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Abstract: In this paper, a discrete-time model for Babesiosis disease, given by means of nonstandard
finite difference (NSFD) schemes, is first provided and analyzed. Mathematical analyses show
that the provided NSFD schemes preserve the essential (qualitative) dynamical properties of the
continuous-time model, namely, positivity and boundedness of the solutions, equilibria, and their
stability properties. In particular, the global stability of the disease free equilibrium point is proved by
using an appropriate Lyapunov function. As a relevant consequence, we get the dynamic consistency
of NSFD schemes in relation to the continuous-time model. Numerical simulations are presented to
support the validity of the established theoretical results.

Keywords: babesiosis disease; nonstandard finite difference schemes; dynamic consistency; lyapunov
analysis; global stability

1. Introduction

The bovine babesiosis, caused by Babesia bovis and Babesia bigemina, is one of the most important
vector-transmitted diseases. It is transmitted by the sting of ticks as the principal vector [1,2]. Babesiosis
has an important economic impact in the livestock sector of tropical regions. Mathematical models for
Babesiosis disease play an important role in both theory and practice. Therefore, these models have
attracted the attention of many mathematicians, biologists, ecologists, and epidemiologists on several
aspects, including the qualitative study (see in [3–9] and references therein) and the construction of
adequate discretizations [10].

In this paper, we consider the well-known continuous-time mathematical model for Babesiosis
disease proposed in [3], in order to construct nonstandard finite difference (NSFD) schemes, preserving
the essential properties (i.e., positivity, boundedness, and stability) of the continuous-time model.
It should be emphasized that the transformation of continuous models into discrete ones with the
preservation of the essential properties is very important but not simple work. The most successful
approach to the problem is the use of NSFD schemes. So far, NSFD schemes have been one of the most
effective tools for this problem, as the majority of standard finite difference schemes can change and
not preserve the properties of the continuous model [11] for any grid size. Notable results on NSFD
for systems of ODEs can be found in [11–20]. There, the considered systems are the models of essential
phenomena and processes arising in applied fields. Recently, some results on NSFD schemes for some
ordinary and fractional differential equations have been obtained [21–27].
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Returning to the work [3], notice that some stability properties of the model were established either
theoretically or numerically. In [10], a discrete-time model for Babesiosis, which is in essence the Euler
scheme with the unit step size, was studied and similar results of stability as in the continuous-time
model were obtained either by rigorous proof or numerical simulations. Nevertheless, in the discrete
case, the additional assumption of some parametric constrains was needed. Motivated by this work,
in this paper, we construct discrete models for system (2) with all the stability properties established
theoretically and illustrated by numerical examples. The numerical simulations also confirm the
advantages of NSFD schemes over standard finite difference (SFD) schemes for large grid sizes.

By this occasion, we remark that a big challenge in the construction of NSFD schemes for
continuous-time epidemic models is that the disease-free equilibrium point of the models is not
only locally stable but also globally stable. Furthermore, when the reproduction number R0 = 1,
it becomes a non-hyperbolic equilibrium point. Many continuous-time models considered before
(see, e.g., in [11,13–16,20]) only deal with the local stability of hyperbolic equilibrium points.
Here, by using an appropriate Lyapunov function, we prove that the disease-free equilibrium point
is globally asymptotically stable if R0 ≤ 1. As the main conclusion of this study, we get that NSFD
schemes are dynamically consistent with the continuous model. On the other hand, our results in this
paper constitute a generalization of those obtained in the recent work [10].

This paper is organized as follows. The mathematical model and its properties are recalled
briefly in Section 2. Section 3 is devoted to the construction of NSFD schemes. Section 4 discusses the
numerical simulations. Finally, there are some conclusions and discussions.

2. Mathematical Model

First, we consider the mathematical model for Babesiosis disease constructed in [3]. The dynamic
transmission of Babesiosis disease for bovine and tick populations can be modeled by the following
system of nonlinear first order differential equations,

S′B(t) =
(
µB + αB

)
CB(t)− βBSB(t)

IT(t)
NT(t)

,

I′B(t) = βBSB(t)
IT(t)
NT(t)

− λB IB(t),

C′B(t) = λB IB(t)−
(
µB + αB

)
CB(t),

S′T(t) = µT pIT − ST(t)
IB(t)
NB(t)

,

I′T(t) = ST(t)
IB(t)
NB(t)

− µT pIT ,

(1)

where the total population of bovine NB(t) is divided into three subpopulations: bovines which
may become infected (Susceptible SB(t)), bovines infected by the Babesia parasite (Infected IB(t)),
and bovines which have been treated for the Babesiosis (Controlled CB(t)). That is, as in [3],
NB = SB + IB + CB. The total population of ticks NT(t) is divided into two subpopulations: ticks which
may become infected ST(t) and ticks infected by the Babesia parasite IT(t). As in [3], the parameter
µB represents the birth rate of the bovines and it is assumed equal to their natural death; µT is the
birth rate of the ticks and it is also assumed equal to their death rate; any susceptible bovine can
become infected due to a sting of an infected tick at a rate βB; any susceptible tick can become infected
when it stings an infected bovine, at a rate βT ; p is the probability for a susceptible tick to be born
from an infected one; λB represents the fraction of the infected bovines which are controlled, that is,
treated against Babesia, while αB represents the fraction of the controlled bovines which may return
to susceptible state. All these parameters in the model are positive and not exceeding 1, as this is
biologically logical. More details on this model can be found in [3].
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Below, we recall the main results of that work. In particular, after normalization of the variables,
it was shown that system (1) is equivalent to subsystem

S′B(t) =
(
µB + αB

)(
1− SB(t)− IB(t)

)
− βBSB(t)IT(t),

I′B(t) = βBSB(t)IT(t)− λB IB(t),

I′T(t) = βT
(
1− IT(t)

)
IB(t)− µT pIT(t)

(2)

and the region

Ω =
{(

SB, IB, IT
)
∈ R3

+

∣∣0 ≤ SB + IB ≤ 1, 0 ≤ IT ≤ 1
}

, (3)

is a positive invariant set for the system (2). For this system, the threshold parameter is given by

R0 =
βBβT

λBµT p
. (4)

Concerning system (2), the following results are obtained.

(i) System (2) has the disease-free equilibrium point F∗1 = (S∗B1, I∗B1, I∗T1) = (1, 0, 0) for all values of
the parameters in this system, whereas, only ifR0 > 1, there is a (unique) endemic equilibrium
point F∗2 = (S∗B2, I∗B2, I∗T2) in the interior of Ω given by

S∗B2 =
βTλB(αB + µB) + pλB(αB + λB + µB)µT

βT
[
αB(βB + λB) + λB + µB + βB(λB + µB)

] ,

I∗B2 =
(αB + µB)(βBβT − pλBµT)

βT
[
αB(βB + λB) + λB + µB + βB(λB + µB)

] ,

I∗T2 =
(αB + µB)(βBβT − pλBµT)

βT βB(αB + µB) + pβB(αB + λB + µB)µT
.

(5)

(ii) IfR0 ≤ 1, then the disease-free point F∗1 is globally asymptotically stable; otherwise, the disease-
free point F∗1 is unstable.

(iii) IfR0 > 1, then the endemic point F∗2 is shown to be locally asymptotically stable by numerical
simulations.

In [10], the authors proposed a discrete-time version of the continuous model (2) and obtained
similar results of stability as for the continuous case. However, the additional assumption of some
parametric constraints was required.

3. Nonstandard Finite Difference Schemes for System (2)

Our main goal is to construct NSFD schemes preserving the essential properties of the model (2).
Let N be a positive integer and [0, T] be a finite interval. Let us denote by h = ∆t = T/N the time step
size of the discretization:

0 = t0 < t1 < . . . < tN = T = Nh,

and let tk = kh for k = 0, 1, . . . , N. We now denote by Sk
B, Ik

B and Ik
T the approximated values

of SB(tk), IB(tk) and IT(tk), respectively. Following the Mickens’ methodology, we propose NSFD
schemes of the form 

Sk+1
B − Sk

B
ϕ(h)

=
(
µB + αB

)(
1− Sk

B − Ik
B
)
− βBSk

B Ik
T ,

Ik+1
B − Ik

B
ϕ(h)

= βBSk
B Ik

T − λB Ik
B,

Ik+1
T − Ik

T
ϕ(h)

= βT
(
1− Ik

T
)

Ik
B − µT pIk

T ,

(6)
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where ϕ(h) = h +O(h2) as h→ 0. The conditions on ϕ(h) will be determined so that the properties of
system (2) are preserved. For convenience, h is omitted in some presentations.

Theorem 1. The set Ω defined by (3) is a positive invariant set of discrete model (6) if

ϕ(h) < min

{
1

βB
,

1
λB

,
1

µT p
,

1
βT

,
1

µB + αB

}
, ∀h > 0. (7)

Proof. The theorem is proved by induction. First, rewrite system (6) in the form
Sk+1

B = Sk
B + ϕ

(
µB + αB

)(
1− Sk

B − Ik
B
)
− ϕβB Ik

TSk
B,

Ik+1
B = Ik

B + ϕ βBSk
B Ik

T − ϕλB Ik
B,

Ik+1
T = Ik

T + ϕ βT
(
1− Ik

T
)

Ik
B − ϕµT pIk

T .

(8)

Clearly, if (Sk
B, Ik

B, Ik
T) ∈ Ω and condition (7) holds, then Sk+1

B ≥ 0, Ik+1
B ≥ 0 and Ik+1

T ≥ 0. On the
other hand, given (Sk

B, Ik
B, Ik

T) ∈ Ω, from the third equation of (8), we have

Ik+1
T ≤ Ik

T + ϕβT
(
1− Ik

T
)
= (1− ϕβT)Ik

T + ϕβT ≤ 1− ϕβT + ϕβT = 1.

Adding the first and second equations of (8), we obtain

Sk+1
B + Ik+1

B = Sk
B + Ik

B + ϕ
(
µB + αB

)(
1− Sk

B − Ik
B
)
− ϕλB Ik

B ≤ Sk
B + Ik

B + ϕ
(
µB + αB

)(
1− Sk

B − Ik
B
)

=
[
1− ϕ(µB + αB)

]
(Sk

B + Ik
B) + ϕ(µB + αB) ≤ 1− ϕ(µB + αB) + ϕ(µB + αB) = 1.

Thus, the proof is complete.

Similar to Proposition 1 in [3], we obtain the following result.

Corollary 1. Model (6) has the disease-free equilibrium point F∗1 = (S∗B, I∗B, I∗T) = (1, 0, 0) for all the values
of the parameters in this model, whereas, only if R0 > 1, there is a (unique) endemic equilibrium point
F∗2 = (S∗B, I∗B, I∗T) in the interior of Ω, where the endemic point is given by (5).

Theorem 2. Consider the model (6) under the assumption of Theorem 1.

(i) IfR0 ≤ 1, then the disease-free equilibrium point F∗1 is globally asymptotically stable.
(ii) IfR0 > 1, then the disease-free equilibrium point F∗1 is unstable.

Proof. We shall distinguish two parts as in the statement of the theorems.

(i) We will use an extension for the discrete case (see in [28], Theorem 3.3) of the Lyapunov stability
theorem [29] to prove this part. For this purpose, consider a function V : Ω→ R+ defined by

V(Sk
B, Ik

B, Ik
T) := βT Ik

B + λB Ik
T .

Clearly, V is continuous, V
(
Sk

B, Ik
B, Ik

T
)
≥ 0 for all

(
Sk

B, Ik
B, Ik

T
)
∈ Ω, and V(F∗1 ) = 0.

From (6), we have
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∆V(Sk
B, Ik

B, Ik
T) := V(Sk+1

B , Ik+1
B , Ik+1

T )−V(Sk
B, Ik

B, Ik
T) = βT(Ik+1

B − Ik
B) + λB(Ik+1

T − Ik
T),

= ϕβT

(
βBSk

B Ik
T − λB Ik

B

)
+ ϕλB

[
βT
(
1− Ik

T
)

Ik
B − µT pIk

T

]
≤ ϕβT

(
βB Ik

T − λB Ik
B

)
+ ϕλB

[
βT
(
1− Ik

T
)

Ik
B − µT pIk

T

]
= ϕ

[
(βT βB − λBµT p)Ik

T − λBβT Ik
B Ik

T

]
≤ ϕ(βT βB − λBµT p)Ik

T = ϕλBµT p(R0 − 1)Ik
T ,

(9)

which implies that ∆V ≤ 0 for all
(
Sk

B, Ik
B, Ik

T
)
∈ Ω.

Let G∗ be the largest positively invariant set contained in

G :=
{(

Sk
B, Ik

B, Ik
T
)
∈ Ω

∣∣∆V = 0
}

.

Then, by using (9) we have that

G∗ =


{

F∗1
}

if R0 < 1,

{
(0, 0, Ik

T)|Ik
T ≥ 0

}
if R0 = 1.

Consequently, it is easy to verify that F∗1 is G∗-globally asymptotically stable ifR0 ≤ 1.
As all solutions of (6) are bounded, by (see in [28], Theorem 3.3) we deduce that F∗1 is globally
asymptotically stable ifR0 ≤ 1.

(ii) Computing the Jacobian matrix of system (6) evaluated at the disease free point, one obtains

J(1, 0, 0) =


1− ϕ(αB + µB) −ϕ(αB + µB) −ϕβB,

0 1− ϕλB ϕβB

0 ϕβT 1− ϕµT p

 .

Consequently, the eigenvalues of J(F∗1 ) are Λ1 = 1− ϕ(αB + µB) and Λ2, Λ3, where Λ2, Λ3 are
the eigenvalues of

J1 =

1− ϕλB ϕβB

ϕβT 1− ϕµT p

 .

We have

det(J1) = 1− ϕ (λB + µT p)− ϕ2λBµT p(R0 − 1), Tr(J1) = 2− ϕ (λB + µT p).

Thus, if R0 > 1, then 1− Tr(J1) + det(J1) = −ϕ2λBµT p(R0 − 1) < 0. By Theorem 1.3.7 in [30]
and Theorem 2.10 in [31], we can conclude that ifR0 > 1 then the disease-free equilibrium point
F∗1 is unstable.

Thus, the theorem is proved.

Next, we shall investigate the local stability of system (6) in the caseR0 > 1. Denote by σ(J) the
set of eigenvalues of the Jacobian matrix J of system (2) at F∗2 . Based on mathematical analyses in [3],
we have ifR0 > 1 then F∗2 is locally asymptotically stable and the eigenvalues of J lie within the left
half of the complex plane, i.e.,
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Re(Λi) < 0, Λi ∈ σ(J), i = 1, 2, 3.

Now we denote by K the Jacobian matrix of system (6) at F∗2 . Then K = I + ϕJ (see [13,14]),
where I is 3× 3 unit matrix. Therefore, the eigenvalues Λi of J correspond to the eigenvalues Ψi of K
determined by

Ψi = 1 + ϕΛi, i = 1, 2, 3.

By Lyapunov indirect method for discrete dynamical systems (see ([30], Theorem 1.3.7) and [31]),
F∗2 is locally asymptotically stable of system (6) if and only if

|Ψi| < 1, i = 1, 2, 3.

This is equivalent to

|Ψi|2 = |1 + ϕΛi|2 = ϕ2 Im2(Λi) + 1 + 2ϕRe(Λi) + ϕ2Re2(Λi) < 1, i = 1, 2, 3.

The above inequality is satisfied if

ϕ < −2Re(Λi)

|Λi|2
, i = 1, 2, 3.

Conversely, ifR0 ≤ 1, then F∗2 has no biological sense. Thus, it has no biological sense to study
its stability.

From the above results, we have the following theorem.

Theorem 3. Consider system (6) whenR0 > 1. Suppose Λ1, Λ2, Λ3 are the eigenvalues of the Jacobian matrix
of system (2) at F∗2 . Set

τ∗ := min
i=1,2,3

{
− 2Re(Λi)

|Λi|2

}
. (10)

Then, F∗2 is locally asymptotically stable if

0 < ϕ(h) < τ∗, ∀h > 0. (11)

Summing up the results of this section, we obtain the following theorem.

Theorem 4 (Dynamically consistent discrete models). Consider NSFD scheme (6).

(i) In the caseR0 ≤ 1, scheme (6) preserves positivity, boundedness, and global stability of F∗1 of system (2) if

0 < ϕ(h) < ϕ∗ := min

{
1

βB
,

1
λB

,
1

µT p
,

1
βT

,
1

µB + αB

}
, ∀h > 0.

(ii) In the caseR0 > 1, scheme (6) preserves positivity, boundedness and local stability of F∗2 and unstability
of F∗1 if

0 < ϕ(h) < ϕ∗ := min

{
1

βB
,

1
λB

,
1

µT p
,

1
βT

,
1

µB + αB
, τ∗

}
, ∀h > 0,

where τ∗ is given by (10).

Remark 1. Concerning Theorem 2, we have to underline three important observations:

• Part (i) of Theorem 2 is only appropriate when Ω is a positively invariant set of (6).
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• There are many ways for selecting the function ϕ(h) satisfying the conditions of Theorem 4,
for example (see in [11,13–16]),

ϕ(h) =
1− e−T∗h

T∗
, T∗ >

1
ϕ∗

.

• In the case of ϕ(h) = 1, then scheme (6) becomes the discrete model which was proposed and
studied in [10]. This proves that NSFD schemes (6) constitute a generalization of the discrete-time
model in [10].

4. Numerical Simulations

We present some numerical simulations to illustrate the obtained theoretical results. From the
numerical simulations, it will be shown that standard finite difference schemes (SFDS) may not
preserve essential properties of the continuous-time model for any finite step size. Meanwhile, NSFD
schemes preserve essential properties of continuous model for any finite step size.

Example 1 (Dynamics of standard finite difference schemes). Consider system (2) with the parameters

µB = 0.2999, µT = 0.8, λB = 0.265, αB = 0.1, p = 0.8, βB = 0.1, βT = 0.48,

subject to the initial value

SB(0) = 0.1, IB(0) = 0.2, IT(0) = 0.1,

and t ∈ [0, 105].

In this case, R0 = 0.2830 < 1 and F∗1 = (1, 0, 0) is globally asymptotically stable. We use
the Euler scheme, the classical fourth-stages Runge–Kutta (RK4) scheme and NSFD schemes (6) to
numerically solve system (2). The numerical solutions obtained by these schemes are presented in
Figure 1. From this figure, we see that the numerical solutions obtained by the Euler scheme and the
RK4 schemes are not positive, their boundedness is destroyed. The Euler scheme gives the numerical
solutions oscillating near the equilibrium points. Meanwhile, the numerical solution obtained by
NSFD schemes preserve the essential properties of the model (2). Besides, the NSFD schemes is easily
realized. It is the advantages of the NSFD schemes compared with standard difference schemes.
Other examples give the same results. This fact completely agrees with several results in the previous
works [11,13–15,20–23].
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F
1
*

Figure 1. Numerical solutions obtained by the RK4 scheme (with h = 4), the Euler scheme (with
h = 2.5) and NSFD scheme (with h = 5 and ϕ(h) = (1− e−2h)/2) in Example 1.

Example 2 (Dynamics of NSFD schemes in the case R0 ≤ 1). Consider system (2) with the parameters
(see in [3])

µB = 0.0002999, µT = 0.001609, λB = 0.0265, αB = 0.001, p = 0.1, βB = 0.003, βT = 0.00048.

In this case,R0 = 0.33 and the number ϕ∗ in Theorem 4 is ϕ∗ = 37.7358. Therefore, we take

ϕ(h) =
1− e−0.03h

0.03
.

Numerical solutions obtained from this NSFD scheme (6) is depicted in Figure 2. Clearly,
the properties of the continuous-time model are preserved.
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Figure 2. Numerical solutions in Example 2 with h = 1 and t ∈ [0, 5× 105].

Example 3 (Dynamics of NSFD schemes in the case R0 > 1). Consider system (2) with the parameters
(see in [3])

µB = 0.0002999, µT = 0.001609, λB = 0.000265, αB = 0.001, p = 0.1, βB = 0.006, βT = 0.00048.

In this case,R0 = 67.54 and the number ϕ∗ in Theorem 4 is ϕ∗ = 166.67. Therefore, we take

ϕ(h) =
1− e−0.005h

0.005
.

Numerical solutions obtained from this NSFD scheme (6) is depicted in Figure 3. Similar to
Example 2, the properties of the continuous-time model are preserved.
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Figure 3. Numerical solutions in Example 3 with h = 1 and t ∈ [0, 103].

5. Conclusions

As the main conclusion of this study, we obtain the dynamic consistency of NSFD schemes
in relation to the continuous-time model. That is, NSFD schemes preserve essential properties
of the continuous-time model, while standard finite difference schemes (SFDS) cannot preserve
these properties.

On the other hand, it is worth to note that our results constitute a generalization of those in [10].
In future works, the results in this paper will be useful in order to develop other essential

applied models, specially those models possessing non-hyperbolic equilibrium points with global
stability property.
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