

∑
i=1

cot θγi (a; λ1)

<
k

∑
i=1

cot θγi (a; λ2) = cot θγ+(a; λ2)

resulting in the inequality θγ+(a; λ1) > θγ+(a; λ2).
Now we consider the tree Γa obtained by trimming off the edges γ1, . . . , γk, see Figure 3. The point

a is a new boundary vertex of Γa, and both (i′) and (ii′) hold for the tree Γa. By the induction assumption,
we have that θ(x; λ1) > θ(x; λ2) for all x ∈ int(Γa) ∪ {v0}. Since

int(Γ) = int(Γa) ∪ {a} ∪ γ1 ∪ · · · ∪ γk,

we arrive at (10), thus finishing the proof.
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A nodal domain of a non-degenerate solution y of the equation `y = λy is any maximal connected
component of int(Γ) where y keeps its sign. In other words, a nodal domain is a maximal connected
component of the set int(Γ) \ nul(y), where nul(y) is the set of all zeros of y in int(Γ). Clearly,
the number of nodal domains of a non-degenerate solution y exceeds by at least one the cardinality of
the set nul(y).
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Figure 3. The tree Γa.

An analogue of the Sturm comparison theorem on the interval for a quantum tree reads as follows.

Theorem 1 (Sturm comparison theorem for quantum trees). Assume that y(·; λ1) and y(·; λ2) are
non-degenerate solutions of the equations `y = λjy with λ1 < λ2 such that

(a) at the root vertex v0,

lim sup
x→v0

y[1](x; λ1)

y(x; λ1)
≥ lim sup

x→v0

y[1](x, λ2)

y(x; λ2)
;

(b) for every non-root boundary vertex v ∈ ∂Γ,

lim sup
x→v

y[1](x; λ1)

y(x; λ1)
≤ lim sup

x→v

y[1](x, λ2)

y(x; λ2)

Then every nodal domain of y(·; λ1) contains a zero of y(·; λ2).

Proof. We assume, on the contrary, that there is a nodal domain Γ0 for y(·; λ1), inside which y(·; λ2)

does not vanish. The boundary points of Γ0 either belong to ∂Γ or are interior points of Γ at which
y(·; λ1) vanishes. The subgraph Γ0 is again a tree whose root vertex v′0 is the boundary vertex of Γ0 of
the lowest level in Γ; note that (a) holds for v′0 instead of v0 no matter whether or not v′0 = v0; indeed,
if v′0 differs from v0, then it is an interior point of Γ so that y(v′0; λ1) = 0 and

lim sup
x→v′0

y[1](x; λ1)

y(x; λ1)
= +∞.

Now we introduce the Prüfer angles θ(·; λj) for the solutions y(·; λj), j = 1, 2, on the tree Γ0 in
the standard way, that is, θ(·, λj) are continuous along every edge γ and its closure, assume values
from (0, π] at the endpoints of the edges, and satisfy the matching condition (8) at interior vertices.
We claim that θ(·; λ1) and θ(·; λ2) satisfy on Γ0 assumptions (i′) and (ii′) formulated in the proof
of Lemma 1. Indeed, (i′) follows from the assumption that y(·; λj) do not vanish on int(Γ0). Next,
if for v ∈ ∂Γ0 \ {v′0} it holds y(v; λ1) = 0, then θ(v; λ1) = π ≥ θ(v; λ2) ∈ (0, π] by the construction
of the Prüfer angle; otherwise, v ∈ ∂Γ0 \ {v′0}must be a boundary point of Γ and θ(v; λ1) ≥ θ(v; λ2)

by assumption (b) and the fact that θ(v; λj) ∈ (0, π]. In both cases, (ii′) is satisfied for all non-root
boundary points of Γ0.

Arguments used in the proof of Lemma 1 now result in (10) for the tree Γ0 instead of Γ.
In particular,

0 ≤ θ(v′0; λ2) < θ(v′0; λ1) < π,
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so that for the restriction θγ of θ to the edge γ starting from the root v′0 of Γ0 we have the inequality

lim
x→v′0

cot θγ(x; λ1) < lim inf
x→v′0

cot θγ(x; λ2).

This is inconsistent with property (a) for the vertex v′0 that was established at the beginning of this
proof. The contradiction derived shows that the assumption that the solution y(·; λ2) has no zeros on
int(Γ0) was false and thus completes the proof of the theorem.

5. Oscillation Theorems for Quantum Trees

5.1. General Spectral Properties of a Quantum Tree

Recall that the differential operator L on the tree Γ is defined as the restriction of the differential
expression τ of (3) onto the functions in dom τ satisfying the interface conditions (4)–(5) and the
boundary conditions (6). Also, ` is the restriction of τ onto the functions satisfying the interface
conditions (4)–(5) at every interior vertex v ∈ I(Γ).

Lemma 2. The operator L is self-adjoint, bounded below, and has discrete spectrum.

Proof. First we notice that the interface conditions (4)–(5) and the boundary conditions (6) make the
operator L symmetric, which can be verified directly integrating by parts in the expression

∫
Γ `(y)y dx.

The minimal symmetric operator Lmin associated with (3) is the closure of the restriction of L

onto the set of functions with support in Γ \V. Clearly, Lmin is the direct sum of the minimal operators
associated with the restrictions of ` to separate edges; thus the operator Lmin has finite deficiency
indices and its domain consists of all functions in dom L satisfying the conditions yγ(v) = y[1]γ (v) = 0
for every vertex v and every edge γ adjacent to it.

Among the self-adjoint extensions of Lmin is the operator LD defined by the continuity
condition (4) and the Dirichlet condition y(v) = 0 at every vertex v ∈ V. The operator LD is
the direct sum of the Dirichlet Sturm-Liouville operators on the separate edges; since these latter
operators have discrete spectra and are bounded below, the same is true of LD.

We now observe that the deficiency indices of Lmin are (n, n), where n = dim
(
dom LD/

dom Lmin
)

is the dimension of the factor-space dom LD/ dom Lmin. In other words, the domain
of LD is obtained from that of Lmin by removing n constraints. At every interior vertex v ∈ I(Γ) of
valency d, dom Lmin imposes 2d restrictions, of which only d remain in dom LD. Likewise, (4)–(5) give
d constraints on the functions along the edges starting from v or entering it, and their quasi-derivatives.
Similarly, dom Lmin imposes 2 boundary conditions y(v) = y[1](v) = 0 at every boundary point
v ∈ ∂Γ; in dom LD and dom L , only the Dirichlet condition y(v) = 0 or the boundary condition (6)
are prescribed at the point v. Therefore, dim

(
dom L / dom Lmin

)
= n, whence L is self-adjoint.

It now follows from Reference [26] that L has a discrete spectrum and is bounded below along
with LD, thus finishing the proof.

We list the eigenvalues of L according to their multiplicities as

λ0 ≤ λ1 ≤ λ2 ≤ · · ·

and for λ ∈ R denote by n(λ) the number of eigenvalues of L counted with multiplicities that do not
exceed λ. The Courant nodal domain theorem is applicable to the quantum graphs and produces the
following result.

Lemma 3. Assume that λ is an eigenvalue of L and y is an eigenfunction corresponding to it. Then the number
of nodal domains generated by y does not exceed n(λ). In particular, if λ = λn is a simple eigenvalue, then y
has at most n isolated zeros in int(Γ) dividing Γ into at most n + 1 nodal domains.
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Proof. We designate by l the quadratic form corresponding to the operator L . It is the closure of the
quadratic form

l0[y] := (L y, y)L2(Γ) =
∫

Γ
`(y)y dx

defined initially on dom L . By the results of References [24,25], the domain dom l of l consists of
functions in W1

2 (Γ) that are continuous on int(Γ) and satisfy the boundary conditions (6) at v ∈ ∂Γ if
and only if α(v) = 0 mod π—that is, only the Dirichlet boundary conditions survive in dom l.

By the Courant–Fischer minimax principle [27], n(λ) equals the maximal dimension of a linear
subspace M in dom l such that l[ f ] ≤ λ‖ f ‖2 for every f ∈ M.

Now assume the eigenfunction y corresponding to an eigenvalue λ of L generates k nodal
domains Γ1, . . . , Γk on int(Γ). We denote by yj the function coinciding with y on Γj and equal to zero
otherwise, and denote by M the linear span of y1, . . . , yk. Then M ⊂ dom l and, upon integrating
by parts in the integral

∫
Γj
`(y)y dx, we see that l[ f ] = λ‖ f ‖2 for every f ∈ M. It thus follows that

k ≤ n(λ) as required. The rest of the claims are simple corollaries of the above.

5.2. Sturm Oscillation Theory in the Generic Case

Definition 5. We call the quantum tree (Γ, L ) generic if L possesses no degenerate eigenfunctions.

Lemma 4. The spectrum of a generic quantum tree is simple.

Proof. Assume that a generic quantum tree (Γ, L ) has a non-simple eigenvalue λ; then there are
two eigenfunctions y1 and y2 corresponding to λ that are non-degenerate and linearly independent.
Since y1 and y2 satisfy the same boundary condition (6) at the root vertex v0, there is a non-trivial linear
combination y = c1y1 + c2y2 such that y(v0) = y[1](v0) = 0. Denote by γ0 the edge starting from v0;
then yγ0 ≡ 0 and thus y is a degenerate eigenfunction for the eigenvalue λ, contrary to the hypothesis
that (Γ, L ) is generic. Thus no eigenvalue of L can have multiplicity greater than 1, and the proof
is complete.

Lemma 5. Assume the quantum tree (Γ, L ) is generic. Then none of its eigenfunctions can vanish at
interior vertices.

Proof. Assume y is an eigenfunction of a generic quantum tree (Γ, L ) that vanishes at an interior
vertex v. We prove that the corresponding eigenvalue λ then cannot be simple.

Recall that the valency d(v) of the vertex v is at least 3; therefore, there is one edge γ0 entering v
and m := d(v)− 1 ≥ 2 edges γ1, . . . , γm starting from v. We denote by Γj, j = 0, 1, . . . , m, the maximal
connected component of Γ \ {v} containing the edge γj and by yΓj the restriction of y onto the Γj.
By assumption, for every j = 0, 1, . . . , m the function yΓj does not degenerate on Γj and yΓj(v) = 0.

Now for every vector c := (c0, c1, . . . , cm) ∈ Cm+1 we denote by y(c) the function coinciding
with cjyΓj on Γj. By construction, this function solves the equation τy = λy on every edge of Γ and
verifies the boundary condition (6) at all boundary vertices and the interface conditions (4)–(5) at all
interior vertices different from v. At the vertex v the function y(c) satisfies the continuity condition (4),
while (5) requires that

c0y[1]γ0 (v) =
m

∑
j=1

cjy
[1]
γj (v).

Observe that none of y[1]γj (v) vanishes, as then y would vanish identically on the corresponding edge
γj; therefore, there is an m-dimensional subspace of vectors c = (c0, c1, . . . , cm) ∈ Cm+1 solving the
above equation. For every such a vector the corresponding function y(c) is an eigenfunction of L

for the eigenvalue λ. As a result, the latter has multiplicity at least m ≥ 2, contrary to Lemma 4.
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This contradiction shows that the assumption that y can vanish at an interior vertex was false, thus
finishing the proof.

The Sturm oscillation theorem for generic quantum trees reads as follows.

Theorem 2 (Sturm oscillation theorem for generic quantum trees). Assume the quantum tree (Γ, L )

is generic and denote by yn the (unique up to a multiplicative constant) eigenfunction corresponding to the
eigenvalue λn. Then yn has n interior zeros and every nodal domain of yn contains exactly one zero of yn+1.

Proof. The proof of the theorem is by induction.
By Lemma 4, the eigenvalues of (Γ, L ) are simple, so that λ0 < λ1. Next, y0 possesses just one

nodal domain by Lemma 3 and thus it has no interior zeros. The Sturm comparison Theorem 1 applied
to y0 and y1 (corresponding to solutions y(·, λ) with λ = λ0 and λ = λ1 > λ0) shows that y1 has at
least one interior zero, and thus exactly one in view of Lemma 3. This establishes the base of induction.

Assume the statement has already been proved for all n less than l. In particular, yl possesses at
least l interior zeros (at least one in each nodal domain of yl−1). By Lemma 3, the number of zeros
is precisely l, so that they split Γ into l + 1 nodal domains. By the Sturm comparison Theorem 1,
each nodal domain of yl contains at least one zero of yl+1. Since the total number of interior zeros
of yl+1 cannot exceed l + 1 by Lemma 3 (as otherwise yl+1 would create at least l + 3 nodal domains),
we conclude that the statement of the theorem holds also for n = l. This completes the induction step
and the proof of the theorem.

6. Spectral Properties of Non-Generic Quantum Trees

6.1. The Special Solution and the Special Prüfer Angle

In this section, we consider a general quantum tree (that might not be generic) and look for a
non-degenerate solution z( · , λ) of the equation `y = λy, λ ∈ R, satisfying the boundary conditions (6)
at all non-root boundary vertices. We shall call such a solution special, and the corresponding Prüfer
angle φ(·; λ) is said to be the special Prüfer angle.

We start with introducing the following notions. For an arbitrary edge e = (a, b) we denote by
Γ(e) the closure of the connected component of the graph Γ \ {a} containing the edge e. Thus Γ(e) is a
subtree of Γ with the root vertex a and containing along with e all x ∈ Γ that can be reached from a
moving in positive direction. Further, we denote by L (e) the differential operator on the tree Γ(e)
given by the differential expression τ, the interface conditions (4)–(5) for all interior points of Γ(e),
the boundary conditions (6) for all non-root vertices of Γ(e), and the Dirichlet boundary condition at
the root vertex a of Γ(e). Clearly, L (e) is a self-adjoint operator; we denote also by Λ(e) the spectrum
of L (e) and set

Λ =
⋃

e∈E(Γ)\{e0}
Λ(e),

where e0 is the edge starting from the root v0. The set Λ is bounded below and discrete.

Lemma 6. For every λ ∈ R \Λ, a special solution z(·; λ) of the equation `y = λy exists, is unique up to a
constant factor, and does not vanish at the interior vertices of Γ.

Proof. Denote by l the height of the tree Γ. We shall prove by the reverse induction in the level k of
an edge e = (a, b) that there exists a non-degenerate solution z of `y = λy on the subtree Γ(e) that
satisfies the boundary condition (6) at all non-root boundary vertices of Γ(e). For short, we call such a
solution special for Γ(e). Also, we shall show that a special solution is unique up to a constant factor
and vanishes neither at the interior vertices of Γ(e) nor at the root vertex a of Γ(e) provided it differs
from v0 (i.e., provided k > 1).
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The induction starts from k = l and descends to k = 1. Assume, therefore, that e = (a, b) is any
edge of level l. Then b is a boundary vertex, whence Γ(e) = e = [a, b]. We define a special solution z
for Γ(e) as a unique solution of the equation τy = λy on e = [a, b] subject to the terminal condition

y(b) = sin α(b), y[1](b) = cos α(b). (11)

We note that z does not vanish at x = a; indeed, otherwise λ would be an eigenvalue of L (e). Clearly,
any other solution of τy = λy on Γ(e) satisfying the boundary condition (6) at x = b is a multiple of z
so constructed. This gives the base of induction.

Assume that special solutions have already been constructed on the subtrees Γ(e) for every edge
e of level k, k ≤ l, and let γ = (a, b) be an edge of level k− 1. Two possibilities occur depending on
whether or not b is a boundary vertex of Γ. If b ∈ ∂Γ, then we define the solution z of τy = λy on
Γ(γ) = γ as in the previous paragraph, by fixing the terminal conditions (11). If b ∈ I(Γ), we denote
by γ1, . . . , γm the edges starting from b and by z1, . . . , zm special solutions to `y = λy on the subtrees
Γ(γ1), . . . , Γ(γm). By the induction assumption, zj do not vanish at the vertex b; we then consider
the solution yγ of the equation τy = λy on γ = [a, b] subject to the terminal conditions y(b) = 1 and

y[1](b) = ∑m
j=1 z[1]j (b)/zj(b).

Now we construct a function z on the tree Γ(γ) that is equal to yγ on the edge γ and to zj/zj(b)
on each subtree Γ(γj), j = 1, . . . , m. Then z is non-degenerate, solves the equation τy = λy on each
edge constituting the tree Γ(γ) and satisfies the interface conditions (4)–(5) at every interior vertex of
Γ(γ) and the boundary conditions at all non-root boundary points of Γ(γ). Therefore, z is the special
solution of `y = λy on the tree Γ(γ) we wanted to construct. Clearly, such solution is defined up to a
multiplicative constant and can be parametrized by its value at b. By construction and the induction
assumptions, z does not vanish at interior vertices of Γ(γ). If a 6= v0, then the special solution z does
not vanish at the root vertex a as well, as otherwise z would be an eigenfunction of the operator
L (γ) corresponding to the eigenvalue λ, contrary to the assumption that λ 6∈ Λ. This completes the
induction step and thus the proof of the lemma.

Corollary 1. Assume that λ ∈ R \Λ and that y is a non-trivial solution of the equation `y = λy satisfying
the boundary conditions (6) at all non-root boundary vertices. Then y is a multiple of the special solution z(·, λ)

and thus non-degenerate.

Proof. It suffices to show that y cannot vanish at interior vertices of Γ: indeed, then y is non-degenerate
and thus a multiple of z(·, λ) by the above lemma.

Assume, on the contrary, that y(v) = 0 for some interior vertex v. We can choose such a v so
that y does not vanish identically on all edges adjacent to v as otherwise y would be identical zero
on Γ. In view of (5), then y is not identical zero on at least two of the adjacent edges. Denote by
e1, . . . , em all the edges starting from v; then the above means that y does not vanish identically on at
least one among the subtrees Γ(e1), . . . , Γ(em). However, then λ is an eigenvalue for at least one of
the operators L (e1), . . . , L (em), contrary to the assumption that λ 6∈ Λ. The contradiction derived
completes the proof.

Corollary 2. Every eigenvalue λ of L not belonging to Λ is of multiplicity 1 and z(·; λ) is the
corresponding eigenfunction.

Since the special solution z(·; λ), λ 6∈ Λ, is unique up to a constant factor, the corresponding
special Prüfer angle φ(·; λ) is unique modulo π. Clearly, φ(·; λ) is continuous along each edge but
the limiting values at the interior vertices along different adjacent edges need not be the same. Also,
the boundary conditions (6) for z(·; λ) prescribe the boundary values α(v) ∈ (0, π] for φ(·; λ) at every
non-root boundary vertex v. We shall drop the requirement that φe(b; λ) ∈ (0, π] for edges e = (a, b)
ending at interior vertices b but gain continuity of φ in λ instead; note that λ ∈ Λ are not excluded
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any longer. As usual, for an interior vertex v ∈ I(Γ) of valency d the expression φ(v, λ) should be
understood as d limiting values of φ(x, λ) along every adjacent edge.

Theorem 3. For every λ ∈ R, the special Prüfer angle φ can be defined so that

(A1) for every fixed x ∈ int(Γ) ∪ {v0}, φ(x; λ) is a continuous strictly decreasing function of λ ∈ R;
(A2) there is µ ∈ R such that φ(x; λ) ∈ (0, π) for all x ∈ int(Γ) ∪ {v0} and all λ < µ.

For so defined φ the following holds:

(A3) limλ→−∞ φ(x; λ) = π for every fixed x ∈ int(Γ) ∪ {v0};

moreover, if we set
µ∗ := sup{µ ∈ R | max

x∈int(Γ)∪{v0}
φ(x; λ) > 0 for all λ < µ}, (12)

then

(A4) φ(x; µ∗) > 0 on int(Γ) and φ(v0; µ∗) = 0.

Proof. We shall use the backward induction on the level of the edge e = (a, b) to prove that the special
Prüfer angle φ can be defined so that it satisfies the stated properties on Γ(e) instead of Γ and with v0

replaced by the root vertex a of Γ(e).
An edge e = (a, b) of the maximal level (say l) necessarily ends with a boundary vertex b.

Therefore, φ on e is defined uniquely as a solution of equation (9) satisfying the initial condition
φ(b) = α(b), and properties (A1)–(A4) for φ on Γ(e) so defined are established in Reference [4], see
also Appendix A.

Assume statements (A1)–(A4) have already been proved for the subtrees Γ(e) with edges e of
level k, k ≤ l, and let γ = (a, b) be an edge of level k − 1. Two possibilities occur depending on
whether or not b is a boundary vertex of Γ. If b ∈ ∂Γ, then φ on Γ(γ) is constructed as in the previous
paragraph and thus enjoys (A1)–(A4). If b ∈ I(Γ), we denote by γ1, . . . , γm the edges starting from b;
by induction assumption, on the subtrees Γ(γ1), . . . , Γ(γm) the special Prüfer angle φ is well defined
and satisfies (A1)–(A4). Set

g(λ) :=
m

∑
j=1

cot φγj(b; λ); (13)

then g assumes infinite values at the eigenvalues µk of L (γ1),. . . , L (γm) and by (A1) it is continuous
and strictly increasing in between. By virtue of (A2) there is µ = µ(γ) ∈ R such that g(λ) assumes
finite values for λ < µ and, moreover, g(λ)→ −∞ as λ→ −∞ in view of (A3).

Set β(λ) := arccot g(λ) ∈ (0, π) for λ < µ. Then β is continuous and strictly decreasing for
such λ. Moreover, the properties of φγj(b; λ) show that we can extend this definition by continuity
to all λ ∈ R, and β(λ) will strictly decrease on R. By construction, β(λ) = 0 mod π if and only if
φγj(b; λ) = 0 mod π for at least one j ∈ {1, . . . , m}.

Now we define φγ(·; λ) on [a, b] as a unique solution of Equation (9) subject to the terminal
condition φ(b; λ) = β(λ). Then for x ∈ [a, b] property (A1) is ensured by Proposition A2, (A3) follows
from Lemma A1, and (A2) is established on Step 1 of its proof (see Reference [4]).

Define the number µ∗(γ) as in (12) but for the tree Γ(γ) instead of Γ; then, clearly,

µ∗ := µ∗(γ) ≤ min{µ∗(γ1), . . . , µ∗(γm)}.

Assume first that µ∗ = µ∗(γk) for some k ∈ {1, . . . , m}. Then φγk (b, µ∗) = 0 by induction assumption,
whence φγ(b, µ∗) = 0 by the definition of φ. Since the Prüfer angle strictly increases through every
point x∗ were φγ(x∗, µ∗) = 0 mod π, we conclude that φγ(x, µ∗) < 0 for all x ∈ [a, b), contrary to the
definition of µ∗ and continuity of φ. Thus µ∗ < µ∗(γk) for every k = 1, . . . , m, so that φ(x, µ∗) > 0 on
the set

int
(
Γ(γ1)

)
∪ · · · ∪ int

(
Γ(γm)

)
∪ {b}.
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It remains to prove that φγ(x, µ∗) > 0 for all x ∈ (a, b) and that φ(a, µ∗) = 0. Assume, on the
contrary, that φγ(x∗, µ∗) = 0 for some x∗ ∈ (a, b). Since φγ(·, µ∗) strictly increases through every
point where φγ(x, µ∗) = 0 mod π, we conclude that φγ(x, µ∗) < 0 for all x ∈ [a, x∗). This contradicts
continuity of φγ and the definition of µ∗ and thus shows that φγ(x, µ∗) > 0 on γ = (a, b). Finally,
the inequality φγ(a, µ∗) > 0 is ruled out by similar reasons.

The proof of (A4) and of the theorem is complete.

Remark 4. We observe that for λ 6∈ Λ any Prüfer angle θ(·; λ) for the special solution z(·; λ) equals the special
Prüfer angle φ(·; λ) modulo π, that is,

cot θ(·; λ) ≡ cot φ(·; λ). (14)

Indeed, both θ and φ solve the same differential Equation (9) on every edge e of Γ, satisfy the same boundary
conditions θ(v; λ) = φ(v; λ) = α(v) for all non-root boundary vertices v, and the same interface conditions at
the interior vertices of Γ for cot θ and cot φ, cf. (8) and the construction of φ in the proof of the above theorem.

It turns out that (14) holds even for λ ∈ Λ; namely, the following holds true.

Lemma 7. Let that y(·; λ) be a non-trivial solution of the equation `y = λy satisfying (6) for all non-root
boundary vertices. Introduce a Prüfer angle θ for the solution y on every edge γ ∈ E(Γ) where y is
non-degenerate; then θ(·; λ) ≡ φ(·; λ) mod π on all such γ.

Proof. On every edge γ = (c, d) where y is non-degenerate the Prüfer angles θ and φ solve the same
Equation (9) of first order, which is invariant under the shift of θ or φ by π. Therefore, it suffices to
show that the terminal conditions for θγ and φγ at the vertex d are equal modulo π. We shall prove the
statement for all the subtrees Γ(e) taken instead of Γ and shall use the backward induction on the level
of edge e.

An edge e = (a, b) of the maximal level (say l) necessarily ends with a boundary vertex b.
If the solution y is non-degenerate on e, then the Prüfer angle θ(·; λ) satisfies the terminal
condition φ(b; λ) = α(b) by construction, and the same is true for φ, resulting in the identity
θ(·; λ) = φ(·; λ) over e.

Assume the lemma has already been proved for the subtrees Γ(e) with edges e of level k, k ≤ l,
and let γ = (a, b) be an edge of level k − 1. The case where b ∈ ∂Γ is treated as in the previous
paragraph. Assume therefore that b ∈ I(Γ) and denote by γ1, . . . , γm the edges starting from b. Since

Γ(γ) = γ ∪ {b} ∪m
j=1 Γ(γj),

only the case where y is non-degenerate on γ is of interest.
If y(b) 6= 0, then by (8)

cot θγ(b; λ) =
m

∑
j=1

cot θγj(b; λ),

and by the induction assumption the right-hand side of this relation coincides with

m

∑
j=1

cot φγj(b; λ)

giving cot φγ(b; λ) by the construction of φ. Thus θγ(b; λ) = φγ(b; λ) mod π, which establishes the
induction step.

Now assume that y(b) = 0; then φγ(b; λ) = 0 mod π. Observe that y cannot be identical zero on
all edges γ1, . . . , γm starting from b as otherwise y must be zero on γ as well, and there is nothing to
prove. Let therefore y be non-trivial on say the edge γ1. Then θ is defined over γ1 and θγ1(b; λ) = 0
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mod π, so that φγ1(b; λ) = 0 mod π by the induction assumption. By the construction of φ we get
φγ(b; λ) = 0 mod π, thus establishing the induction step and completing the proof.

Corollary 3. λ ∈ Λ if and only if there is an interior vertex v and an edge e starting from it such that
φe(v; λ) = 0 mod π.

Proof. If λ ∈ R \Λ, then by Lemma 6 the special solution z(·; λ) exists and does not vanish at any
interior vertex v ∈ I(Γ). Clearly, this means that the corresponding special Prüfer angle φ(·; λ) does
not assume values πn, n ∈ Z, at such vertices.

Let now λ ∈ Λ(e) for some edge e = (a, b) different from the edge e0 starting from the root v0 of Γ.
Then there exists an eigenfunction y(·; λ), that is, a function that is not identically equal to zero over
Γ(e), solves the equation `y = λy on Γ(e), and satisfies the boundary conditions (6) for all non-root
boundary vertices of Γ(e) and the Dirichlet condition y(a; λ) = 0 at the root vertex a of Γ(e). We can
find an edge γ = (c, d) ∈ E(Γ(e)) such that y is non-degenerate on γ and yγ(c; λ) = 0. Then any
Prüfer edge θ for y on γ satisfies θγ(c) = 0 mod π, and by Lemma 7 we conclude that φγ(c; λ) = 0
mod π as well. The proof is complete.

Corollary 4. With the number µ∗ introduced by (12), the following inequalities hold:

λ0 ≤ µ∗ < min{µ | µ ∈ Λ};

moreover, λ0 is the only eigenvalue of L in (−∞; µ∗].

Proof. The second inequality follows from Corollary 3 and (A4). Next, properties (A1), (A3), and (A4)
show that there exists a unique λ∗ ≤ µ∗ such that φ(v0; λ∗) = α(v0). This means that the special
solution z(·; λ∗) satisfies the boundary condition

z[1](v0; λ∗)

z(v0; λ∗)
= cot φ(v0; λ∗) = cot α(v0)

at the root vertex v0. Therefore, λ∗ is an eigenvalue of L and z(·; λ∗) is a corresponding eigenfunction,
so that λ0 ≤ λ∗ ≤ µ∗.

We next show that if λ ∈ (−∞; µ∗] is an eigenvalue of L , then λ = λ∗. Indeed, as λ 6∈ Λ,
any corresponding eigenfunction is a multiple of z(·; λ) by Corollary 2 and thus is non-degenerate and
verifies the boundary condition

z[1](v0; λ)

z(v0; λ)
= cot α(v0)

at the root vertex v0. Therefore, cot φ(v0; λ) = cot α(v0); since φ(v0; ·) strictly decreases from π to 0 as
λ increases from −∞ to µ∗, we conclude that λ = λ∗. This shows that λ∗ is the only eigenvalue of L

in (−∞, µ∗] and thus it is the ground eigenvalue λ0 of L .

Corollary 5. The ground eigenvalue λ0 of L is simple and the corresponding eigenfunction z(·; λ0) does not
have any zeros in the interior of Γ.

Proof. The fact that λ0 is a simple eigenvalue of Γ, with the corresponding eigenfunction z(·; λ),
follows from the relation λ 6∈ Λ and Corollary 2, while absence of interior zeros of z(·; λ) is guaranteed
by the inequality λ0 ≤ µ∗ and (A4).

We stress here the fact that the quantum tree considered here is not assumed generic; thus the
simplicity of the ground eigenvalue is not automatic and should have been proved.

Corollary 6. A real number λ 6∈ Λ is an eigenvalue of L if and only if φ(v0; λ) = α(v0) mod π.
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Proof. According to Corollary 1, for λ ∈ R \Λ any non-trivial solution y of equation `y = λy that
satisfies the boundary conditions (6) at all non-root boundary vertices is a multiple of the special
solution z(·, λ). Therefore, such a λ is an eigenvalue of L and if and only if the special solution z(·, λ)

satisfies the boundary condition (6) at the root vertex v0 if and only if the special Prüfer angle satisfies
the relation φ(v0; λ) = α(v0) mod π.

6.2. Eigenvalue Multiplicities

The special Prüfer angle can also be used to calculate the multiplicity of non-simple eigenvalues
of L ; in view of Lemma 4 such eigenvalues necessarily belong to Λ and every corresponding
eigenfunction vanishes at some interior vertices.

For every e = (a, b) ∈ E(Γ), we denote by N (e; λ) the subspace ofH(e) := L2(Γ(e)) consisting of
all solutions of the equation `y = λy on Γ(e) satisfying the boundary conditions (6) for all non-root
boundary vertices v in ∂Γ(e), and set

N0(e; λ) = {y ∈ N (e; λ) | y(a) = 0}.

Further, we denote by n(e; λ) and n0(e; λ) the dimensions of N (e; λ) and N0(e; λ) respectively.
It follows from Lemma 7 thatN0(e; λ) = N (e; λ) if φe(a; λ) = 0 mod π. We shall prove that otherwise
N0(e; λ) is a proper subspace of N (e; λ) and, moreover, establish the formula for n(e; λ) and n0(e; λ).

To begin with, we set

χ(e; λ) =

{
0 if φe(a; λ) 6= 0 mod π,

1 if φe(a; λ) = 0 mod π.

Also, for v ∈ I(Γ) that is of valency m + 1 ≥ 3 we denote by γ1, . . . , γm the edges starting from v
and set m(v; λ) = 0 if none of φγj(v; λ) vanishes modulo π; otherwise, we let m(v; λ) + 1 denote the
number of indices j among j = 1, . . . , m, for which φγj(v; λ) = 0 mod π.

Theorem 4. For every λ ∈ R and every e ∈ Γ the following holds:

n0(e; λ) = ∑
v∈I(Γ(e))

m(v; λ) + χ(e; λ), n(e; λ) = ∑
v∈I(Γ(e))

m(v; λ) + 1. (15)

Moreover, there are y ∈ N (e; λ) that are non-degenerate on e.

Proof. We use the induction over the subtrees Γ(e), starting from the edges of the largest level l = k
and descending to the root edge e0.

For an edge e = (a, b) of the largest level l the subtree Γ(e) is just the edge e. Thus Γ(e) has no
interior vertices and N (e; λ) is of dimension 1. It follows from the proof of oscillation theorem for an
interval that n0(e; λ) = 1 if and only if φe(a; λ) = 0 mod π. This establishes the base of induction.

Assume the lemma has already been proved for the subtrees Γ(e) with edges e of level k, k ≤ l,
and let γ = (a, b) be an edge of level k − 1. The case where b ∈ ∂Γ is treated as in the previous
paragraph. Assume therefore that b ∈ I(Γ) and denote by γ1, . . . , γm the edges starting from b.
Now we distinguish between two cases:

(i) for some j ∈ {1, . . . , m} it holds that φγj(b; λ) = 0 mod π;
(ii) none of the numbers φγj(b; λ) vanishes modulo π.

For Case (i), every solution of `y = λy on Γ(γ) must vanish at the vertex b in view of Lemma 7.
Therefore, the restrictions of y ∈ N (γ; λ) onto the subtrees Γ(γj), j = 1, . . . , m, belong to the respective
subspacesN0(γj; λ). Conversely, if for every j = 1, . . . , m we take a solution yj of the equation `y = λy
on Γ(γj) vanishing at b (i.e., any element of N0(γj; λ)), then the function on ∪jΓ(γj) constructed this
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way allows a unique continuation to a solution of `y = λy on Γ(γ). Indeed, one only has to take a
solution yγ of the equation τy = λy on the edge γ to satisfy the interface conditions (4)–(5) at v = b,

and to this end one sets yγ(b) := 0 and y[1]γ (b) := ∑m
j=1 y[1]j (b). Therefore,

n(γ; λ) =
m

∑
j=1

n0(γj; λ) =
m

∑
j=1

(
∑

v∈I(Γ(γj))

m(v; λ) + χ(γj; λ)
)

= ∑
v∈I(Γ(γ))

m(v; λ) + 1

as claimed. Moreover, if j is such that φγj(b; λ) = 0 mod π, then N0(γj; λ) = N (γj; λ) and by the

induction assumption there are yj ∈ N0(γj; λ) that are non-degenerate on γj. This means that y[1]j (b)

can be any real number; therefore, y[1]γ (b) can be non-zero giving non-degenerate yγ.
Next, if φγ(a; λ) = 0 mod π, then χ(γ; λ) = 1 and N0(γ; λ) = N (γ; λ), which agrees

with (15). Otherwise y ∈ N0(γ; λ) must be degenerate on the edge γ, which requires that
F(y) := ∑m

j=1 y[1]γj (b) = 0. Since F is a linear continuous functional on N (γ; λ) that is not identically
equal to zero by the arguments in the above paragraph, we conclude that N0(γ; λ) has codimension 1
in N (γ; λ), thus giving (15) and finishing the proof for the case (i).

For Case (ii) we first use Lemma 7 to prove that every yj ∈ N0(γj; λ) vanishes identically on γj.
Next we denote by N ∗(γ; λ) the subspace of solutions y ∈ N (γ; λ) satisfying y(b) = 0 and observe
that every y ∈ N ∗(γ; λ) vanishes identically on the adjacent edges γ and γ1, . . . , γm. And conversely,
by taking arbitrary yj ∈ N0(γj; λ) on Γ(γj) and extending them by zero identically on γ, we get an
element of N ∗(γ; λ). The dimension of N ∗(γ; λ) is therefore equal to

dimN ∗(γ; λ) =
m

∑
j=1

n0(γj; λ) =
m

∑
j=1

∑
v∈I(Γ(γj))

m(v; λ) = ∑
v∈I(Γ(γ))

m(v; λ).

Next we construct a function y∗ ∈ N (γ; λ) satisfying y∗(b) = 1; such y∗ is clearly non-degenerate
on γ. As φγj(b; λ) is not zero modulo π, n(γj; λ) > n0(γj; λ) by the induction assumption,
whence N0(γj; λ) is a proper subspace of N (γj; λ). Thus there is y∗j ∈ N (γj; λ) such that y∗j (b) = 1.
Now we fix one such function for each j = 1, . . . , m and form a solution y∗ of `y = λy on Γ(γ) by
adjoining to y∗1 , . . . , y∗m a unique solution of τy = λy on γ satisfying the terminal conditions yγ(b) := 1

and y[1]γ (b) := ∑m
j=1(y

∗
j )

[1](b). Notice that

N (γ; λ) = N ∗(γ; λ)u ls〈 y∗ 〉,

ls denoting the linear span, so that

n(γ; λ) = dimN ∗(γ; λ) + 1 = ∑
v∈I(Γ(γ))

m(v; λ) + 1

as in (15). If φγ(a; λ) 6= 0 mod π, then the function y∗ constructed above does not belong to N0(γ; λ),
so that n0(γ; λ) = n(γ; λ)− 1 leading to (15). The proof is complete.

Corollary 7. For λ ∈ R, we denote by n(λ) the multiplicity of λ as an eigenvalue of L . Then

n(λ) =

{
n(e0; λ) if φe0(v0) = α(v0) mod π;

n0(e0; λ) if φe0(v0) 6= α(v0) mod π.
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7. Conclusions and Discussions

To summarize, the main results of this paper concern the Sturm oscillation properties of the
singular quantum trees. Namely, we consider a finite and bounded metric tree Γ along with
Sturm-Liouville differential expression τ of (3) defined on its edges, with potential q assumed to
be a real-valued distribution in W−1

2 (int(Γ)). In particular, q may include the Dirac delta-functions and
Coulomb 1/x-like singularities that are often used in quantum mechanics to model interactions
between particles within atoms and molecules; therefore, a rigorous definition of τ involves
quasi-derivatives; see Section 2.2. The differential expression ` is the τ considered on the functions
in its domain satisfying the interface conditions (4) at the interior vertices of Γ; being subjected to
the boundary conditions (6), ` generates a self-adjoint differential operator L called the (singular)
quantum tree.

Non-trivial solutions (i.e., solutions not equal to zero identically on Γ) of the equation `(y) = λy,
in contrast with such solutions on an interval, may degenerate, that is, vanish identically on some
edges. This makes it impossible to count the number of zeros for such degenerate solutions and
thus generalization of the Sturm comparison theorem to quantum trees is not straightforward.
Another difficulty is caused by the fact that for distributional potentials q, the Sturm comparison
theory on the interval becomes a subtle issue and requires special treatment as suggested for example,
in Reference [4] and summarized in Appendix A. Sturm comparison theorem for quantum trees
(Theorem 1) is applicable to any non-degenerate solutions yj, j = 1, 2, of the respective equations
`y = λjy, λ1 < λ2, and expresses zero interlacing in terms of the nodal domains.

The main tool in the proof is the suitably introduced Prüfer angle, which is also extensively
used in Sections 5 and 6 to develop the Sturm oscillation theory for the singular quantum tree L .
For generic case (when no eigenfunction of L is degenerate), the complete analogue of the Sturm
oscillation theorem (Theorem 2) is established, and some extensions to non-generic case are suggested
in Section 6.

Although we have only considered here compact metric trees and thus the quantum trees L

have only discrete spectra, the main results can be extended to non-compact metric trees resulting in
quantum trees with continuous spectrum. The approach of Section 4 does not exploit eigenvalues and
thus Theorem 1 holds true in this case, with only minor amendments needed in its proof. The nodal
counts are only finite for λj below the essential spectrum of L , and a meaningful analogue of Theorem 2
for simple eigenvalues below the essential spectrum of L can easily be established.
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Appendix A. Oscillation and Comparison Theorems for Singular Sturm-Liouville Operators

Classical Sturm theory on the interval (0, 1) has recently been generalized to the case when the
potential in the Sturm-Liouville differential expression is a real-valued distribution from W−1

2 (0, 1)
in Reference [5] and in our paper [4]. In this appendix, we briefly review the corresponding results
of Reference [4] that are widely used in the present work.

Assume, therefore, that q ∈ W−1
2 (0, 1) is a real-valued distribution. As explained in Section 2,

we take a real-valued u ∈ L2(0, 1) such that q = u′ and denote by τ the differential expression given
by (3). By definition, the equality τy = λy + f can be written as the first-order system

d
dx

(
y1

y2

)
=

(
u 1

−u2 − λ −u

)(
y1

y2

)
+

(
0
− f

)
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for y1 = y and the quasi-derivative y2 = y[1] = y′ − uy. If f ∈ L1(0, 1), then for every point x0 ∈ [0, 1]
and for every c1, c2 ∈ C the above system possesses a unique solution (y1, y2) satisfying the conditions
y1(x0) = c1 and y2(x0) = c2. Therefore, under the above assumptions the equation τy = f has a unique
solution y satisfying the conditions y(x0) = c1 and y[1](x0) = c2. Note also that this solution and its
quasi-derivative y[1] are absolutely continuous; on the contrary, the usual derivative y′ = y[1] + uy
may be discontinuous.

Next we choose a real λ and consider a real-valued solution y(·) = y(·; λ) of the equation τy = λy.
Then we define the polar coordinates r and θ via y(x) = r(x) sin θ(x) and y[1](x) = r(x) cos θ(x) and
call θ the Prüfer angle of y. The function θ is defined only modulo π; however, we can select out a
continuous branch of θ fixed by the condition θ(0) ∈ [0, π). Differentiating the relation cot θ = y[1]/y,
we get the following differential equation for θ:

θ′ = (u sin θ + cos θ)2 + λ sin2 θ. (A1)

As u need not be continuous, the right-hand side of this equation is not necessarily continuous.
Existence and uniqueness of solutions to (A1) is guaranteed by the Carathéodory theorem,
cf. Reference [28] and Reference [29] ([Theorem 1.1]).

We notice that if θ(x∗) = 0 mod π (i.e., if sin θ(x∗) = 0), Equation (A1) gives that θ′(x∗) = 1,
and one is tempted to conclude that θ strictly increases around the point x∗, as in the classical case of
integrable q. However, now θ′ can be discontinuous, and thus monotonicity does not follow directly
from the equality θ′(x∗) = 1; nevertheless, the result holds.

Proposition A1. The function θ strictly increases through every point x∗ where θ(x∗) = 0 mod π (i.e.,
through every zero of y).

We observe that the right-hand side of Equation (A1) is not continuous, so that this is a
Carathéodory-type equation and the classical theorems (see, e.g., References [30,31]) on monotonic
dependence of θ(x; λ) on λ do not apply. However, the following result is proved in Reference [4].

Proposition A2. Assume that λ1 ≤ λ2 and that θ(·; λ1) and θ(·; λ2) are solutions of Equation (A1) satisfying
the condition θ(0; λ1) ≤ θ(0; λ2). Then for every x ∈ [0, 1] the inequality θ(x; λ1) ≤ θ(x; λ2) holds. If,
moreover, λ1 < λ2 or θ(0; λ1) < θ(0; λ2), then θ(x; λ1) < θ(x; λ2) for all x ∈ (0, 1].

Likewise, if θ(1; λ1) ≥ θ(1; λ2), then the above conclusions hold with the reversed signs; in particular,
θ(x; λ1) > θ(x; λ2) for all x ∈ [0, 1) whenever λ1 < λ2 or θ(1; λ1) > θ(1; λ2).

If the value of the Prüfer angle θ at x = 1 is fixed, more can be said.

Lemma A1. Assume that the Prüfer angle θ(·; λ) for the solution y(·; λ) of the equation τy = λy satisfies the
condition θ(1, λ) ≡ α ∈ (0, π] for all λ ∈ R. Then, for every fixed x ∈ (0, 1], θ(x; λ)→ π as λ→ −∞ and
θ(x; λ)→ −∞ as λ→ +∞.
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