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Abstract: Gutman and Trinajstić (1972) defined the connection-number based Zagreb indices,
where connection number is degree of a vertex at distance two, in order to find the electron energy of
alternant hydrocarbons. These indices remain symmetric for the isomorphic (molecular) networks.
For the prediction of physicochemical and symmetrical properties of octane isomers, these indices
are restudied in 2018. In this paper, first and second Zagreb connection coindices are defined
and obtained in the form of upper bounds for the resultant networks in the terms of different
indices of their factor networks, where resultant networks are obtained from two networks by
the product-related operations, such as cartesian, corona, and lexicographic. For the molecular
networks linear polynomial chain, carbon nanotube, alkane, cycloalkane, fence, and closed fence,
first and second Zagreb connection coindices are computed in the consequence of the obtained results.
An analysis of Zagreb connection indices and coindices on the aforesaid molecular networks is
also included with the help of their numerical values and graphical presentations that shows the
symmetric behaviour of these indices and coindices with in certain intervals of order and size of the
under study (molecular) networks.
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1. Introduction

Topological indices (TIs) are functions that associate a numeric value with a finite, simple,
and undirected network. The various types of TIs are widely used for the studies of the structural and
chemical properties of the networks. These are also used in chemo-informatics modelings consisting
of quantitative structures activity and property relationships that create a symmetrical link between a
biological property and a molecular network. This symmetric relation can be shown mathematically
as P = χ(N), where P is an activity or property, N is a molecular network, and χ is a function
that depends upon the molecular network N, see [1,2]. Moreover, a number of drugs particles and
the medical behaviors of the different compounds have established with the help of various TI’s
in the pharmaceutical industries, see [3]. In particular, the TIs called by connection based Zagreb
indices are used to compute the correlation values among various octane isomers, such as acentric
factor, connectivity, heat of evaporation, molecular weight, density, critical temperature, and stability,
see [4,5].

Operations on networks play an important role to develop the new molecular networks from the
old ones that are known as the resultant networks. Graovac et al. [6] was the first who used some
operations on networks and computed exact formulae of Wiener index for the resultant networks.
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In particular, Cartesian products of Pm & P2 and Cm & P2 present the polynomial chain and nanotube
(TUC4(m, n)), respectively, alkane (C3H8) is the corona product of P3 and N3, cyclobutane (C4H8) is the
corona product of C4 and N2, and lexicographic products of Pm & P2 and Cm & P2 are fence and closed
fence, respectively, where Pm, Cm and Nm are path, cycle and null networks of order m respectively.
For further study, see [7–13]. Now, we define these operations, as follows:

Definition 1. Cartesian product of two networks G1 and G2 is a network G1 × G2 with vertex-set: V(G1 ×
G2) = V(G1)× V(G2) and edge-set: E(G1 × G2) = {(a1, b1)(a2, b2); where (a1, b1), (a2, b2) ∈ V(G1)×
V(G2)} and

• Either [a1 = a2 ∈ V(G1) ∧ b1b2 ∈ E(G2)] or [b1 = b2 ∈ V(G2) ∧ a1a2 ∈ E(G1)]. For more detail,
see Figure 1.

Definition 2. Corona product (G1 � G2) of two networks G1 and G2 is obtained by taking one copy of G1 and
n1 copies of G2 (i.e., {Gi

2 : 1 ≤ i ≤ n1}) then by joining each vertex of the ith copy of G2 to the ith vertex of one
copy of G1, where 1 ≤ i ≤ n1, |V(G1 ◦ G2)| = n1n2 + n1 and |E(G1 ◦ G2)| = e1 + n1e2 + n1n2. For more
detail, see Figure 2.

Definition 3. Lexicographic product of two networks G1 and G2 is a graph G1 · G2 with vertex-set : V(G1 ·
G2) = V(G1) · V(G2) and edge-set : E(G1 · G2) = {(a1, b1)(a2, b2); where (a1, b1), (a2, b2) ∈ V(G1) ·
V(G2)} and

• Either [a1 = a2 ∈ V(G1) ∧ b1b2 ∈ E(G2)] or [b1, b2 ∈ V(G2) ∧ a1a2 ∈ E(G1)]. For more detail,
see Figure 3.
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Figure 1. (a) G1 ∼= C4, (b) G2 ∼= C3 and (c) Cartesian Product (C4 × C3).
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Figure 2. (d) G1 ∼= C6, (e) G2 ∼= N2 and (f) Cyclohexane (C6H12 = C6 � N2).
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Figure 3. (g) G1 ∼= C4, (h) G2 ∼= P3 and (j) Lexicographic Product (C4 · P3).

Thus, the theory of networks gives the significant techniques in the field of modern chemistry
that is exploited to develop the several types of molecular networks and also predicts their chemical
properties. Gutman and Trinajstić [14] defined the first degree-based (number of vertices at distance
one) TI called by the first Zagreb index to compute the total π-electron energy of the molecules
in molecular networks. There are several TIs in literature but degree-based are studied more than
others, see [15]. Recently, Ashrafi et al. [16] defined the concept of coindices associated with the
classical Zagreb indices for the resultant networks of different operations. Relations between Zagreb
coindices and some distance-based TIs are established in [17]. The multiplicative, first, second,
third, and hyper Zagreb coindices with certain properties are defined in [18–23]. Munir et al. [24]
found closed relations for M-polynomial of polyhex networks and also computed closed relation for
degree-based TIs of networks. Moreover, the various degree-based TIs of different networks, such
as icosahedral honey comb, carbon nanotubes, oxide, rhombus type silicate, hexagonal, octahedral,
neural, and metal-organic, are computed in [25–29].

In 2018, the concept of connection-based (number of vertices at distance two) TIs is restudied [30].
The origin of these indices can be found in the work of Gutman and Trinajstić [14]. It is found that the
correlation values for the various physicochemical and symmetrical properties of the octane isomers
measured by Zagreb connection indices are better than the classical Zagreb indices. Ali and Javaid [31]
computed the formulae for Zagreb connection indices of disjunction and symmetric difference
operations on networks. For further studies of these indices on acyclic (alkane), unicycle, product,
subdivided, and semi-total point networks, we refer to [32–37].

In this paper, we compute the coindices associated with the first and second Zagreb connection
indices of the resultant networks as upper bounds in the terms of their factor networks, where resultant
networks are obtained by Cartesian, corona and lexicographic products of two networks. As the
consequences of these results, first and second Zagreb connection coindices of the linear polynomial
chain, carbon nanotube, alkane, cyclobutane, fence, and closed fence networks are also obtained.
Moreover, at the end, an analysis of connection-based Zagreb indices and coindices on the aforesaid
molecular networks is included with the help of their numerical values and graphical presentations.

Moreover, in this note, Section 2 represents the preliminaries and some important lemmas,
Section 3 covers the few molecular networks, Section 4 contains the main results of product based
networks, and Section 5 includes the applications, comparisons, and conclusions.

2. Preliminaries

For the vertex set V(G) and edge set E(G) ⊆ V(G)×V(G), we present a simple and undirected
(molecular) network by G = (V(G), E(G)), such that |V(G)| and |E(G)| are order and size of G,
respectively. A network denoted by N is called null if it has at least exactly one vertex and there exists
no edge. A null network becomes trivial if it has one vertex. The complement of a network G is denoted
by Ḡ. It is also simple with same vertex set as of G, but edge set is defined as E(Ḡ) = {ab : a, b ∈
V(G) ∧ ab /∈ E(G)}, thus E(G) ∪ E(Ḡ) = E(Kn), where Kn is a complete network of order n and size
|E(Kn)| = (n

2). Moreover, if |E(G)| = e, then |E(Ḡ)| = (n
2)− e = µ and dḠ(b) = n− 1− dG(b), where

dG(b) and dḠ(b) are the degrees of the vertex b in G and Ḡ, respectively. In addition, we assume that
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τG(b) denotes the connection number (number of vertices at distance 2) of the vertex b in G (distance
between two vertices is number of edges of the shortest path between them).

Now, throughout the paper, for two networks G1 and G2, we assume that |V(G1)| = n1, |V(G2)| =
n2, |E(G1)| = e1 and |E(G2)| = e2. Finally, it is important to note that Zagreb connection coindices
of G are not Zagreb connection indices of Ḡ, because the connection number works according to G.
For further basic terminologies, see [38].

Definition 4. For a (molecular) network G, the first Zagreb index (M1(G)) and second Zagreb index (M2(G))

are defined as

M1(G) = ∑
ab∈E(G)

[dG(a) + dG(b)] and M2(G) = ∑
ab∈E(G)

[dG(a)× dG(b)].

Gutman, Trinajstić, and Ruscic [14,39] defined these indices to predict better outcomes of the
various parameters related to the molecular networks, such as chirality, complexity, entropy, heat
energy, ZE-isomerism, heat capacity, absolute value of correlation coefficient, chromatographic,
retention times in chromatographic, pH, and molar ratio, see [4,14,29,40]. The connection-based
TIs are discussed, as follows:

Definition 5. For a (molecular) network G, the modified first Zagreb connection index (ZC∗1 (G)) and second
Zagreb connection index (ZC2(G)) are defined as

ZC∗1 (G) = ∑
ab∈E(G)

[τG(a) + τG(b)] and ZC2(G) = ∑
ab∈E(G)

[τG(a)× τG(b)].

Definition 6. For a (molecular) network G, the first Zagreb coindex (M̄1(G)) and second Zagreb coindex
(M̄2(G)) are defined as

M̄1(G) = ∑
ab/∈E(G)

[dG(a) + dG(b)] and M̄2(G) = ∑
ab/∈E(G)

[dG(a)× dG(b)].

These coindices that are associated with the degree-based classical Zagreb indices are defined
by Ashrafi et al. see [16]. The coindices associated with the Zagreb connection indices are defined in
Definition 7.

Definition 7. For a (molecular) network G, the first Zagreb connection coindex (Z̄C1(G)) and second Zagreb
connection coindex (Z̄C2(G)) are defined as

Z̄C1(G) = ∑
ab/∈E(G)

[τG(a) + τG(b)] and Z̄C2(G) = ∑
ab/∈E(G)

[τG(a)× τG(b)].

The degree/connection based coindices defined in Definitions 6 and 7 study the various
physicochemical and isomer properties of molecules on the bases of the adjacency and non-adjacency
pairs of vertices in the molecular networks. For more detail, see [16,30,36,41].

Now, we present some important results that are used in the main results.

Lemma 1 (see [42]). Let G be a connected network with n vertices and e edges. Subsequently, τG(a)+ dG(a) ≤
∑

b∈NG(a)
dG(b), where equality holds if and only if G is a {C3, C4}− free network.

Lemma 2 (see [38]). Let G be a connected network with n vertices and e edges. Afterwards, ∑
b∈V(G)

dG(b) = 2e.
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Lemma 3 (see [36])). Let G be a connected network with n vertices and e edges. Subsequently, ∑
b∈V(G)

τG(b) ≤

M1(G)− 2e. where equality holds iff G is a {C3, C4}− free network.

3. A Few Molecular Networks

In this section, we define a few molecular networks, as follows:

• Alkanes (hydrocarbon compounds) are organic compounds consisting of carbon atoms joined
by single bounds. The simple and Lewis networks of alkanes are given in Figure 4. Moreover,
methane (CH4), ethane (H3C− CH3), and propane (H3C− CH2 − CH3) are examples of alkanes
that are given in Figure 5. This alkane series continues and follows general formula as Cn H2n+2.

• Cyclic compounds are molecules consisting of closed chain (ring) of at least three carbon atoms.
If the closed chain has only carbon atoms, then it is an organic cyclic molecule that is called by
homocyclic compound. If the closed chain has both carbon and non-carbon atoms, then it is
an inorganic cyclic molecule that is called the heterocyclic compound. Moreover, Cycloalkanes
(Cn H2n) are the isomers of alkenes consisting of exactly one cyclic compound joined by a single
bond. Figure 6a,b presents the cyclic compounds (homocyclic and heterocyclic, respectively).

CC C C

(a) (b)

C CC

C C

Figure 4. (a) P2, P3, P4 are simple networks of alkanes and (b) P2, P3, P4 are Lewis networks of alkanes.
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Figure 5. Lewis network of (a) Methane, (b) Ethane and (c) Propane.
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Figure 6. (a) The Lewis network of cyclopropane, cyclobutane, cyclopentane, and cyclohexane,
(b) The Lewis network of pyrol, thiophene, and pyridine.

4. Main Results

The first Zagreb connection coindex (Z̄C1) and second Zagreb connection coindex (Z̄C2) of the
product based networks obtained under the operations of Cartesian product, corona product and
lexicographic product are studied in third section.
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Theorem 1. Let G1 and G2 be two networks. Then, Z̄C1 and Z̄C2 of the Cartesian product G1 × G2 are

(a) Z̄C1(G1×G2) ≤ n2Z̄C1(G1)+n1Z̄C1(G2)+ 2e2M̄1(G1)+ 2e1M̄1(G2)+ 2µ2[M1(G1)− 2e1]+ 2µ1

[M1(G2)− 2e2],

(b) Z̄C2(G1×G2) ≤ Z̄C1(G1)[M1(G2)− 2e2]+ Z̄C1(G2)[M1(G1)− 2e1]+ZC1(G1)M̄1(G2)+ZC1(G2)

M̄1(G1)+n2Z̄C2(G1)+n1Z̄C2(G2)+µ2ZC1(G1)+µ1ZC1(G2)+ M1(G1)M̄1(G2)+ 2e2M̄1(G1)

+2e2 ∑
a1a2 /∈E(G1)

[dG1(a1)τG1(a2)+ dG1(a2)τG1(a1)]+ 2e1 ∑
b1b2 /∈E(G2)

[dG2(b1)τG2(b2)+ dG2(b2)τG2(b1)].

where equality holds iff G1 × G2 is a {C3, C4}-free network.

Proof. (a). For a ∈ V(G1), b ∈ V(G2) and (a, b) ∈ V(G1 × G2), we have, τG1×G2(a, b) = τG1(a) +
dG1(a)dG2(b) + τG2(b).

Z̄C1(G1×G2) = ∑
(a1,b1)(a2,b2)/∈E(G1×G2)

[τG1×G2(a1, b1)+ τG1×G2(a2, b2)]

= ∑
a∈V(G1)

∑
b1b2 /∈E(G2)

[τG1×G2(a, b1)+ τG1×G2(a, b2)]+ ∑
b∈V(G2)

∑
a1a2 /∈E(G1)

[τG1×G2(a1, b)+ τG1×G2(a2, b)]

Taking

∑
a∈V(G1)

∑
b1b2 /∈E(G2)

[τG1×G2(a, b1)+ τG1×G2(a, b2)]

≤ ∑
a∈V(G1)

∑
b1b2 /∈E(G2)

[{τG1(a)+ dG1(a)dG2(b1)+ τG2(b1)}+ {τG1(a)+ dG1(a)dG2(b2)+ τG2(b2)}]

= ∑
a∈V(G1)

∑
b1b2 /∈E(G2)

[2τG1(a)+ dG1(a){dG2(b1)+ dG2(b2)}+ {τG2(b1)+ τG2(b2)}]

= 2µ2[M1(G1)− 2e1]+ 2e1M̄1(G2)+n1Z̄C1(G2).

Also taking

∑
b∈V(G2)

∑
a1a2 /∈E(G1)

[τG1×G2(a1, b)+ τG1×G2(a2, b)]

≤ ∑
b∈V(G2)

∑
a1a2 /∈E(G1)

[{τG1(a1)+ dG1(a1)dG2(b)+ τG2(b)}+ {τG1(a2)+ dG1(a2)dG2(b)+ τG2(b)}]

= n2Z̄C1(G1)+ 2e2M̄1(G1)+ 2µ1[M1(G2)− 2e2].

Consequently,

Z̄C1(G1×G2) ≤ n2Z̄C1(G1)+n1Z̄C1(G2)+ 2e2M̄1(G1)+ 2e1M̄1(G2)+ 2µ2[M1(G1)− 2e1]+ 2µ1

[M1(G2)− 2e2].

(b).

Z̄C2(G1×G2) = ∑
(a1,b1)(a2,b2)/∈E(G1×G2)

[τG1×G2(a1, b1)× τG1×G2(a2, b2)]

= ∑
a∈V(G1)

∑
b1b2 /∈E(G2)

[τG1×G2(a, b1)× τG1×G2(a, b2)]+ ∑
b∈V(G2)

∑
a1a2 /∈E(G1)

[τG1×G2(a1, b)× τG1×G2(a2, b)]
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Taking

∑
a∈V(G1)

∑
b1b2 /∈E(G2)

[τG1×G2(a, b1)× τG1×G2(a, b2)]

≤ ∑
a∈V(G1)

∑
b1b2 /∈E(G2)

[{τG1(a)+ dG1(a)dG2(b1)+ τG2(b1)}×{τG1(a)+ dG1(a)dG2(b2)+ τG2(b2)}]

= ∑
a∈V(G1)

∑
b1b2 /∈E(G2)

[τ2
G1
(a)+ τG1(a)dG1(a)dG2(b2)+ τG1(a)τG2(b2)+ dG1(a)dG2(b1)τG1(a)+ dG1(a)dG2(b1)

dG1(a)dG2(b2)+ dG1(a)dG2(b1)τG2(b2)+ τG2(b1)τG1(a)+ τG2(b1)dG1(a)dG2(b2)+ τG1(b1)τG2(b2)]

We know that, ∑
b1b2 /∈E(G2)

= (n2
2 )− e2 = µ2

= µ2ZC1(G1)+ZC1(G1)M̄1(G2)+ Z̄C1(G2)[M1(G1)− 2e1]+ M1(G1)M̄1(G2)+ 2e1 ∑
b1b2 /∈E(G2)

[dG2(b1)τG2(b2)+ dG2(b2)τG2(b1)]+n1Z̄C2(G2).

Also taking

∑
b∈V(G2)

∑
a1a2 /∈E(G1)

[τG1×G2(a1, b)× τG1×G2(a2, b)]

≤ ∑
b∈V(G2)

∑
a1a2 /∈E(G1)

[{τG1(a1)+ dG1(a1)dG2(b)+ τG2(b)}×{τG1(a2)+ dG1(a2)dG2(b)+ τG2(b)}] ]

We know that, ∑
a1a2 /∈E(G1)

= (n1
2 )− e1 = µ1

= n2Z̄C2(G1)+ 2e2 ∑
a1a2 /∈E(G1)

[dG1(a1)τG1(a2)+ dG1(a2)τG1(a1)]+ Z̄C1(G1)[M1(G2)− 2e2]

+2e2M̄1(G1)+ M̄1(G1)ZC∗1 (G2)+µ1ZC1(G2).

Consequently,

Z̄C2(G1×G2) ≤ Z̄C1(G1)[M1(G2)− 2e2]+ Z̄C1(G2)[M1(G1)− 2e1]+ZC1(G1)M̄1(G2)+ZC1(G2)

M̄1(G1)+n2Z̄C2(G1)+n1Z̄C2(G2)+µ2ZC1(G1)+µ1ZC1(G2)+ M1(G1)M̄1(G2)+ 2e2M̄1(G1)

+2e2 ∑
a1a2 /∈E(G1)

[dG1(a1)τG1(a2)+ dG1(a2)τG1(a1)]+ 2e1 ∑
b1b2 /∈E(G2)

[dG2(b1)τG2(b2)+ dG2(b2)τG2(b1)].

Theorem 2. Let G1 and G2 be two networks. Subsequently, Z̄C1 and Z̄C2 of the corona product G1 � G2 are

(a) Z̄C1(G1�G2) ≤ Z̄C1(G1)+n2M̄1(G1)−n1M̄1(G2)+ 2µ2[n1(n2− 1)+ 2e1],

(b) Z̄C2(G1�G2) ≤ Z̄C2(G1)+n2
2M̄2(G1)+n1M̄2(G2)−n1(n2− 1)M̄1(G2)− 2e1M̄1(G2)+µ2M1(G1)

+(n2− 1)µ2[n1(n2− 1)+ 4e1]+n2 ∑
ab/∈E(G1)

[dG1(a)τG1(b)+ dG1(b)τG1(a)].

where equality holds iff G1 � G2 is a {C3, C4}− free network.
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Proof. (a). For b ∈ V(G1 � G2) either b ∈ V(G1) or b ∈ V(Gi
2), where 1 ≤ i ≤ n1.

Case (I): If b ∈ V(G1), then τG1�G2(b) = τG1(b) + n2dG1(b).
Case (II): If b ∈ V(Gi

2), then τG1�G2(b) = (n2 − 1)− dGi
2
(b) + dG1(bi).

Z̄C1(G1�G2) = ∑
ab/∈E(G1�G2)

[τ(G1�G2)
(a)+ τ(G1�G2)

(b)]

= ∑
ab/∈E(G1�G2)

a,b∈V(G1)

[τG1(a)+ τG1(b)]+ ∑
ab/∈E(G1�G2)

a,b∈V(G2)

[τG2(a)+ τG2(b)]+ ∑
ab/∈E(G1�G2)

a∈V(G1)∧b∈V(G2)

[τG1(a)+ τG2(b)].

Taking

∑
ab/∈E(G1�G2)

a,b∈V(G1)

[τG1(a)+ τG1(b)]

≤ ∑
ab/∈E(G1)

[{τG1(a)+n2dG1(a)}+ {τG1(b)+n2dG1(b)}]

= ∑
ab/∈E(G1)

[{τG1(a)+ τG1(b)}+n2{dG1(a)+ dG1(b)}] = Z̄C1(G1)+n2M̄1(G1).

Also taking

∑
ab/∈E(G1�G2)

a,b∈V(G2)

[τG2(a)+ τG2(b)]

=
n1

∑
i=1

∑
ab/∈E(Gi

2)

[{(n2− 1)− dGi
2
(a)+ dG1(bi)}+ {(n2− 1)− dGi

2
(b)+ dG1(bi)}]

= 2n1(n2− 1)µ2−n1M̄1(G2)+ 4e1µ2.

Consequently,

Z̄C1(G1�G2) ≤ Z̄C1(G1)+n2M̄1(G1)−n1M̄1(G2)+ 2µ2[n1(n2− 1)+ 2e1].

(b).

Z̄C2(G1�G2) ≤ ∑
ab/∈E(G1�G2)

[τ(G1�G2)
(a)× τ(G1�G2)

(b)]

= ∑
ab/∈E(G1�G2)

a,b∈V(G1)

[τG1(a)× τG1(b)]+ ∑
ab/∈E(G1�G2)

a,b∈V(G2)

[τG2(a)× τG2(b)]+ ∑
ab/∈E(G1�G2)

a∈V(G1)∧b∈V(G2)

[τG1(a)× τG2(b)].

Taking

∑
uv/∈E(G1�G2)

a,b∈V(G1)

[τG1(a)× τG1(b)]

≤ ∑
ab/∈E(G1)

[{τG1(a)+n2dG1(a)}×{τG1(b)+n2dG1(b)}]

= Z̄C2(G1)+n2
2M̄2(G1)+n2 ∑

ab/∈E(G1)

[dG1(a)τG1(b)+ dG1(b)τG1(a)].
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Also taking

∑
ab/∈E(G1�G2)

a,b∈V(G2)

[τG2(a)× τG2(b)]

≤
n1

∑
i=1

∑
ab/∈E(Gi

2)

[{(n2− 1)− dGi
2
(a)+ dG1(bi)}×{(n2− 1)− dGi

2
(b)+ dG1(bi)}]

We know that, ∑
ab/∈E(Gi

2)

= (n2
2 )− e2 = µ2 (Say)

= n1(n2− 1)2µ2−n1(n2− 1)M̄1(G2)+ 4(n2− 1)e1µ2 +n1M̄2(G2)− 2e1M̄1(G2)+µ2M1(G1).

Again taking (Null case)

N = ∑
ab/∈E(G1�G2)

a∈V(G1)∧b∈V(G2)

[τG1(a)× τG2(b)] = 0.

Consequently,

Z̄C2(G1�G2) ≤ Z̄C2(G1)+n2
2M̄2(G1)+n1M̄2(G2)−n1(n2− 1)M̄1(G2)− 2e1M̄1(G2)+µ2M1(G1)

+(n2− 1)µ2[n1(n2− 1)+ 4e1]+n2 ∑
ab/∈E(G1)

[dG1(a)τG1(b)+ dG1(b)τG1(a)].

Theorem 3. Let G1 and G2 be networks. Subsequently, Z̄C1 and Z̄C2 of the lexicographic product G1 · G2 are

(a) Z̄C1(G1 ·G2) ≤ n2(n2 + 2µ2)Z̄C1(G1)− 2µ1 M̄2(G2)−n1 M̄1(G2)+ 2n2µ2[M1(G1)− 2e1]+ 2(n2− 1)

µ2(n1 + 2µ1)+ 2µ1[n2(n2− 1)− 2e2],

(b) Z̄C2(G1 ·G2) ≤ n2[n2(n2− 1)− 2e2 + 2(n2− 1)µ2]Z̄C1(G1)+n2
2(n2 + 2µ2)Z̄C2(G1)+n2

2µ2ZC1(G1)

+(n1 + 2µ1)M̄2(G2)− [n2(M1(G1)− 2e1)+n1(n2− 1)+ 2(n2− 1)µ1]M̄1(G2)+µ1 M1(G2)+ 2n2(n2− 1)

µ2[M1(G1)− 2e1]+ (n2− 1)2µ2(n1 + 2µ1)+ (n2− 1)µ1[n2(n2− 1)− 4e2]− 2n2 ∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1∼b2

[dG2(b1)τG1(a2)+ dG2(b2)τG1(a1)].

where equality holds iff G1[G2] is a {C3, C4}-free network.

Proof. (a). For a ∈ V(G1), b ∈ V(G2) and (a, b) ∈ V(G1 · G2), we have τG1[G2]
(a, b) = n2τG1(a) +

dḠ2
(b) = n2τG1(a) + (n2 − 1)− dG2(b).

Z̄C1(G1 ·G2) = ∑
(a1,b1)(a2,b2)/∈E(G1·G2)

[τG1·G2(a1, b1)+ τG1·G2(a2, b2)]

= ∑
a∈V(G1)

∑
b1b2 /∈E(G2)

a1=a2

[τG1·G2(a, b1)+ τG1·G2(a, b2)]+ ∑
b∈V(G2)

∑
a1a2 /∈E(G1)

b1=b2

[τG1·G2(a1, b)+ τG1·G2(a2, b)]
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+ ∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1∼b2

[τG1·G2(a1, b1)+ τG1·G2(a2, b2)]+ ∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1not parallelb2

[τG1·G2(a1, b1)+ τG1·G2(a2, b2)].

Taking

∑
a∈V(G1)

∑
b1b2 /∈E(G2)

a1=a2

[τG1·G2(a, b1)+ τG1·G2(a, b2)]

= ∑
a∈V(G1)

∑
b1b2 /∈E(G2)

a1=a2

[{n2τG1(a)+ (n2− 1)− dG2(b1)}+ {n2τG1(a)+ (n2− 1)− dG2(b2)}]

= 2n2µ2[M1(G1)− 2e1]+ 2n1(n2− 1)µ2−n1M̄1(G2)].

Also taking

∑
b∈V(G2)

∑
a1a2 /∈E(G1)

b1=b2

[τG1·G2(a1, b)+ τG1·G2(a2, b)]

= ∑
b∈V(G2)

∑
a1a2 /∈E(G1)

b1=b2

[{n2τG1(a1)+ (n2− 1)− dG2(b)}+ {n2τG1(a2)+ (n2− 1)− dG2(b)}]

= n2
2Z̄C1(G1)+ 2n2(n2− 1)µ1− 4e2µ1.

Again taking

∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1∼b2

[τG1·G2(a1, b1)+ τG1·G2(a2, b2)]

≤ 2 ∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1∼b2

[{n2τG1(a1)+ (n2− 1)− dG2(b1)}+ {n2τG1(a2)+ (n2− 1)− dG2(b2)}]

= 2n2µ2Z̄C1(G1)+ 4(n2− 1)µ1µ2− 2µ1M̄2(G2).

Further taking (Null case)

N = ∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1 not parallelb2

[τG1[G2]
(a1, b1)+ τG1[G2]

(a2, b2)] = 0.

Consequently,

Z̄C1(G1 ·G2) ≤ n2(n2 + 2µ2)Z̄C1(G1)− 2µ1M̄2(G2)−n1M̄1(G2)+ 2n2µ2[M1(G1)− 2e1]+ 2(n2− 1)

µ2(n1 + 2µ1)+ 2µ1[n2(n2− 1)− 2e2].

(b).

Z̄C2(G1 ·G2) = ∑
(a1,b1)(a2,b2)/∈E(G1·G2)

[τG1·G2(a1, b1)× τG1·G2(a2, b2)]

= ∑
a∈V(G1)

∑
b1b2 /∈E(G2)

a1=a2

[τG1·G2(a, b1)× τG1·G2(a, b2)]+ ∑
b∈V(G2)

∑
a1a2 /∈E(G1)

b1=b2

[τG1·G2(a1, b)× τG1·G2(a2, b)]
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+ ∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1∼b2

[τG1·G2(a1, b1)× τG1·G2(a2, b2)]+ ∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1not parallelb2

[τG1·G2(a1, b1)× τG1·G2(a2, b2)]

Taking

∑
a∈V(G1)

∑
b1b2 /∈E(G2)

a1=a2

[τG1·G2(a, b1)× τG1·G2(a, b2)]

= ∑
a∈V(G1)

∑
b1b2 /∈E(G2)

a1=a2

[{n2τG1(a)+ (n2− 1)− dG2(b1)}×{n2τG1(a)+ (n2− 1)− dG2(b2)}]

= n2
2µ2ZC1(G1)+ 2n2(n2− 1)µ2[M1(G1)− 2e1]−n2M̄1(G2)[M1(G1)− 2e1]+n1(n2− 1)2µ2

−n1(n2− 1)M̄1(G2)+n1M̄2(G2).

Also taking

∑
b∈V(G2)

∑
a1a2 /∈E(G1)

b1=b2

[τG1·G2(a1, b)× τG1·G2(a2, b)]

≤ ∑
b∈V(G2)

∑
a1a2 /∈E(G1)

b1=b2

[{n2τG1(a1)+ (n2− 1)− dG2(b)}×{n2τG1(a2)+ (n2− 1)− dG2(b)}

= n3
2Z̄C2(G1)+n2

2(n2− 1)Z̄C1(G1)− 2n2e2Z̄C1(G1)+n2(n2− 1)2µ1− 4(n2− 1)e2µ1 +µ1M1(G2).

Again taking

∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1∼b2

[τG1·G2(a1, b1)× τG1·G2(a2, b2)]

= 2 ∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1∼b2

[{n2τG1(a1)+ (n2− 1)− dG2(b1)}×{n2τG1(a2)+ (n2− 1)− dG2(b2)}]

= 2n2
2µ2Z̄C2(G1)+ 2n2(n2− 1)µ2Z̄C∗1 (G1)− 2n2 ∑

a1a2 /∈E(G1)
a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1∼b2

[dG2(b1)τG1(a2)

+dG2(b2)τG1(a1)]+ 2(n2− 1)2µ1µ2− 2(n2− 1)µ1M̄1(G2)+ 2µ1M̄2(G2).

Further taking (Null case)

N = ∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1not parallelb2

[τG1·G2(a1, b1)× τG1·G2(a2, b2)] = 0.

Consequently,

Z̄C2(G1 ·G2) ≤ n2[n2(n2− 1)− 2e2 + 2(n2− 1)µ2]Z̄C1(G1)+n2
2(n2 + 2µ2)Z̄C2(G1)+n2

2µ2ZC1(G1)

+(n1 + 2µ1)M̄2(G2)− [n2(M1(G1)− 2e1)+n1(n2− 1)+ 2(n2− 1)µ1]M̄1(G2)+µ1M1(G2)+ 2n2(n2− 1)

µ2[M1(G1)− 2e1]+ (n2− 1)2µ2(n1 + 2µ1)+ (n2− 1)µ1[n2(n2− 1)− 4e2]− 2n2 ∑
a1a2 /∈E(G1)

a1 6=a2∧a1∼a2

∑
b1b2 /∈E(G2)

b1 6=b2∧b1∼b2
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[dG2(b1)τG1(a2)+ dG2(b2)τG1(a1)].

5. Applications, Comparisons and Conclusions

In this section, we compute Zagreb connection coindices (Z̄C1, Z̄C2) for the particular molecular
networks, such as carbon nanotube, linear polynomial chain, alkane, cyclobutane, fence, and closed
fence (see Figures 7–9, 11, 13, 15, and 17) as the consequence of the main results obtained in
Section 4. We also construct the Tables 1–6 with the help of the numerical values of Zagreb connection
coindices (Z̄C1, Z̄C2) and Zagreb connection indices (ZC∗1 , ZC2) for the aforesaid molecular networks.
The graphical presentations of the Zagreb connection coindices (Z̄C1, Z̄C2) and Zagreb connection
indices (ZC∗1 , ZC2) for these molecular networks are also presented in Figures 8, 10, 12, 14, 16, and 18.
Assume that N2 & N3 be two null networks (with order 2 & 3), P2, P3, P4 & P6 be four particular alkanes
called by paths (with order 2, 3, 4, & 6) and C4, C5 & C6 be cycles (with order 4, 5, & 6).

5.1. Cartesian Product

(1) Polynomial chains: Let Pm and Pn be two particular path- alkanes, then the polynomial chains
(Pm × Pn) are obtained by the Cartesian product of Pm and Pn. For m = 6 and n = 2, see Figure 7.

1 2 3 4 5 6 s

t

(1,s)

(2,s)

(3,s)

(4,s)

(5,s)

(1,t)

(2,t)

(3,t)

(4,t)

(5,t)

(6,s) (6,t)

(a) (b) (c)

Figure 7. (a) H1 ∼= P6 (b) H2 ∼= P2 & (c) Polynomial chain (P6 × P2).

Using Theorem 1, Zagreb connection coindices (Z̄C1 and Z̄C2) of polynomial chains are obtained,
as follows:

(a) Z̄C1(Pm × Pn) ≤ 2m2n + 2mn2 − 4m2 − 4n2 + 8m + 34n− 32,
(b) Z̄C2(Pm × Pn) ≤ 2mn2 − 6n2 + 22mn− 28m + 60n− 66.

The Zagreb connection indices (ZC∗1 and ZC2) of polynomial chains are as follows [43]:

ZC∗1 of polynomial chains: (1) If m ≥ 3 & n = 2, ZC∗1 (Pm × Pn) ≤ 32mn− 40m− 42n + 40; (2) If m ≥ 3
& n ≥ 3, ZC∗1 (Pm × Pn) ≤ 32mn− 42m− 42n + 40

ZC2 of polynomial chains: (1) If m ≥ 3 & n = 2, ZC2(Pm × Pn) ≤ 120mn − 192m − 238n + 350;
(2) If m ≥ 3 & n = 3, ZC2(Pm× Pn) ≤ 128mn− 238m− 246n + 402; (3) If m ≥ 3 & n = 4, ZC2(Pm× Pn)

≤ 128mn− 239m− 246n + 402; (4) If m ≥ 5 & n ≥ 5, ZC2(Pm × Pn) ≤ 128mn− 240m− 246n + 402.
Table 1 and Figure 8 present the numerical and graphical behaviours of the upper bound values

of Zagreb connection indices and Zagreb connection coindices for polynomial chains with respect to
different values of m and n.
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Table 1. Polynomial chains of θ1 = Pm × Pn.

(m,n) ZC∗
1 (θ1) ZC2(θ1) Z̄C1(θ1) Z̄C2(θ1)

(3,2) 28 18 68 102
(3,3) 76 102 130 228
(3,4) 130 237 196 354
(3,5) 184 372 266 480
(4,2) 52 66 84 126
(4,3) 130 248 170 284
(4,4) 216 510 264 446
(4,5) 302 772 366 612
(5,2) 76 114 100 150
(5,3) 184 394 214 340
(5,4) 302 783 340 538
(5,5) 420 1172 478 744
(6,2) 100 162 116 174
(6,3) 238 540 262 396
(6,4) 388 1056 424 630
(6,5) 538 1572 602 876

Figure 8. Polynomial chains of θ1 = Pm × Pn based on Table 1 with respect to indices and coindices .

(2) Carbon Nanotubes (TUC4(m, n)): Let Pm and Cn be a particular alkane and cycloalkane called by
path and cycle, then carbon nanotubes (Pm × Cn) are obtained by the cartesian product of Pm and Cn.
For m = 4 and n = 5, see Figure 9.

s

t

u v

w

1 2 3 4

(a) (b)

(1,s) (2,s) (3,s)

(1,t)

(1,u)

(1,v)

(1,w)

(2,t)

(2,u)

(2,v)

(2,w)

(3,t)

(3,u)

(3,v)

(3,w)

(4,s)

(4,t)

(4,u)

(4,v)

(4,w)

(c)

Figure 9. (a) H1 ∼= P4 (b) H2 ∼= C5 & (c) Carbon nanotube (TUC4(m, n) ∼= P4 × C5).

Using Theorem 1, Zagreb connection coindices (Z̄C1 and Z̄C2) of carbon nanotubes are obtained
as follows:

(a) Z̄C1(Pm × Cn) ≤ 2m2n + 2mn2 − 4n2 + 10mn− 10n,
(b) Z̄C2(Pm × Cn) ≤ 2m2n + 2mn2 − 6n2 + 82mn− 131n.

The Zagreb connection indices (ZC∗1 and ZC2) of carbon nanotubes are as follows [43]:

(1) ZC∗1 (Pm × Cn) ≤ 32mn− 42n,
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(2) ZC2(Pm × Cn) ≤ 128mn− 238n.

Table 2 and Figure 10 present the numerical and graphical behaviours of the Zagreb connection
indices coindices for carbon nanotubes with respect to different values of m and n.

Table 2. Carbon nanotubes (TUC4(m, n)) of θ2 = Pm × Cn.

(m,n) ZC∗
1 (θ2) ZC2(θ2) Z̄C1(θ2) Z̄C2(θ2)

(3,2) 108 292 84 266
(3,3) 162 438 132 399
(3,4) 216 584 184 532
(3,5) 270 730 240 665
(4,2) 172 548 140 466
(4,3) 258 822 222 705
(4,4) 344 1096 312 948
(4,5) 430 1370 410 1195
(5,2) 236 804 204 674
(5,3) 354 1206 324 1023
(5,4) 472 1608 456 1380
(5,5) 590 2010 600 1745
(6,2) 300 1060 276 890
(6,3) 450 1590 438 1353
(6,4) 600 2120 616 1828
(6,5) 750 2650 810 2315

Figure 10. Carbon nanotubes (TUC4(m, n)) of θ2 = Pm × Cn based on Table 2 with respect to indices
and coindices.

5.2. Corona Product

(3) Alkane (C3H8) : Let Pm and Nn be a particular alkane called by paths and a null graph, then the
alkanes (Pm � Nn) are obtained by the corona product of Pm and Nn. The corona product only has a
chemical sense when for arbitrary m > 0, n = 2, and n = 3 provide equivalence chemical networks
of alkenes and alkanes, respectively. Besides this sense, for n > 3, see no chemical context of corona
product. For m = 3 and n = 3, see Figure 11.

1

s1

t1

3

t3

3s

s2

t2

2u

C
C

C

HH

H

H

H

HH

H

(c)

u1

2

u3

s t u1 2 3

(a) (b)

Figure 11. (a) H1 ∼= P3 (b) H2 ∼= N3 & (c) Alkane (P3 � N3 ∼ C3H8).
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Using Theorem 2, Zagreb connection coindices (Z̄C1 and Z̄C2) of alkanes are obtained as follows:

(a) Z̄C1(Pm � Nn) = mn + m− n− 1,
(b) Z̄C2(Pm � Nn) = mn2 − 2n2 + mn + m− n− 2.

The Zagreb connection indices (ZC∗1 and ZC2) of alkanes are as follows [43]:

(1) ZC∗1 (Pm � Nn) = 3mn2 − 2n2 + 7mn + 4m− 12n− 10,
(2) ZC2(Pm � Nn) = 2mn3 − 2n3 + 8mn2 − 16n2 + 10mn− 26n.

Table 3 and Figure 12 present the numerical and graphical behaviours of the Zagreb connection
indices and coindices for alkanes with respect to different values of m and n.

Table 3. Alkanes of θ3 = Pm � Nn.

(m,n) ZC∗
1 (θ3) ZC2(θ3) Z̄C1(θ3) Z̄C2(θ3)

(3,2) 48 72 6 9
(3,3) 92 192 8 16
(3,4) 150 400 10 25
(3,5) 222 720 12 36
(4,2) 78 140 9 16
(4,3) 144 348 12 29
(4,4) 230 696 15 46
(4,5) 336 1220 18 67
(5,2) 108 208 12 23
(5,3) 196 504 16 42
(5,4) 310 992 20 67
(5,5) 450 1720 24 98
(6,2) 138 276 15 30
(6,3) 248 660 20 55
(6,4) 390 1288 25 88
(6,5) 564 2220 30 129

Figure 12. Alkanes of θ3 = Pm � Nn based on Table 3 with respect to indices and coindices.

(4) Cyclobutane (C4H8): Let Cm and Nn be a cycle and a null graph, then Cyclobutanes (Cm � Nn) are
obtained by the corona product of Cm and Nn. The corona product has a chemical sense only when
for arbitrary m > 0, n = 1 and n = 2 provide equivalence chemical networks of cycloalkenes and
cycloalkanes, respectively. Besides this sense, for n > 2 see no chemical context (cyclic compounds) of
corona product. For m = 4 and n = 2, see Figure 13.
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Figure 13. (a) H1 ∼= C4 (b) H2 ∼= N2 & (c) Cyclobutane (C4 � N2 ∼= C4H8).

Using Theorem 2, Zagreb connection coindices (Z̄C1 and Z̄C2) of cyclobutanes are obtained, as
follows:

(a) Z̄C1(Cm � Nn) ≤ 2mn + 2m,
(b) Z̄C2(Cm � Nn) ≤ 2mn2 + 4mn + 2m.

The Zagreb connection indices (ZC∗1 and ZC2) of cyclobutanes are as follows [43]:

(1) ZC∗1 (Cm � Nn) ≤ 3mn2 + 7mn + 4m,
(2) ZC2(Cm � Nn) ≤ 2mn3 + 8mn2 + 10mn + 4m.

Table 4 and Figure 14 present the numerical and graphical behaviours of the upper bound values
of Zagreb connection indices and coindices for cyclobutanes with respect to different values of m
and n.

Table 4. Cyclobutanes of θ4 = Cm � Nn.

(m,n) ZC∗
1 (θ4) ZC2(θ4) Z̄C1(θ4) Z̄C2(θ4)

(3,2) 90 216 18 54
(3,3) 156 480 24 96
(3,4) 240 900 30 150
(3,5) 342 1512 36 216
(4,2) 120 288 24 72
(4,3) 208 640 32 128
(4,4) 320 1200 40 200
(4,5) 456 2016 48 288
(5,2) 150 360 30 90
(5,3) 260 800 40 160
(5,4) 400 1500 50 250
(5,5) 570 2520 60 360
(6,2) 180 432 36 100
(6,3) 312 960 48 174
(6,4) 480 1800 60 268
(6,5) 684 3024 72 382
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Figure 14. Cyclobutanes of θ4 = Cm � Nn based on Table 4 with respect to indices and coindices.

5.3. Lexicographic Product

(5) Fence: Let Pm and Pn be two particular path-alkanes, then the fence (Pm · Pn) are obtained by the
lexicographic product of Pm and Pn. For m = 6 and n = 2, see Figure 15.

1 2 3 4 5 6 s t

(a) (b)

(1,s) (1,t)

(2,s)

(3,s)

(4,s)

(5,s)

(2,t)

(3,t)

(4,t)

(5,t)

(6,s) (6,t)

(c)

Figure 15. (a) H1 ∼= P6 (b) H2 ∼= P2 & (c) Fence (P6 · P2).

Using Theorem 3, Zagreb connection coindices (Z̄C1 and Z̄C2) of fence are obtained, as follows:

(a) Z̄C1(Pm · Pn) ≤ m2n2 − 3m2n + mn2 + 2m2 + 4n2 + 9mn− 6m− 6n + 4,
(b) Z̄C2(Pm · Pn) ≤ m2n3

2 − 3m2n2 + 13
2 m2n− 5m2 + 13

2 mn3 − 3mn2 − 23
2 mn + 15m− 5n3 − 12n2 +

17n− 10.

The Zagreb connection indices (ZC∗1 and ZC2) of fence are as follows [43]:

(1) ZC∗1 (Pm · Pn) = 6mn3 − 12n3 + 4mn2 − 6n2 − 24mn + 24m + 20n− 16,
(2) ZC2(Pm · Pn) = n5 + 8mn4 − 28n4 + 5mn3 − 6n3 − 43mn2 + 70n2 + 71mn− 46m− 91n + 34.

Table 5 and Figure 16 present the numerical and graphical behaviours of the upper bound values
of Zagreb connection indices and coindices for fence with respect to different values of m and n.
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Table 5. Fence of θ5 = Pm · Pn.

(m,n) ZC∗
1 (θ5) ZC2(θ5) Z̄C1(θ5) Z̄C2(θ5)

(3,2) 24 -56 56 32
(3,3) 116 -107 130 194
(3,4) 328 16 236 602
(3,5) 696 781 374 1370
(4,2) 64 36 72 64
(4,3) 266 456 174 330
(4,4) 704 1934 324 974
(4,5) 1450 5640 522 2170
(5,2) 104 128 88 96
(5,3) 416 1019 222 468
(5,4) 1080 3852 424 1356
(5,5) 2204 10499 694 3000
(6,2) 144 220 104 128
(6,3) 566 1582 274 608
(6,4) 1456 5770 536 1748
(6,5) 2958 15358 890 3860

Figure 16. Fence of θ5 = Pm · Pn based on Table 5 with respect to indices and coindices.

(6) Closed fence: Let Cm and Pn be a cycle and a particular path-alkane, then closed fence (Cm · Pn) is
obtained by the lexicographic product of Cm and Pn. For m = 6 and n = 2, see Figure 17.

1

2

3

4

5

6

s t

(a) (b) (c)

(1,s)

(4,s)

(2,s)

(3,s)

(1,t)

(4,t)

(2,t)

(3,t)

(5,s)

(6,s)

(5,t)

(6,t)

Figure 17. (a) H1 ∼= C6 (b) H2 ∼= P2 & (c) Closed fence S(C6 · P2).

Using Theorem 3, Zagreb connection coindices (Z̄C1 and Z̄C2) of closed fence are obtained,
as follows:

(a) Z̄C1(Cm · Pn) ≤ m2n2 − 3m2n + 2m2 + 3mn2 + 9mn− 6m,
(b) Z̄C2(Cm · Pn) ≤ m2n3

2 − 3m2n2 + 13
2 m2n− 5m2 + 21

2 mn3 − 9mn2 − 15
2 mn + 15m.

The Zagreb connection indices (ZC∗1 and ZC2) of the closed fence are as follows [43]:

(1) ZC∗1 (Cm · Pn) ≤ 4mn3 + 4mn2 − 24mn + 24m,
(2) ZC2(Cm · Pn) ≤ n5 + 6mn4 − 16n4 + 7mn3 − 8n3 − 39mn2 + 10n2 + 67mn− 46m− 5n + 2.
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Table 6 and Figure 18 present the numerical and graphical behaviours of the upper bound values
of Zagreb connection indices and coindices for closed fence with respect to different values of m and n.

Table 6. Closed fences of θ6 = Cm · Pn.

(m,n) ZC∗
1 (θ6) ZC2(θ6) Z̄C1(θ6) Z̄C2(θ6)

(3,2) 72 -4 72 144
(3,3) 288 245 162 594
(3,4) 744 1304 288 1584
(3,5) 1512 4169 450 3330
(4,2) 96 80 96 192
(4,3) 384 724 224 796
(4,4) 992 2886 408 2132
(4,5) 2016 8108 648 4500
(5,2) 120 164 120 240
(5,3) 480 1203 290 1000
(5,4) 1240 4468 540 2690
(5,5) 2520 12047 870 5700
(6,2) 144 248 144 288
(6,3) 576 1682 360 1206
(6,4) 1488 6050 684 3258
(6,5) 3024 15986 1116 6930

Figure 18. Closed fence of θ6 = Cm · Pn based on Table 6 with respect to indices and coindices.

Now, from Tables 1–6 and Figures 8, 10, 12, 14, 16, and 18–22, we close our discussion with the
following conclusions:

• The behaviours of all the connection-based Zagreb indices and coindices for the molecular
networks (polynomial chain, carbon nanotube, alkane, cycloalkane, fence, and closed fence) are
symmetrise with some less or more values and the following orderings:
(i) ZC2 ≥ Z̄C2 ≥ Z̄C1 ≥ ZC∗1 (for polynomial chain), (ii) ZC2 ≥ Z̄C2 ≥ ZC∗1 ≥ Z̄C1 (for carbon
nanotubes, fence and closed fence) and (iii) ZC2 ≥ ZC∗1 ≥ Z̄C2 ≥ Z̄C1 (for alkane and
cycloalkane).

• For increasing values of m and n in all of the molecular networks (polynomial chain, carbon
nanotube, alkane, cycloalkane, fence, and closed fence), the second Zagreb connection index, and
the first Zagreb connection coindex are responding rapidly, and steadily, respectively.

• In the certain intervals of the values of m and n, all the connection-based indices and coindices
attain the maximum and minimum values. These values are also lifting up in the intervals on
increasing values of m and n in such a way that the response of maximum values is more rapid
than the minimum values. In addition, we analyse that second the Zagreb connection index has
attained more upper layer than other TIs in all pf the molecular networks.
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• In particular, Figures 19–22 present that first Zagreb connection index, second Zagreb connection
index, first Zagreb connection coindex, and second Zagreb connection coindex are dominant
and auxiliary or incapable for the molecular networks from polynomial chain to closed fence,
respectively. Moreover, we analyse that last molecular network i.e., closed fence has attain more
upper layer than all other molecular networks for connection-based indices and coindices.

The investigation of these molecular descriptors for the resultant networks obtained from other
operations of networks (switching, addition, rooted product, and Zig-zag product, etc.) is still open.

Figure 19. Comparison of first Zagreb connection indices.

Figure 20. Comparison of second Zagreb connection indices.

Figure 21. Comparison of first Zagreb connection coindices.
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Figure 22. Comparison of second Zagreb connection coindices.
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