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Abstract: The deep-learning steganography of current hotspots can conceal an image secret message
in a cover image of the same size. While the steganography secret message is primarily removed
via active steganalysis. The document image as the secret message in deep-learning steganography
can deliver a considerable amount of effective information in a secret communication process.
This study builds and implements deep-learning steganography removal models of document image
secret messages based on the idea of adversarial perturbation removal: feed-forward denoising
convolutional neural networks (DnCNN) and high-level representation guided denoiser (HGD).
Further—considering the large computation cost and storage overheads of the above model—we
use the document image-quality assessment (DIQA) as threshold, calculate the importance of filters
using geometric median and prune redundant filters as extensively as possible through the overall
iterative pruning and artificial bee colony (ABC) automatic pruning algorithms to reduce the size
of the network structure of the existing vast and over-parameterized deep-learning steganography
removal model, while maintaining the good removal effects of the model in the pruning process.
Experiment results showed that the model generated by this method has better adaptability and
scalability. Compared with the original deep-learning steganography removal model without pruning
in this paper, the classic indicators params and flops are reduced by more than 75%.

Keywords: active steganalysis; deep-learning steganography removal; document image secret message;
geometric median pruning; ABC automatic pruning; DIQA

1. Introduction

Image steganography is a technique for concealing secret messages in cover images and
transmitting stego images to complete transmission of secret messages in a common channel.
The receiving end of the transmission can leak the secret message. In recent years, deep-learning
frameworks, especially convolutional neural networks (CNNs) have recently achieved remarkable
superiority over conventional approaches in many fields. In the meanwhile, from early AlexNet [1] and
VGGNet [2], to later more advanced Inception models [3] and ResNet [4]. Deep learning has also been
introduced to the field of information hiding. Deep-learning steganography has progressed considerably
with larger payloads in secret messages than the traditional steganography and successfully distributes
secret messages to available bits of the cover image. However, lossy deep steganography limits secret
messages to images. Baluja [5] proposed a CNN based on the encoder–decoder structure, the encoder
network can successfully conceal a secret image into a same-size cover image and the decoder network
can reveal the secret image completely. Wu et al. [6] put forward a deep-learning steganography
based on CNN architecture to provide better payload and performance compared with the traditional
steganography method. Dong et al. [7] offered a deep-learning steganography called ISGAN by
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introducing generative adversarial networks (GANs) into CNN networks while enhancing security
and increasing invisibility of the secret message by minimizing the difference between empirical
probability distributions of stego and natural images. Existing studies on steganography fail to use
document images as secret steganography message. Unlike general images, document images can
transmit a large amount of text messages, its privacy and credibility need to be effectively protected
in social networks [8]. The document image, which has certain practical and research significance,
is used in this study as the secret message of deep-learning steganography. General image-quality
assessment methods, such as peak signal-to-noise ratio (PSNR) and structural similarity index measure
(SSIM) [9], are full-reference objective evaluation algorithms for examining images, that fail to measure
the removal quality of document images, Hence, this study uses document image-quality assessment
(DIQA) [10] to measure the removal quality of the document image’s secret message.

Steganalysis is an attack on steganography algorithms that intercepts images through listeners in a
common channel and analyses the confidentiality of information contained in images. Since the
introduction of steganalysis, steganography and steganalysis have been mutually reinforcing.
Steganalysis [11] is a technique for detecting or deleting steganography secret messages. However,
detecting the existence of hidden information and extracting such hidden information without knowing
the steganography method are difficult; hence, the removal of steganography secret messages has
become an important research area. Limited studies are available on the removal of secret messages of
deep-learning steganography. Jung et al. [12] proposed a framework called PixelSteganalysis, which is
inspired by PixelCNN [13]. The proposed deep-learning steganography removal method in this
study is inspired by adversarial examples proposed by Szegedy et al. [14] that treat the hidden secret
message as tiny adversarial perturbation and adopt the idea of adversarial perturbation removal as
deep-learning steganography removal. For example, Jia et al. [15] put forward an end-to-end image
model called ComDefend, which consists of a compression convolutional neural network (ComCNN)
and a reconstruction convolutional neural network (ResCNN), to protect against adversarial sample
attacks. ComCNN is used to maintain the structure information of the original image, and ResCNN
is utilized to construct the original image with high quality. This study proposes a deep-learning
steganography removal model with better adaptability and scalability that combines deep-learning
steganography and adversarial perturbation removal methods.

Although deep neural networks progressed considerably in the field of steganography, a large
number of data sets are required to obtain good performance and deployment is difficult because a
substantial amount of parameters and storage overheads [16,17] are involved. proposed framework
of deep-learning steganography removal based on the deep neural network in this study also has a
large number of params and flops. Deploying steganography firewalls in network nodes is difficult.
Model optimization has recently become an important research topic. Network pruning [18,19]
is a technology that can effectively compress and accelerate CNNs and allows users to deploy
efficient networks on hardware devices with limited storage and computing resources. For example,
Han et al. [20] initially pruned a deep learning model by removing weights below a certain threshold.
Han et al. [21] further combined weight pruning with Huffman coding; however, this method may lead
to unstructured sparseness of filters that may be inefficient in saving memory usage and computing
costs. Structured sparseness and effective memory usage can be achieved in the model via the filter
pruning method. Therefore, filter pruning is effective in accelerating the development of deep neural
networks. Accordingly, this study uses filter pruning to compress the model, reduce params and flops
of the deep-learning steganography removal model and ensure the model performance.

The main contributions of this article include the following:
The idea of adversarial perturbation removal is adopted as deep-learning steganography removal,

and the two types of deep-learning steganography removal models, namely, DnCNN and HGD,
are implemented.
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The document image is used as the secret message of the deep-learning steganography method
called ISGAN [7], and the document image-quality assessment called DIQA [10] is utilized to evaluate
the secret message of deep-learning steganography.

Geometric median pruning is used to analyze filters and the performance of each convolutional
layer of the deep-learning steganography removal model.

DIQA and image-quality assessment [9] are used as thresholds, and iterative pruning is applied
to the two proposed deep-learning steganography removal models to achieve satisfactory results.

DIQA, image-quality assessment, params and flops are used as nectar source fitness, and artificial
bee colony (ABC) automatic pruning is applied to the two proposed deep-learning steganography
removal models to achieve satisfactory results.

The remainder of this paper is organized as follows: Technology related to this study is discussed
in Section 2. Two types of deep-learning steganography removal frameworks are proposed in Section 3.
Deep-learning steganalysis for removing document images based on geometric median pruning is put
forward in Section 4. The experimental results are presented in Section 5. Finally, the conclusions of
this study are summarized, and future research directions are discussed in Section 6.

2. Related Technologies

2.1. Active Steganalysis

The steganography secret message is primarily removed via active steganalysis, which is divided
into two categories, namely, conventional active and deep-learning steganalyses.

Fridrich et al. [22] proposed a method of conventional active steganalysis to overwrite random bits
suggested by the gaussian noise or others where messages may reside. Guo et al. [23] proposed a median
filter for removing noise in an image, especially sporadic noise of large variance. Amritha et al. [24]
removed the hidden secret message by using a denoising filter to reduce the cover image quality and
then restoring the cover image to some extent through deconvolution operations.

Jung et al. [12] proposed a framework of deep-learning steganalysis based on PixelCNN [13]
called PixelSteganalysis, which exploits sophisticated pixel distributions and edge areas of images
using a deep neural network. Accordingly, we adaptively remove secret information at the pixel
level. Corley et al. [25] offered a deep digital steganography purifier based on GAN that destroys
steganography content without compromising the perceived quality of the original image.

This study proposes the use of adversarial perturbation removal as deep-learning steganography
removal. Zhang et al. [26] put forward an end-to-end trainable Gaussian denoising architecture called
the denoising convolutional neural networks (DnCNN); batch normalization and residual learning are
integrated to accelerate the training process and boost the denoising performance. Song et al. [27] offered
a defense method using pixel-level CNN called PixelDefend and determined that adversarial examples
primarily lie in low-probability regions of the training distribution; PixelDefend can reconstruct the
low-probability regions of adversarial examples into a clean image that meets the requirements of
high-probability regions. Liao et al. [28] proposed several high-level representation guided denoiser
(HGD) methods by treating adversarial examples as noise, to achieve defensive adversarial examples.

2.2. Pruning Methods

Network pruning methods can be divided into two categories for CNNs, namely, unstructured
weight pruning [20] and channel-based structured pruning. Unstructured pruning typically results in
irregular network structures, which require dedicated hardware and software to support the actual
acceleration. The network complexity cannot be reduced without the dedicated hardware support.
Therefore, using the structured pruning method is practical.

The channel-pruning method compresses the model structure by deleting the entire filters and
is appropriately supported by general hardware. Several works have evaluated the importance of
filter weights. Li et al. [29] assessed the importance of filter using Lp norm; unimportant filters in the
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convolution layer are deleted after artificially setting the pruning ratio. Yang et al. [30] proposed a
soft filter pruning method that allows updating the pruned filters when pruning the training model;
the network with good model learning ability can be trained from scratch and pruned at the same time
without fine tuning to achieve a good effect. He et al. [31] offered a geometric median pruning method
that prunes redundant filters by regarding the convolution kernel near the geometric center as similar
and unimportant. Chen et al. [32] proposed a self-adaptive network pruning method (SANP) to reduce
cost for CNNs, that introduces a general Saliency-and-Pruning Module (SPM) for each convolutional
layer, which learns to predict saliency scores and applies pruning for each channel.

Several works have focused on pruning based on reconstruction errors by using channel pruning
as an optimization problem and selecting representative filters. Madaan et al. [33] proposed a new loss
for adversarial learning to minimize the feature-level vulnerability during training and proposed a
Bayesian framework to prune features with high vulnerability in order to reduce both vulnerability
and loss on adversarial samples. Luo et al. [34] proposed the ThiNet architecture that uses greedy
method to delete channels with minimal effect on the activation value of the next layer. He et al. [35]
used lasso regression to select channels for pruning. Yu et al. [36] determined pruning filters by
minimizing reconstruction errors of the penultimate layer of the network and considering cumulative
back propagation errors.

Some studies have focused on pruning based on regularization. Liu et al. [37] used scaling factor γ
in the normalization layer to impose sparseness constraints, measure the importance of channels during
the training process, filter out channels with low scores and prune layer-by-layer. Huang et al. [38]
and Lin et al. [39] proposed a sparse regularization mask method based on channel pruning; the mask
is optimized via data-driven selection or generative adversarial learning. Zhao et al. [40] further
developed the norm-based importance estimation by taking the dependency between the adjacent
layers into consideration and propose a novel mechanism to dynamically control the sparsity-inducing
regularization so as to achieve the desired sparsity.

Other studies have focused on searchable automatic pruning methods. Guerra et al. [41] proposed
an effective pruning strategy for selecting redundant low-precision filters by combining neural network
quantification and pruning to realize automation process. Dong et al. [42] proposed a search architecture
called transformable architecture that combines knowledge distillation and searchability to find a
good network structure. Liu et al. [43] proposed a heuristic search algorithm that trains the remaining
weights while pruning to obtain a structurally sparse model of weight distribution and further searches
and deletes a small part of redundant weights through network structure purification. Lin et al. [44]
proposed a channel-pruning method based on artificial bee colony (ABC) algorithm; searching for the
optimal pruning structure is regarded as an optimization problem and the ABC algorithm is integrated
to solve the problem of selecting the optimal pruning structure with the best fitness automatically.

3. Deep-Learning Steganography Removal Model

This study adopts the idea of adversarial perturbation removal as deep-learning steganography
removal and implements two types of deep-learning steganography removal models, namely
DnCNN [26] and HGD [28]. Approximately 50,000 ISGAN-generated [7] stego images with a
size of 256 × 256 resolution and their corresponding cover images are used as data sets to train
the model.

SSIM and PSNR [9] are used to measure the image quality. SSIM measures the image similarity in
terms of brightness, contrast and structure, and its value is within the range [0, 1]. PSNR is a widely
used objective evaluation assessment for images based on errors between corresponding pixels.

Self-made black and white document images and Google’s tesseract document image recognizer
are used to score document images. We classify approximately 40,000 document images with a
size of 256 × 256 resolution and their label data sets in each rating segment for the training of the
documentation evaluation model [10]. The trained model is used as DIQA [10] to measure the degree
of destruction of document images as secret messages.
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3.1. DnCNN Model

The DnCNN model is modified on the basis of VGG network [2] to make it suitable for image
denoising. We use the DnCNN denoising model as deep-learning steganography removal (see Figure 1).

Figure 1 illustrates an end-to-end deep convolutional steganography removal network. Given a
depth of D network, the different types of layer composition are presented as follows:

Convolutional layer (Conv) + rectified linear unit (ReLU): The first layer uses 64 filters with a
size of 3 × 3 × 3 to generate 64 feature maps. Using ReLu enables the output of some neurons to tend
toward zero and lead to a sparse network with improved mining-related features.

Conv + batch normalization (BN) + ReLU: The 2 ~(D-1) layers use 64 filters with a size of 3 × 3 × 64.
The BN layer is added between Conv and ReLU to accelerate the training and improve the performance
of steganography removal. The document image regarded as a secret image in the stego image is
gradually removed as noise in the layer-by-layer iteration.
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Figure 1. Deep-learning steganography removal model called the feed-forward denoising convolutional
neural network (DnCNN).

Conv: The last layer uses three filters with a size of 3 × 3 × 64 to reconstruct the image as the
output of the deep-learning steganography removal model.

loss =

∑I
i=1

∑J
j=1

∣∣∣Ci, j −Ri, j
∣∣∣

I � J
(1)

The loss function of DnCNN is expressed as Formula (1), where C represents the original image;
R represents the image after removing the steganography secret message; and I and J represent the
length and width of the image, respectively. The difference between the original and purified images is
used as the loss function to ensure that the image is as close to the original image as possible after
removing the secret message as well as improves the SSIM and PSNR values of original and purified
images as well as stego and purified images.

3.2. HGD Model

Denoising autoencoder (DAE) [45] is a popular denoising model, DAE has a bottleneck structure
between the encoder and decoder. This bottleneck may constrain the transmission of fine-scale
information necessary for reconstructing high resolution images. Hence, the HGD model was proposed
by modifying DAE with U-net [46] structure to overcome the bottleneck. We use the HGD denoising
model as deep-learning steganography removal (see Figure 2).

The entire model consists of a feedforward path and a feedback path and is divided into upper and
lower layers (see Figure 2). HGD is primarily composed of 3 × 3 convolutional layers, BN and ReLU
(Conv + BN + ReLU) to form a block and the last layer of 1 × 1 convolutional layer as the output layer.
The upper layer network structure that uses 256 × 256 image X∗ as the input and generates a set of
feature maps with increasingly low resolution is called the Com layer, which is composed of 14 blocks.
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The lower layer network that primarily enlarges the size of feature maps through upsampling and then
merges with the output of a certain level of the Com layer as the input of the feedback path to connect
the upper and lower layers is called the Res layer, which is composed of 11 blocks and a convolutional
layer. The resolution of feature maps continues to increase and restores to the original image size
through the feedback path.
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Figure 2. Deep-learning steganography removal model called the high-level representation guided
denoiser (HGD).

The last output layer of HGD is a residual image −Y∗, the final X̂ = X∗ −Y∗ as a purified image
after steganography removal. The secret message of the hidden document image in the stego image is
removed as small perturbations through compression and reconstruction. HGD uses a loss function
consistent with DnCNN to ensure the quality of the purified image.

The DnCNN and HGD models are trained for about three days under a single GeForce GTX 1080
Ti graphics card. The performance of the final DnCNN and HGD is presented in Table 1.

Table 1. Performance of the DnCNN and HGD models.

Model Orig_Remove_
SSIM

Orig_Remove_
PSNR

Stego_Remove_
SSIM

Stego_Remove_
PSNR DIQA Params

(M)
Flops
(G)

DnCNN 0.961 29,323 0.966 33,696 0.068 0.558 36,591
HGD 0.978 31,618 0.963 30,868 0.069 11,034 50,937

According to the results in Table 1, the trained DnCNN and HGD deep-learning steganography
removal models have excessively large amount of params and flops, which are unfavorable for
deployment in network nodes. Therefore, pruning is performed on the trained deep-learning
steganography removal model. Redundant filters are pruned as much as possible to reduce the size
of the network structure of the existing vast and over-parameterized deep-learning steganography
removal model while ensuring that the secret message of the hidden document image is invisible to a
certain extent. The specific method is discussed in Section 4.

4. Methods

4.1. Pruning Strategy for the Deep-Learning Steganography Removal Model

The filter pruning method allows the model to have structured sparseness and effective memory
usage. Therefore, filter pruning is preferred in the process of accelerating the development of deep
neural networks. Therefore, this study applies the filter pruning method of geometric median to
compress the deep-learning steganography removal model.

DnCNN and HGD models generally utilize two pruning methods. As shown in Figures 3 and 4,
let xi and yi represent the width and height of the feature map, respectively; Pi represents the feature
map, where Pi ∈ Rni×xi×yi ; R represents the set; Rni×xi×yi represents a set of three dimensions for Pi; ni
represents the number of input channels of the ith convolution layer; ni+1 represents the number of
output channels of the ith convolution layer; K represents the convolution kernel of the convolutional
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layer, where KεRk×k(K is generally 1 or 3); Rk×k represents a set of two dimensions for K; Fi, j represents
a filter of the convolutional layer, and all filters of the layer constitute a kernel matrix Qi ∈ Rni×ni+1×k×k;
Rni×ni+1×k×k represents a set of four dimensions for Qi.
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The network structure shown in Figure 3 prunes a filter Fi, j in the convolution layer kernel matrix
Qi, affects the number of corresponding channels of the output feature maps Pi+1 and uses pruned
feature maps as the input of the next convolution layer. Hence, the corresponding kernel matrix Qi+1

of the next convolutional layer should also be removed accordingly. Hence, pruning a filter Fi, j in the
model will reduce ni × k2

× xi+1 × yi+1 flops.
The HGD network structure is illustrated in Figure 4. Pruning a filter Fi, j in the convolutional

layer kernel matrix Qi in the Com layer will affect corresponding channels of output feature maps Pi+1

in the Com layer and the corresponding kernel matrix Qi+1 of the next convolutional layer, and then
the corresponding weights in ni+2–ni+3 of the kernel matrix Qi+3 in the Res layer must be removed.

4.2. Geometric Median Pruning

We analyze all filters of each convolutional layer of the proposed DnCNN and HGD via geometric
median. The geometric median minimizes the sum of Euclidean distances to all filters Fi, j in ith
convolutional layers. The information center of all filters in the convolutional layer of this layer is
expressed as Formula (2).

f = argmin
tεRni+1∗k∗k

∑
jε[1, ni+1]

‖ t− Fi, j ‖2 (2)

Filters at or near the geometric median containing redundant information can be replaced with
the remaining filters, as shown in Formula (3).

Fi, j′ = argmin
Fi, j

‖ Fi, j − f ‖2, s.t. jε[1, ni+1] (3)
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4.3. Overall Iterative Pruning of Deep-Learning Steganography Removal Model Based on Geometric Median

Geometric median is used in this study to prune the pre-trained deep-learning steganography
removal model, as shown in Algorithm 1.

The document image can contain a large amount of information when used as a secret message
in deep-learning steganography. Hence, the deep-learning steganography removal model is used as
the steganography firewall to remove the hidden secret message in stego images. The removal model
proposed in this study uses DIQA as the threshold to evaluate the degree of secret message removal
while ensuring that the steganography secret message is invisible to a certain extent. In addition, the
quality of the images must be considered, that is, the PSNR and SSIM indicators of the original and
purified images, stego images and purified images. Algorithm 2 sets the DIQA threshold, SSIM > 0.9
and PSNR > 26 and iteratively prunes every layer in each convolution layer of the proposed DnCNN
and HGD.

Algorithm 1 Pruning the deep-learning steganography removal model via geometric median

1: Prepare the pre-trained DnCNN and HGD models;
2: Calculate geometric median on all filters Fi, j of a convolutional layer in the deep-learning steganography
removal model, as in Formula (2), find the data center point f of filters in the convolutional layer;
3: Filters Fi, j′ that have redundant information are closed to the geometric median according to Formula (3).
We prune these redundant filters to achieve the purpose of pruning, while maintaining the performance of
the models;
4: Prune a filter in a convolution layer, which will affect the kernel matrix and corresponding feature map
channels in the next convolutional layer, As analyzed in 4.1. Therefore, it is necessary to remove the number of
feature maps channels and corresponding weights involved in pruning. and to match the number of input and
output channels of the relevant convolution layer;
5: Retain the remaining kernel matrix after removing filters of one convolution layer of the deep-learning
steganography removal model, complete a filter pruning operation based on geometric median.

Algorithm 2 Iterative pruning process of the deep-learning steganography removal model

1: Input: Prepare the pre-trained DnCNN and HGD models;
2: Initialization: Set m pruning layers; set the maximum channels pruning rate r; set the channels iteration
pruning rate p of the deep-learning steganography removal model. According to the maximum channels
pruning rate and channels iterative pruning rate, set the number of iterative pruning channels of each
convolutional layer, C = (c1, c2, · · · cn), n = 1

p , 0 ≤ c ≤ channel × r;
3: Conditions: Set the DIQA threshold while ensuring the image quality, that is, SSIM > 0.9 for the original
image and purified image, SSIM > 0.9 for the stego image and purified image, PSNR > 26 for the original
image and purified image, PSNR > 26 for the stego image and purified image;
4: for i = 1:m do

for j in C do
Call Algorithm 1 to perform a geometric median pruning;
Verify the network after each pruning. If the network after pruning meets the DIQA threshold
and image-quality assessment, we should prune more channels for this convolutional layer.
If the network after pruning does not meet the DIQA threshold and image-quality assessment,
jump out of this layer loop, determine the final pruning result of the convolutional layer,
save the pruning model and start pruning of the next convolutional layer;

end
end
5: Output: The pruned models.

4.4. ABC Automatic Pruning of Deep-Learning Steganography Removal Model Based on Geometric Median

Section 4.3 does violent iterative pruning in 90% channel pruning space of each convolutional
layer of the deep-learning steganography removal model. The process considers the convolutional
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layer of the deep-learning steganography removal model separately and does not realize the automatic
process. Thus, this section shrinks the combinations where the preserved channels of the deep-learning
steganography removal model are limited to a specific space based on geometric median. Moreover,
then, we formulate the search of optimal pruned structure as an optimization problem and integrate
the ABC algorithm to solve it in an automatic manner.

The ABC algorithm contains three basic elements: nectar sources, employed bees and unemployed
bees and three basic behavior models: search for nectar sources, recruit bees for nectar sources and
give up a nectar source.

• Nectar sources: Its value is composed of many factors, such as the amount of nectar, the distance
from the hive and the difficulty of obtaining nectar. The fitness of nectar source is used to express
the above factors;

• Employed bees: The number of employed bees and nectar sources is usually equal. Employed
bees have memory function to store relevant information of a certain nectar source, including
the distance, direction and abundance of nectar source and share this information with a certain
probability to other bees;

• Unemployed bees: The responsibility of unemployed bees including onlooker bees and scout
bees is to find the nectar source to be mined. Onlooker bees observe the swinging dance of the
employed bees to obtain important nectar source information and choose the bees that they are
satisfied with to follow. The number of onlooker bees and employed bees is equal. Scout bees that
account for 5–20% of total bee colonies do not follow any other bees and randomly search for
nectar sources around the hive.

The corresponding relationship between the foraging behavior of ABC and the channel pruning
problem of the deep-learning steganography removal model is shown in Table 2. Thus, the optimization
problem of structure search of the deep-learning steganography removal model is abstracted into the
foraging behavior of bees.

Table 2. The corresponding relationship between the foraging behavior of ABC and the channel
pruning problem of the deep-learning steganography removal model.

Foraging Behavior of ABC Channel Pruning Problem of the Deep-Learning Steganography Removal Model

Nectar sources The combinations of each convolutional layer channels of model.

Quality of nectar sources
The quality of combinations is achieved by calculating the combination fitness value,
that is, sets the DIQA threshold, SSIM > 0.9, PSNR > 26 and params and flops of the
model as small as possible.

Optimal quality of nectar sources The params and flops of the model are the smallest and the image quality and
document image quality are guaranteed.

Pick nectar Search the pruning structure of the model.

4.4.1. Initialization of Nectar Sources

The combinations of each convolutional layer channels in deep-learning steganography removal
are regarded as nectar sources, and the quality of the nectar sources corresponds to the fitness value fi
of combinations. Let D represents the number of convolutional layers participating in combinations.
The position of nectar sources i = {1, 2, · · · n} is expressed as Xt

i =
[
xt

i1, xt
i2, · · · , xt

iD

]
. xid ∈ (Ld, Ud)

represents a convolutional layer of the deep-learning steganography removal model. Let dε{1, 2, · · · , D},
Ld and Ud represent the lower and upper limits of the search pace, respectively. The lower limit means
that a certain convolutional layer of the model is not pruned, and the upper limit means that a certain
convolutional layer of the model is pruned 90% channels. The initial position of nectar i is randomly
generated in the search space according to Formula (4).

xid = Ld + rand(0, 1)(Ud − Ld) (4)
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4.4.2. Search Process of Employed Bees

At the beginning of the search, the employed bee searches for a new nectar source near the old
nectar source i according to Formula (5). Among them, j , i, jε{i = 1, 2, . . . n} means to randomly
select a nectar source not equal to i from n nectar sources. ∅id is a uniformly distributed random
number [−1, 1], which determines the degree of pruning of each convolutional layer channels. x′id is
a new nectar source, calculated on the basis of comparing the previous nectar source xid with the
neighbor nectar source. If the quality of the new nectar source fXi is better than the quality of the
previous nectar source fX′i , the employed bees memorize the new nectar source, otherwise the old
nectar source is memorized.

x′id = xid +∅id
(
xid − x jd

)
(5)

4.4.3. Search Process of Onlooker Bees

Onlooker bees select nectar sources through roulette from the nectar sources searched by employed
bees, and the probability of a nectar source is selected according to Formula (6). fXi is the quality of
the nectar source i. After the onlooker bee chooses the nectar source, it also searches for a new nectar
source according to Formula (5):

PXi = 0.9
min

(
fXi

)
fXi

+ 0.1 (6)

4.4.4. Search Process of Scout Bees

There is an important parameter limit in the search process of the scout bees in order to prevent
the algorithm from falling into a local optimum, which is responsible for controlling the number of
iterations that the quality of the nectar source has not improved. If the nectar source Xi reaches the
limit threshold after triali iterations and no better nectar source is found, the nectar source Xi will be
abandoned. The role of the corresponding employed bee will become a scout bee, and the scout bee
will randomly generate a new nectar source in the search space to replace Xi. If the limit threshold is
not reached, the search process of the employed bee will continue, as in Formula (7):

Xt
i =

{
Ld + rand(0, 1)(Ud − Ld), triali ≥ limit

Xt−1
i , triali < limit

(7)

Using the ABC automatic pruning algorithm based on geometric median is not easy to fall into
local extreme points because the role of scout bee searchers for new nectar sources around the hive
and can converge to an optimal nectar source with maximum probability. An optimal deep-learning
steganography removal model is obtained. The deep-learning steganography removal algorithm based
on ABC pruning is as Algorithm 3.
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Algorithm 3 ABC automatic pruning of deep-learning steganography removal model based on geometric median

1: Input: Prepare the pre-trained DnCNN and HGD models.
2: Initialization: Set t pruning rounds; initialization of nectar sources according to Formula (4); set n pruning
layers; maximum channel pruning ϕ of each convolutional layer of the model; maximum of poor quality of
nectar source is limit; the number of iteration search for poor quality of nectar source is trail.
3: Conditions: Set the DIQA threshold while ensuring the image quality, that is, SSIM > 0.9 for the original
image and purified image, SSIM > 0.9 for the stego image and purified image, PSNR > 26 for the original
image and purified image, PSNR > 26 for the stego image and purified image, params and flops as small as
possible. Use the above conditions as the nectar source fitness value fXi .
4: for i = 1:t do

for j = 1:D do

The employed bee searches for a new nectar source X′i around the nectar source Xi through Formula
(5), and calls algorithm 1 to obtain the combinations of each convolutional layer channels of the
model, and calculates the fitness value fX′i ;

if fXi < fX′i then
Xi = X′i ;
fXi = fX′i ;
traili = 0;

else
traili = traili + 1;

end
for j = 1:D do

Calculate the probability of nectar being selected through Formula (6);
Generate a random number θi ∈ [0, 1];
if θi <= PXi then

The employed bee searches for a new nectar source X′i around the nectar source Xi through
Formula (5), and calls algorithm 1 to obtain the combinations of each convolutional layer
channels of the model, and calculates the fitness value fX′i ;

if fXi < fX′i then
Xi = X′i ;
fXi = fX′i ;
traili = 0;

else
traili = traili + 1;

end
for j = 1:n do

if traili > limit
thenperform Formula (7);

end
end

5: endend Output: The pruned models.

4.5. Analysis of Algorithm

Convolutional layers, except the last output layer, are pruned in each layer to satisfy the following
conditions: DIQA as the threshold and image-quality assessment of SSIM > 0.9, PSNR > 26. Moreover,
iterative search for the number of channels in each convolutional layer. It can ensure that each
convolutional layer of the deep-learning steganography removal model can prune redundant filters to
the maximum extent and the amount of params and flops of the models can be remarkably reduced
while ensuring a certain degree of invisible secret message and the quality of the images. Given that
iterative pruning is performed using a double-layered cyclic structure, the time complexity of the
algorithm is O(m × n). The specific experimental results are presented in Section 5.
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The ABC automatic pruning algorithm, using the combinations of pruning channels of each
convolutional layer of the deep-learning steganography removal model as nectar sources and
performing random target search by combining probability rules according Formula (6) without
prior knowledge, is robust and adaptability. In addition, the employed bee and the onlooker bee form
a positive feedback mechanism when looking for the optimal deep-learning steganography removal
structure, which speeds up the convergence of the algorithm.

5. Experiments

5.1. Experimental Preparation and Environment

This experiment prepares the trained deep-learning steganography called ISGAN. The cover
image data set uses the ILSVRC2012 data set, which is scaled and randomly cut into 256 × 256
resolution, to select 50,000 pieces. Document images are regarded as secret images using 50,000
self-made black-and-white document images.

Prepare the trained document image evaluation model as DIQA. Details are presented in Section 3.
Prepare the pre-trained deep-learning steganography removal models called DnCNN and HGD.

Train both deep-learning steganography removal models using the same data set for comparability.
Use the corresponding 50,000 stego images generated by ISGAN and the corresponding original images
as the data set. The data set image size is 256 × 256 resolution. In addition, the same loss function and
optimizer SGD are used for training. Details are presented in Section 3.

All experiments are completed using the PyTorch platform with development language of Python
v.3.6, which is accelerated with 1 NVIDIA GTX 1080Ti graphics card (NVIDIA, Santa Clara, CA, USA).

5.2. Results of Pruning Experiments

DnCNN has 17 convolutional layers (convolutional layers are counted from left to right in Figure 1),
and the last layer is the output layer without pruning. HGD has 26 convolutional layers (convolutional
layers are counted from left to right in the Com layer and then from right to left in the Res layer,
see Figure 2), and the last layer is not pruned.

Pruning experiments in this study are primarily conducted using the DnCNN and HGD models.
We analyze the models via individual pruning, overall iterative pruning and ABC automatic pruning.
Individual pruning gradually prunes 90% of each convolutional layer and analyses the sensitivity of
each convolutional layer of the deep-learning steganography removal model. Overall, iterative pruning
is the maximum pruning of each layer under the conditions of SSIM, PSNR and DIQA threshold.
Ensuring the image quality and invisibility of the secret message to a certain extent is necessary after
pruning. ABC automatic pruning uses DIQA threshold, SSIM, PSNR, params and flops as the fitness
of the nectar source and uses the combinations of pruning channels of each convolutional layer of
the deep-learning steganography removal model as the nectar source to search the structure of the
DnCNN and HGD models automatically.

5.2.1. Sensitivity Analysis of the Individual Pruning

The sensitivity of pruning of each convolutional layer is different in the process of geometric
median pruning of the 16 convolutional layers of the DnCNN model. The performance of PSNR,
SSIM and DIQA begin to decrease to a certain extent when pruning the 50% filters. A few convolutional
layers, such as conv16 shown in Figure 5. The similar performance of PSNR, SSIM and DIQA compared
with the proposed and original models indicate that the conv16 layer filter has significant redundancy
when pruning the 90% filters.
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of PSNR, SSIM, and DIQA in the model begins to have a certain impact when pruning the 30% filters. 

Figure 5. Sensitivity analysis of each convolutional layer of the DnCNN model based on geometric
median pruning. (a) peak signal-to-noise ratio (PSNR) value between the original image and the
purified image of each convolutional layer pruning 0–90%, (b) structural similarity index measure
(SSIM) value between the original image and the purified image of each convolutional layer pruning
0–90%, (c) PSNR value between the stego image and the purified image of each convolutional layer
pruning 0–90%, (d) SSIM value between the stego image and the purified image of each convolutional
layer pruning 0–90%, (e) document image-quality assessment (DIQA).

Several convolutional layers are very sensitive in the process of geometric median pruning the
25 convolutional layers of the HGD model, as shown in the conv2 layer of Figure 6. The performance
of PSNR, SSIM, and DIQA in the model begins to have a certain impact when pruning the 30% filters.
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5.2.2. Analysis of the Overall, Iterative Pruning

Geometric median pruning is performed on the DnCNN and HGD models under the condition of
DIQA < 0.2. Each convolutional layer of the model prunes redundant filters to the maximum extent
under limited conditions and achieves significant results.

Geometric median pruning of the DnCNN model demonstrates that params of the model reduce
from the initial 0.558 M to 0.073 M, flops reduce from 36,591 G to 4775 G, DIQA changes from
0.068 to 0.092, and the image quality is nearly the same as the result of the original model to ensure
the performance of the DnCNN deep-learning steganography removal model and compress the
model (Table 3).

Table 3. Geometric median pruning of each convolutional layer in the DnCNN model when the
document image-quality assessment (DIQA) valve is equal to 0.2.
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conv5_rm_38channels (60%) 0.961 29,323 0.966 33,695 0.068 0.400 26,244
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conv7_rm_50channels (80%) 0.961 29,323 0.966 33,695 0.068 0.325 21,276
conv8_rm_50channels (80%) 0.961 29,323 0.966 33,695 0.068 0.289 18,969
conv9_rm_44channels (70%) 0.961 29,323 0.966 33,695 0.068 0.258 16,939
conv10_rm_31channels (50%) 0.961 29,323 0.966 33,695 0.068 0.235 15,399
conv11_rm_31channels (50%) 0.961 29,323 0.966 33,695 0.068 0.208 13,622
conv12_rm_38channels (60%) 0.956 28,811 0.962 33,018 0.083 0.175 11,443
conv13_rm_38channels (60%) 0.954 28,560 0.959 32,554 0.091 0.144 9420
conv14_rm_31channels (50%) 0.954 28,548 0.957 32,497 0.092 0.119 7771
conv15_rm_31channels (50%) 0.954 28,548 0.957 32,497 0.092 0.091 5993
conv16_rm_57channels (90%) 0.954 28,548 0.957 32,497 0.092 0.073 4775

Geometric median pruning of the HGD model, shows that params of the model reduce from
the initial 11,034 M to 0.721 M, flops reduce from 50,937 G to 5731 G, DIQA changes from 0.069 to
0.160 and SSIM and PSNR of stego and purified images are better than the original model. Hence,
geometric median pruning has a significant effect on the HGD model of deep-learning steganography
removal (Table 4).
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Table 4. Geometric median pruning of each convolutional layer in the HGD model when the DIQA
valve is equal to 0.2.

Prune Orig_Remove_
SSIM

Orig_Remove_
PSNR

Stego_Remove_
SSIM

Stego_Remove_
PSNR DIQA Params

(M)
Flops
(G)

oralModel 0.978 31,618 0.963 30,868 0.069 11,034 50,937
conv1_rm_38channels (60%) 0.978 31,618 0.963 30,868 0.069 11,011 49,430
conv2_rm_19channels (30%) 0.963 29,368 0.966 31,257 0.090 10,974 48,060
conv3_rm_89channels (70%) 0.963 29,368 0.966 31,257 0.090 10,835 45,787
conv4_rm_89channels (70%) 0.963 29,368 0.966 31,257 0.090 10,701 43,593

conv5_rm_102channels (80%) 0.958 28,823 0.978 35,270 0.159 10,312 40,115
conv6_rm_127channels (50%) 0.958 28,823 0.978 35,270 0.159 9990 38,794
conv7_rm_178channels (70%) 0.952 28,457 0.988 34,200 0.145 9373 36,266
conv8_rm_204channels (80%) 0.952 28,457 0.988 34,200 0.145 8289 33,271
conv9_rm_230channels (90%) 0.952 28,654 0.987 34,693 0.175 7651 32,618
conv10_rm_230channels (90%) 0.952 28,495 0.988 35,965 0.132 7067 32,020
conv11_rm_230channels (90%) 0.949 27,910 0.988 35,346 0.172 5953 31,286
conv12_rm_230channels (90%) 0.943 26,070 0.988 30,255 0.128 5369 31,136
conv13_rm_230channels (90%) 0.950 28,292 0.991 37,972 0.144 4784 30,987
conv14_rm_230channels (90%) 0.950 28,076 0.987 36,073 0.184 4200 30,427
conv15_rm_230channels (90%) 0.951 28,334 0.987 36,249 0.137 3562 29,774
conv16_rm_230channels (90%) 0.949 28,031 0.990 36,867 0.155 2978 29,176
conv17_rm_102channels (40%) 0.949 28,041 0.990 36,803 0.154 2719 28,184
conv18_rm_153channels (60%) 0.949 28,041 0.990 36,803 0.154 2082 25,577
conv19_rm_178channels (70%) 0.949 28,041 0.990 36,803 0.154 1507 23,220
conv20_rm_153channels (60%) 0.949 28,041 0.990 36,803 0.154 1223 19,863
conv21_rm_89channels (70%) 0.949 28,041 0.990 36,803 0.154 1017 16,488
conv22_rm_102channels (80%) 0.949 28,041 0.990 36,803 0.154 0.863 13,973
conv23_rm_102channels (80%) 0.949 28,041 0.990 36,803 0.154 0.781 9654
conv24_rm_38channels (60%) 0.948 27,994 0.990 36,519 0.160 0.734 6623
conv25_rm_57channels (90%) 0.948 27,994 0.990 36,519 0.160 0.721 5731

DnCNN and HGD deep-learning steganography removal models have achieved significant
results using geometric median pruning. Figures 7 and 8 illustrate that most of the purified images,
cover images and stego images are basically indistinguishable to the naked eye after pruning. The color
of a few purified images may change during the pruning process. However, in the process of secret
message communication, the receiver may not have seen the stego image. Hence, the degree of
image color change is still acceptable after the steganography removal. The removal effect of the
document image’s secret information after pruning based on the DIQA threshold is still within the
range acceptable to the naked eye. Therefore, pruning of the deep-learning steganography removal
model is reliable and effective to a certain extent.
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5.2.3. Analysis of the Overall Iterative Pruning Threshold

Deep steganography removal in the DnCNN model, when DIQA < 0.2, DIQA < 0.4 and DIQA < 0.6,
the filter pruning by each convolutional layer are the same, as shown in Table 5.

Deep steganography removal in the HGD model demonstrates significant differences in pruning
at each DIQA threshold. As shown in Table 6, under different DIQA value conditions, the model
compression rate, and the performance of the model are different. The problem of compression
degradation will occur when the DIQA threshold is set excessively large. Therefore, HGD has the
optimal compression effect when the DIQA threshold is set to 0.4. The renderings are illustrated in
Figures 8 and 9.
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Table 5. Pruning situation analysis in the DnCNN model under each DIQA threshold.

Model Orig_Remove_
SSIM

Orig_Remove_
PSNR

Stego_Remove_
SSIM

Stego_Remove_
PSNR DIQA Params

(M)
Flops
(G)

oralModel 0.961 29,323 0.966 33,696 0.068 0.558 36,591
DIQA < 0.2 0.954 28,548 0.957 32,497 0.092 0.073 4775
DIQA < 0.4 0.954 28,548 0.957 32,497 0.092 0.073 4775
DIQA < 0.6 0.954 28,548 0.957 32,497 0.092 0.073 4775

Table 6. Pruning situation analysis in the HGD model under each DIQA threshold.

Model Orig_Remove_
SSIM

Orig_Remove_
PSNR

Stego_Remove_
SSIM

Stego_Remove_
PSNR DIQA Params

(M)
Flops
(G)

oralModel 0.978 31,618 0.963 30,868 0.069 11,034 50,937
DIQA < 0.2 0.948 27,994 0.990 36,519 0.160 0.721 5731
DIQA < 0.4 0.953 27,925 0.981 33,609 0.321 0.603 4349
DIQA < 0.6 0.946 27,296 0.990 33,878 0.275 0.758 5642

5.2.4. Analysis of the ABC Automatic Pruning

On the basis of the geometric median, the ABC automatic pruning algorithm combines the
convolutional layers that the last layer of the deep-learning steganography removal model does not
participate in the arrangement under the condition of DIQA and the maximum channel pruning ϕ
of each convolutional layer of the model. ϕ = 9 represents the maximum channel pruning of each
convolutional layer of the model is 90% and ϕ = 6 represents the maximum channel pruning of each
convolutional layer of the model is 60%. Each arrangement is a compressed structure of the model.
According to the process of nectar source collection and role transition of three types of bees, the
optimal pruning structure that meets the conditions is finally found under t = 150 rounds, as shown
in Tables 7 and 8. Compared with the overall iterative pruning, the ABC pruning has realized an
automated process.

Table 7. Optimal nectar source of ABC automatic pruning under the condition of DIQA threshold and
maximum channel pruning ϕ of the convolutional layer of DnCNN model.

Threshold ϕ Nectar Source

DIQA < 0.2 9 [7, 6, 7, 8, 5, 8, 7, 8, 7, 5, 4, 4, 4, 4, 4, 3]
6 [4, 6, 6, 5, 5, 5, 5, 4, 6, 5, 5, 5, 5, 4, 5, 4]

DIQA < 0.4 9 [7, 6, 8, 8, 6, 8, 7, 7, 7, 3, 5, 6, 3, 5, 5, 2]
6 [6, 6, 6, 6, 6, 4, 6, 5, 4, 5, 5, 6, 4, 4, 5, 2]

DIQA < 0.6 9 [7, 6, 7, 7, 5, 6, 3, 8, 5, 4, 3, 6, 6, 4, 4, 3]
6 [3, 5, 5, 6, 6, 6, 6, 6, 6, 4, 4, 6, 6, 4, 5, 4]

Table 8. Optimal nectar source of ABC automatic pruning under the condition of DIQA threshold and
maximum channel pruning ϕ of the convolutional layer of HGD model.

Threshold ϕ Nectar Source

DIQA < 0.2 9 [5, 2, 3, 4, 7, 4, 9, 5, 9, 8, 7, 2, 5, 4, 4, 5, 3, 5, 7, 5, 7, 8, 6, 6, 1]
6 [2, 2, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 3, 3, 6, 3, 2, 6, 3, 6, 6, 3, 5, 2]

DIQA < 0.4 9 [6, 2, 9, 3, 9, 4, 7, 4, 9, 5, 9, 7, 2, 2, 9, 7, 3, 8, 3, 3, 5, 8, 4, 5, 4]
6 [4, 2, 6, 6, 5, 3, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 3, 6, 6, 6, 6, 1, 5, 4, 4]

DIQA < 0.6 9 [3, 3, 7, 7, 6, 5, 9, 9, 9, 4, 3, 9, 4, 7, 9, 8, 3, 4, 4, 6, 3, 7, 5, 7, 2]
6 [3, 4, 6, 4, 6, 6, 6, 4, 2, 4, 5, 4, 6, 2, 4, 6, 3, 6, 4, 4, 6, 4, 3, 6, 2]

Tables 9 and 10 are the conditions of the best searched nectar source quality under t = 150 rounds.
From table, it can be seen that the ABC algorithm on the basis of geometric median pruning can
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efficiently search for nectar source under the limited nectar source fitness, and finally find a lightweight
deep-learning steganography removal model with robustness and adaptability. The amount of model
params and flops can be greatly compressed compared with the original model under the DIQA
threshold and the maximum channel pruning ϕ of the convolutional layer of the model, and the image
quality and document image removal are guaranteed to be within the acceptable range.

Table 9. Analysis of ABC pruning under the conditions of DIQA threshold and maximum channel
pruning ϕ of the convolutional layer of the DnCNN model.

Threshold ϕ
Orig_Remove_

SSIM
Orig_Remove_

PSNR
Stego_Remove_

SSIM
Stego_Remove_

PSNR DIQA Params
(M)

Flops
(G)

oralModel
ϕ = 9 0.961 29,323 0.966 33,696 0.068 0.558 36,591

DIQA < 0.2 9 0.944 27,499 0.956 31,491 0.061 0.116 7626
6 0.960 29,291 0.965 33,586 0.066 0.136 8900

DIQA < 0.4 9 0.955 28,797 0.960 32,940 0.084 0.104 6807
6 0.956 28,788 0.962 32,930 0.077 0.141 9264

DIQA < 0.6 9 0.938 26,901 0.950 30,541 0.131 0.131 8565
6 0.954 28,560 0.959 32,556 0.091 0.133 8709

Table 10. Analysis of ABC pruning under the conditions of DIQA threshold and maximum channel
pruning ϕ of the convolutional layer of the HGD model.

Threshold ϕ
Orig_Remove_

SSIM
Orig_Remove_

PSNR
Stego_Remove_

SSIM
Stego_Remove_

PSNR DIQA Params
(M)

Flops
(G)

oralModel
ϕ = 9 0.978 31,618 0.963 30,868 0.069 11,034 50,937

DIQA < 0.2 9 0.944 28,458 0.942 30,541 0.061 2261 10,723
6 0.957 28,420 0.995 35,815 0.105 2993 15,843

DIQA < 0.4 9 0.955 27,726 0.985 34,092 0.385 1832 10,529
6 0.978 31,617 0.964 30,886 0.071 2312 13,967

DIQA < 0.6 9 0.949 28,044 0.985 34,651 0.398 1556 10,451
6 0.953 28,291 0.993 38,681 0.582 3329 14,303

5.2.5. Analysis of Pruning Rate Based on the Geometric Median Pruning

The original DnCNN model has 1030 channels, 0.558 M params and 36,591 G flops. The overall
iterative pruning based on geometric median is a violent pruning process, which can prune the channels
to the maximum extent. Under the conditions of DIQA threshold and maximum channel pruning ϕ of
the convolutional layer, about 65% of the channels are pruned, the classic indicators params and flops
are reduced by more than 85%. ABC pruning based on geometric median is an automatic pruning
process, which can automatically search for the required channels. Under the conditions of DIQA
threshold and maximum channel pruning ϕ of the convolutional layer, about 50% of the channels are
pruned, the params and flops are reduced about 75% (Table 11).

The original HGD model has 4870 channels, 11,034 M params and 50,937 G flops. The overall
iterative pruning based on geometric median results in about 75% channel pruning, about 93% params
reducing and 88% flops reducing under the conditions of DIQA threshold and maximum channel
pruning ϕ of the convolutional layer. ABC pruning based on geometric median results in more than
44% channel pruning, more than 69% params reducing and more than 68% flops reducing under the
conditions of DIQA threshold and maximum channel pruning ϕ of the convolutional layer (Table 12).
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Table 11. Analysis of pruning rate under the conditions of DIQA threshold and maximum channel
pruning ϕ of the convolutional layer of the DnCNN model based on geometric median.

Model Threshold ϕ Channels Pruned Params (M) Pruned Flops (G) Pruned

oralModel 9 1030 0% 0.558 0% 36,591 0%
overall

iterative
pruning

DIQA < 0.2 9 359 65.14% 0.073 86.92% 4775 86.95%
DIQA < 0.4 9 359 65.14% 0.073 86.92% 4775 86.95%
DIQA < 0.6 9 359 65.14% 0.073 86.92% 4775 86.95%

ABC
pruning

DIQA < 0.2 9 455 55.83% 0.116 79.21% 7626 79.16%
6 515 50.00% 0.136 75.63% 8900 75.68%

DIQA < 0.4 9 441 57.18% 0.104 81.36% 6807 81.40%
6 524 49.13% 0.141 74.73% 9264 74.68%

DIQA < 0.6 9 499 51.55% 0.131 76.52% 8565 76.59%
6 511 50.39% 0.133 76.16% 8709 76.20%

Table 12. Analysis of pruning rate under the conditions of DIQA threshold and maximum channel
pruning ϕ of the convolutional layer of the HGD model based on geometric median.

Model Threshold ϕ Channels Pruned Params (M) Pruned Flops (G) Pruned

oralModel 9 4870 0% 11,034 0% 50,937 0%
overall

iterative
pruning

DIQA < 0.2 9 1210 75.15% 0.721 93.47% 5731 88.75%
DIQA < 0.4 9 1134 76.71% 0.603 94.54% 4349 91.46%
DIQA < 0.6 9 1263 74.07% 0.758 93.13% 5642 88.92%

ABC
pruning

DIQA < 0.2 9 2242 53.96% 2261 79.51% 10,723 78.95%
6 2536 47.93% 2993 72.87% 15,843 68.90%

DIQA < 0.4 9 2185 55.13% 1832 83.40% 10,529 79.33%
6 2324 52.28% 2312 79.05% 13,967 72.58%

DIQA < 0.6 9 1906 60.86% 1556 85.90% 10,451 79.48%
6 2725 44.05% 3329 69.83% 14,303 71.92%

6. Conclusions

A considerable amount of resources are consumed when pre-trained DnCNN and HGD
deep-learning steganography removal models are used to deploy network steganography firewalls.
A geometric median pruning method that can be used for multiparameter, large-scale and pre-trained
deep-learning steganography removal models is proposed in this study to search for effective network
structures, prune redundant filters, and thus compress the deep-learning steganography removal model.

The pruning method significantly reduces params and flops of the model while ensuring the
robustness of the deep-learning steganography removal model. The quality of purified image is still
within an acceptable range, and the document image as secret message achieves a certain removal
effect. However, we only explore the lightweight deep-learning steganography removal model from
the perspective of pruning, so our future work will focus on the following aspects: (1) Explore a fast
adaptive structure adjustment algorithm (2) Explore the feasibility of deep-learning steganography
removal based on knowledge distillation [47] and quantification (3) We plan to use dimensionality
reduction technology [48] to document images to improve model performance.
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