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Abstract: We derive a large set of binary operations that are algebraically isomorphic to the binary
operation of the Beltrami–Klein ball model of hyperbolic geometry, known as the Einstein addition.
We prove that each of these operations gives rise to a gyrocommutative gyrogroup isomorphic to
Einstein gyrogroup, and satisfies a number of nice properties of the Einstein addition. We also prove
that a set of cogyrolines for the Einstein addition is the same as a set of gyrolines of another binary
operation. This operation is found directly and it turns out to be commutative. The same results are
obtained for the binary operation of the Beltrami–Poincare disk model, known as Möbius addition.
We find a canonical representation of metric tensors of binary operations isomorphic to the Einstein
addition, and a canonical representation of metric tensors defined by cogyrolines of these operations.
Finally, we derive a formula for the Gaussian curvature of spaces with canonical metric tensors.
We obtain necessary and sufficient conditions for the Gaussian curvature to be equal to zero.

Keywords: differential geometry; canonical metric tensor; binary operation; Einstein addition;
gyrogroup; gyrovector space; curvature

1. Introduction

The theory of gyrogroups and gyrovector spaces has been intensively developed over recent
years. The structure of gyrovector subspaces and orthogonal gyrodecomposition are studied in [1].
Topological gyrogroups are the subject of investigations in [2]. Article [3] is devoted to metric properties
of gyrovector spaces. Several geometric inequalities in gyrovector spaces are established in [4].
Algebraic properties of gyrogroups in Hilbert spaces are investigated in [5]. An introduction to a
theory of harmonic analysis on gyrogroups is presented in [6]. A study of isometries in generalized
gyrovector spaces is presented in [7]. Gyrogroup actions are studied in [8]. An application of Einstein
bi-gyrogroups to quantum multi-particle entanglement is presented in [9]. Several recent studies
of gyrogroups and gyrovector spaces are presented in [10–12]. A number of fundamental results
concerning gyrovector spaces and bi-gyrovector spaces are presented in [13–20]. The main concrete
examples of gyrogroups and gyrovector spaces are those induced by the Einstein addition and by
Möbius addition. Interestingly, (i) Einstein gyrovector spaces are based on the Einstein addition,
and they provide the algebraic setting for the Klein ball model of hyperbolic geometry. Similarly,
(ii) Möbius gyrovector spaces are based on Möbius addition, and they provide the algebraic setting for
the Poincaré ball model of hyperbolic geometry, just as (iii) vector spaces form the algebraic setting for
the common model of Euclidean geometry.

Recently, we developed in [21] a differential geometry approach to the theory of gyrogroups
and gyrovector spaces based on local properties of underlying binary operations and, particularly,
on properties of canonical metric tensors (see Definition 1) of corresponding Riemannian manifolds.
It turned out to be possible to restore Einstein addition and Möbius addition from corresponding
canonical metric tensors using standard tools of differential geometry. These are the parallel transport
and the geodesics. Among important properties of the resulting Einstein and Möbius gyrogroups and
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gyrovector spaces are the left cancellation law, the existence of gyrations, the gyrocommutative law,
and the left reduction law. These were proved using the differential geometry approach. Moreover,
we found in [21] a gyrogroup and a gyrovector space in the ball B, which turn out to be a group and
a vector space isomorphic to the Euclidean group and space. Here we may note that any group and
vector space is a gyrogroup and gyrovector space with trivial gyrations.

A gyration is a groupoid automorphism that emerges as a mathematical extension by abstraction
of the special relativistic effect known as Thomas precession. It gives rise to the prefix “gyro” that
we extensively use in the resulting gyroformalism. We, accordingly, prefix a gyro to any term that
describes a concept in Euclidean geometry and in associative algebra to mean the analogous concept
in hyperbolic geometry and in nonassociative algebra. Our gyroterminology thus conveys a world of
meaning in an elegant and memorable fashion. Thus, for instance, the Einstein addition and Möbius
addition in the ball are neither commutative nor associative. However, they are both gyrocommutative
and gyroassociative, giving rise to gyrogroups and gyrovector spaces [20].

The new results presented in this paper split up into three classes:
Class 1: Einstein addition and Möbius addition are isomorphic to each other, giving rise to an

isomorphism between corresponding gyrogroups and gyrovector spaces. There exists a one-parameter
set of binary operations that are isomorphic to the Einstein addition, and which generate gyrogroups
and gyrovector spaces isomorphic to Einstein ones. Möbius addition is one of these operations.
We consider the following problem. Are there operations that generate gyrogroups and gyrovector
spaces isomorphic to Einstein ones, which are other than those belonging to the one parameter set?
In this paper we show that there is a large class of such operations parametrized by a function ϕ̃

satisfying some mild conditions. All such operations are described in terms of corresponding canonical
metric tensors.

Class 2: Each binary operation in B that we study in this paper defines sets of lines called gyrolines
and cogyrolines. Gyrolines and cogyrolines are well studied for the cases of the Einstein addition
and Möbius addition. We encounter here the following problem. Does the set of cogyrolines of an
operation parametrized by a function ϕ̃ coincide with the set of gyrolines of some other operations?
If the answer is yes, then how can we get such operations? In this paper we prove that such operations
exist, and find the canonical metric tensors of these operations.

Class 3: It is known that the Gaussian curvature of the gyrovector space generated by Einstein
addition is −1, and by Möbius addition is −4. What can we say about the Gaussian curvature of
the gyrovector spaces generated by the operations found in Class 2? We provide an answer to this
question. We prove that the Gaussian curvature of corresponding gyrovector spaces is equal to zero.

In this paper we extend the study of the differential geometry of binary operations in the ball that
we initiated in [21]. The organization of the paper is the following. In Section 2 we present a short
description of important results in [21], following which we introduce a set of operations isomorphic
to Einstein addition. We, then, find the canonical metric tensors of these operations, enabling us to
formulate an operation of scalar multiplication determined uniquely by these operations. We, thus,
get the corresponding gyrovector spaces. In Section 3 we establish important properties of these
operations that correspond to similar properties of Einstein gyrogroups. Section 4 is devoted to
gyrolines and cogyrolines. We find the differential equations of the sets of gyrolines and the sets of
cogyrolines for the cases of Einstein and Möbius additions. Remarkably, the operations, which we find
using the sets of cogyrolines of Einstein and Möbius additions, are coincident. Moreover, they turn out
to be exactly the operation that we have encountered in [21]. We also find the corresponding operations
for an arbitrary function ϕ̃. In Section 5 we employ Brioschi formula [22] to calculate the Gaussian
curvature of line elements in manifolds generated by the operations corresponding to cogyrolines.
We prove that this curvature is always equal to zero. Finally, in Section 6 we present an interesting
open problem.
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2. Main Definitions, Procedures and Assumptions

Let B be the open unit ball in the n-dimensional Euclidean space Rn,

B = {x ∈ Rn : ‖x‖ < 1}. (1)

We seek binary operations ⊕ in B that are invariant under unitary transformations, that is,
for every vectors a, b ∈ B and a unitary n× n-matrix U

(Ua)⊕ (Ub) = U(a⊕ b). (2)

Assuming that the function f (a, b) = a⊕ b is differentiable, we introduce the matrix-function
G(x) given by

g(x) =
∂ f (−x, y)

∂y
|y=x (3)

and
G(x) = g(x)>g(x), (4)

where > denotes transposition.
The matrix-function G is viewed as a metric tensor in B. We assume that this function has the

canonical form (5) in the following formal definition.

Definition 1. (Canonical Metric Tensor). The n× n matrix function G(x),

G(x) = m0(‖x‖2)
[
I − xx>

‖x‖2

]
+ m1(‖x‖2)

xx>

‖x‖2 , (5)

x ∈ B, where m0 and m1 are scalar functions satisfying Assumptions 1 and 2 below, is said to be the canonical
metric tensor in B parametrized by m0 and m1.

Assumption 1. The functions m0 and m1 are differentiable, positive, and m0(0) = m1(0) = 1.

Assumption 2. The function m1 satisfies the condition∫ ∞

0

√
m1(s2)ds = ∞. (6)

Then G is also differentiable, and invariant under unitary transformations, that is, for all x ∈ B
and n× n-matrices U such that U>U = I we have

G(Ux) = UG(x)U>. (7)

Having such a matrix G we can restore the binary operation ⊕ using the following procedure that
we introduced in [21]. Let a, b ∈ B. If b = 0, then a⊕ b = 0. If a = 0, then a⊕ b = b. Otherwise we
perform the following four steps that lead to a⊕ b.

Step 1. We calculate the vector

X0 =
b
‖b‖

∫ ‖b‖
0

√
m1(s2)ds. (8)

Step 2. We calculate

X(1) =
1√

m0(‖a‖2)
(I − aa>

‖a‖2 )X0 +
1√

m1(‖a‖2)

aa>

‖a‖2 X0. (9)
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Step 3. We find a solution x(·) of the differential equation

ẍ +
m′0
m0

2(x> ẋ)ẋ +

[
(

m′1
m1
−

2m′0
m0

)
(x> ẋ)2

‖x‖2 +
m1 −m0 − ‖x‖2m′0

‖x‖2m1
(‖ẋ‖2 − (x> ẋ)2

‖x‖2 )

]
x = 0 , (10)

with the initial values x(0) = a, ẋ(0) = X1. Here mj = mj(‖x‖2) and m′j =
dmj(u)

du |u=‖x‖2 , j = 0, 1.
Step 4. Then a⊕ b = x(1).
For such binary operations ⊕ we defined in [21] an operation of scalar multiplication ⊗ satisfying

the following properties: for all a ∈ B and numbers t1, t2 we have

(t1 ⊗ a)⊕ (t2 ⊗ a) = (t1 + t2)⊗ a

(t1 ⊗ (t2 ⊗ a)) = (t1t2)⊗ a

1⊗ a = a.

(11)

The operation ⊗ is unique and is defined in [21] as follows. We introduce the following strictly
increasing function h: R→ R,

h(p) =
∫ p

0

√
m1(s2)ds, (12)

and denote by h−1 the function inverse to h. Then for all t ∈ R, a ∈ B,

t⊗ a =
a
‖a‖ h−1(t h(‖a‖)). (13)

We pay special attention to the binary operation ⊕E in B of the Beltrami–Klein ball model of
hyperbolic geometry, known as the Einstein addition. For all a, b ∈ B

a⊕E b =
1

1 + a>b
[(1 +

a>b
‖a‖2 )a +

√
1− ‖a‖2(b− a>b

‖a‖2 a))]. (14)

It is shown in [21] that this operation enjoys the following nice properties:
1. Left Cancellation Law:

a⊕E ((−a)⊕E b) = b, ∀a, b ∈ B . (15)

2. Existence of Gyrations: for every a, b ∈ B there exists a unitary matrix denoted by gyr[a, b] such
that for all c ∈ B we have the following gyroassociative law:

a⊕E (b⊕E c) = (a⊕E b)⊕E (gyr[a, b]c), ∀a, b, c ∈ B. (16)

3. Gyrocommutative Law:

a⊕E b = gyr[a, b](b⊕E a), ∀a, b ∈ B , (17)

such that
‖a⊕E b‖ = ‖b⊕E a‖ . (18)

4. Left Reduction Property:

gyr[a⊕E b, b] = gyr[a, b], ∀a, b ∈ B . (19)

The operation ⊕E, along with the corresponding scalar multiplication ⊗E and gyrations gyr[a, b],
forms a gyrocommutative gyrogroup and a gyrovector space, as shown in [21].
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In this paper we show that there exists a large class of binary operations ⊕ in B that satisfy
properties (15)–(19). These operations are isomorphic to the Einstein addition⊕E, and are parametrized
by special functions ϕ.

We now introduce the set of gyrolines

Q(a, b) = {a⊕ (t⊗ b) : t ∈ R}, (20)

and the set of cogyrolines
S(a, b) = {(t⊗ a)⊕ b : t ∈ R}. (21)

We find a binary operation ⊕co for which the set of gyrolines coincides with the set of cogyrolines
of the Einstein addition. The same results are obtained for Möbius addition, which is isomorphic to
Einstein addition.

Finally, for a curvature of the manifold B with canonical metric tensors G generated by binary
operations ⊕ we calculate the Gaussian curvature in terms of coefficients of G. We show that the
Gaussian curvature of Einstein and Möbius additions are constant, and the Gaussian curvature of
Einstein and Möbius coadditions are zero.

3. New Binary Operations that Give Rise to Gyrogroups

3.1. A Family of Binary Operations

Every binary operation for which Properties (15)–(19) hold, determines its gyrocommutative
gyrogroup structure [13], presented in [21]. We extend the study of Einstein and Möbius addition
as follows.

Einstein addition and Möbius addition are isomorphic to each other (in the sense of gyrogroups)
since they are related by the identities in ([15] Equations (6.325)),

1
2
⊗E [(2⊗E a)⊕E (2⊗E b)] = a⊕M b

2⊗M [(
1
2
⊗M a)⊕M (

1
2
⊗M b)] = a⊕E b .

(22)

Owing to the isomorphism between Einstein and Möbius addition, it is obvious that, like the
Einstein addition, Möbius addition also satisfies Properties (15)–(19), and therefore forms a gyrogroup.

Instead of the number 2 in (22) it is possible to place any positive number t, thus obtaining from
the Einstein addition ⊕E a new binary operation ⊕t in B, given by the equation

1
t
⊗E [(t⊗E a)⊕E (t⊗E b)] = a⊕t b. (23)

When t = 1, the binary operation ⊕t descends to the Einstein addition and when t = 2, the binary
operation ⊕t descends to Möbius addition.

It seems natural that for every t ∈ R+ = (0, ∞) the ball B with the binary operation ⊕t forms
a gyrocommutative gyrogroup (that is, it satisfies Properties (15)–(19)). We prove below that this is,
indeed, the case.

More generally, we construct in this section a large family of binary operations (parametrized by
a function ϕ̃) that satisfy Properties (15)–(19).

3.2. Operations Parametrized by Functions ϕ

Let us consider an arbitrary bijection ϕ̃: [0, 1)→ [0, 1), which is differentiable, strictly increasing,
and satisfies ϕ̃′(0) > 0. Since ϕ̃ is an increasing bijection, we have ϕ̃(0) = 0.

Then there exists an inverse smooth bijection ϕ̃−1: [0, 1)→ [0, 1), and (ϕ̃−1)′(0) = 1
ϕ̃′(0) > 0.
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We now define a function ϕ: B→ B as follows. We set

ϕ(0) = 0, (24)

and for every x ∈ B\{0} we set

ϕ(x) = ϕ̃(‖x‖) x
‖x‖ . (25)

The function ϕ is differentiable everywhere in B including zero, since ϕ̃ is differentiable,
and Equation (24) holds. Moreover, the function ϕ is a smooth bijection B → B, there exists an
inverse bijection ϕ−1: B→ B and, as it may be checked directly,

ϕ−1(x) = ϕ̃−1(‖x‖) x
‖x‖ . (26)

Now we introduce a new operation determined by the function ϕ̃. For every a, b ∈ B we define

a⊕ϕ b = ϕ−1(ϕ(a)⊕E ϕ(b)), (27)

where ⊕E is the Einstein addition. Obviously, this operation is isomorphic to the Einstein addition.
Still, it is necessary to prove that the gyration operator is actually an operator of multiplication by a
unitary matrix. We also prove below that the operation ⊕t is a special case of the operation ⊕ϕ.

3.3. The Canonical Metric Tensor

Let us find the canonical metric tensor determined by the operation ⊕ϕ. We have

ϕ̃(‖x + ∆x‖)− ϕ̃(‖x‖) = ϕ̃′(‖x‖) x>∆x
‖x‖| + o(‖∆x‖), (28)

ϕ(x + ∆x)− ϕ(x) =
[

ϕ̃(‖x‖)
‖x‖ (I − xx>

‖x‖2 ) + ϕ̃′(‖x‖) xx>

‖x‖2

]
∆x + o(∆x), (29)

(−ϕ(x))⊕E ϕ(x + ∆x) =
1

1− ϕ̃(‖x‖)2

[
ϕ̃(‖x‖)
‖x‖

√
1− ϕ̃(‖x‖)2(I − xx>

‖x‖2 )

+ ϕ̃′(‖x‖) xx>

‖x‖2

]
∆x + o(∆x) .

(30)

Denoting the coefficient of ∆x in (30) by g(x), we obtain

(−x)⊕ϕ (x + ∆x) =
1

ϕ̃′(0)
g(x)∆x + o(∆x), (31)

and the canonical metric tensor is

Gϕ(x) =
g(x)g(x)>

ϕ̃′(0)2
1

ϕ̃′(0)2

[
(ϕ̃(‖x‖))2

‖x‖2(1− ϕ̃(‖x‖)2)
(I − xx>

‖x‖2 ) +
(ϕ̃′(‖x‖)2

(1− ϕ̃(‖x‖)2)2
xx>

‖x‖2

]
. (32)

Hence, we have in (32) the canonical metric tensor (5), parametrized by m0 and m1, given by

m0,ϕ(r2) =

[
ϕ̃(r)

ϕ̃′(0)r
√

1− ϕ̃(r)2

]2

m1,ϕ(r2) =

[
ϕ̃′(r)

ϕ̃′(0)(1− ϕ̃(r)2)

]2

.

(33)
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Noticing that m0,ϕ(0) = 1 and m1,ϕ(0) = 1, the second equation in (33) may be solved for ϕ̃.
We further notice that ϕ̃(0) = 0. Hence,

ϕ̃(r) = tanh
[

ϕ̃′(0)
∫ r

0

√
m1,ϕ(s2)ds

]
. (34)

Now we consider a set of functions ϕ̃ such that functions m1,ϕ are equal to the same function,
which we denote by m1. Due to (34) all such functions ϕ̃ may be parametrized by a number
t = ϕ̃′(0) ∈ (0, ∞). We denote such functions by ϕ̃t:

ϕ̃t(r) = tanh
[

t
∫ r

0

√
m1(s2)ds

]
. (35)

As we show below in Section 3.7, for each t > 0 and the same m1 we can find a function ϕ̃t and a
corresponding function

m0,ϕt(r
2) =

[
ϕ̃t(r)

tr
√

1− ϕ̃t(r)2

]2

(36)

such that a binary operation generated by the canonical metric tensor

Gϕt(x) = m0,ϕt(r
2)

[
I − xx>

‖x‖2

]
+ m1(r2)

xx>

‖x‖2 (37)

is a gyrogroup operation, satisfying Properties (15)–(19).

Example 1. Let

m1(r2) =
1

(1− r2)2 . (38)

Then, by (35),
ϕ̃t(r) = tanh(t atanh(r)) (39)

and by (36),

m0,ϕt(r
2) =

ϕ̃t(r)2

t2r2(1− ϕ̃t(r)2)
. (40)

For t = 1 we get

ϕ̃1(r) = r

m0,ϕ1(r
2) =

1
1− r2

Gϕ1(x) =
1

1− r2

[
I − xx>

‖x‖2

]
+

1
(1− r2)2

xx>

‖x‖2 ,

(41)

which is the canonical metric tensor for Einstein addition as shown in [21].
For t = 2 we get

ϕ̃2(r) =
2r

1 + r2

m0,ϕ2(r
2) =

1
(1− r2)2

Gϕ2(x) =
1

(1− r2)2

[
I − xx>

‖x‖2

]
+

1
(1− r2)2

xx>

‖x‖2 ,

(42)
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which is the canonical metric tensor for Möbius addition as shown in [21].

3.4. Multiplication of Vectors by Numbers

The function h in (12) has the form

hϕ(p) =
∫ p

0

√
m1(s2)ds

=
∫ p

0

ϕ̃′(s)
ϕ̃′(0)(1− ϕ̃(s)2)

ds

=
1

ϕ̃′(0)

[
atanh(ϕ̃(p))− atanh(ϕ̃(0))

]

=
atanh(ϕ̃(p))

ϕ̃′(0)
.

(43)

Therefore

t⊗ϕ (a) =
a
‖a‖ h−1

ϕ (thϕ(‖a‖))

=
a
‖a‖ ϕ̃−1(tanh(t atanh(ϕ̃(‖a‖))))

= ϕ−1(t⊗E ϕ(a)) .

(44)

3.5. Relations between the Functions m0 and m1

In this subsection we explore the relations between the functions m0,t and m1 for which the
corresponding tensor G determines a gyrocommutative gyrogroup operation.

Let us fix a smooth positive function m1 such that m1(0) = 1 and m1 is a bijection [0, 1)→ [1, ∞).
We choose an arbitrary positive number t and define

ϕ̃t(r) = tanh
[

t
∫ r

0

√
m1(s2)ds

]
(45)

and

m0,ϕt(r
2) =

[
ϕ̃t(r)

rt
√

1− ϕ̃t(r)2

]2

. (46)

The pair of functions (m0,t, m1) determines a canonical metric tensor (37) and a binary operation
of a gyrogroup satisfying properties (15)–(19). Then

ϕ̃t(r) =
rt
√

m0,ϕt(r2)√
1 + r2t2m0,ϕt(r2)

(47)

and √
m1(r2) =

d
dr

atanh(ϕ̃t(r))
t

=
1
t

d
dr

ln
[√

1 + r2t2m0,ϕt(r2) + rt
√

m0,ϕt(r2)

]
.

(48)
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Let a pair of smooth functions m0,t and m1 satisfy (48), and such that the function m1 is increasing
and m1(0) = 1. Then this pair determines a gyrocommutative gyrogroup operation in B, as we will
show in Section 3.7.

3.6. Unitary Gyration Operator

For every binary operation ⊕n isomorphic to Einstein addition ⊕ it is possible to introduce the
gyration operator gyr[a, b]: B× B → B. In general this operator need not be linear. Remarkably,
however, the gyration operator for the operation ⊕ϕ turns out to be linear, as we will see in Lemma 1.

Lemma 1. For every function ϕ̃ introduced in (45), the gyration operator gyrϕ[d, e],

gyrϕ[d, e] f = −(d⊕ϕ e)⊕ϕ (d⊕ϕ (e⊕ϕ f )), (49)

is a linear operator B→ B. The matrix of this operator is unitary. Moreover,

gyrϕ[a, b]c = gyr[ϕ(a), ϕ(b)]c , (50)

for all a, b, c ∈ B.

Proof. We use (26), and the fact that the matrix of the gyration operator gyr[a, b] for Einstein addition
⊕ is unitary. For every function ϕ̃ described in Section 3.2, and vectors a, b, c ∈ B we have

gyrϕ[a, b]c = −(a⊕ϕ b)⊕ϕ (a⊕ϕ (b⊕ϕ c))

= ϕ−1
[
− (ϕ(a)⊕E ϕ(b))⊕E (ϕ(a)⊕E (ϕ(b)⊕E ϕ(c)))

]

= ϕ−1
[

gyr[ϕ(a), ϕ(b)]ϕ(c)
]

= ϕ̃−1(‖ϕ(c)‖) gyr[ϕ(a), ϕ(b)]ϕ(c)
‖ϕ(c)‖

= ϕ̃−1(ϕ̃(‖c‖)) gyr[ϕ(a), ϕ(b)]ϕ̃(‖c‖)c
ϕ̃(‖c‖)‖c‖

= gyr[ϕ(a), ϕ(b)]c .

(51)

Hence, the operator gyrϕ[a, b] is linear, and its matrix representation is the same as the matrix
representation of the operator gyr[ϕ(a), ϕ(b)] for the Einstein addition. This matrix is unitary.
Therefore, the matrix of the linear operator gyrϕ[a, b] is also unitary. The proof of the Lemma is,
thus, complete.

The gyrolinearity of the operation ⊕ϕ follows from the fact that the matrix gyr[ϕ(a), ϕ(b)]
is unitary.

3.7. Special Properties of Operations Parametrized by Functions ϕ

Theorem 1. The operation ⊕ϕ has the same properties as those of Einstein addition:
1. Left cancellation law:

a⊕ϕ ((−a)⊕ϕ b) = b ∀a, b ∈ B . (52)
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2. Existence of gyrations: for every a, b ∈ B there exists a unitary matrix denoted by gyrϕ[a, b] such that
for all c ∈ B we have the following gyroassociative law:

a⊕ϕ (b⊕ϕ c) = (a⊕ϕ b)⊕ϕ (gyrϕ[a, b]c), ∀a, b, c ∈ B. (53)

3. For all a, b ∈ B we have the following gyrocommutative law:

a⊕ϕ b = gyrϕ[a, b](b⊕ϕ a), ∀a, b ∈ B, (54)

implying
‖a⊕ϕ b‖ = ‖b⊕ϕ a‖ . (55)

4. Reduction property:
gyrϕ[a⊕ϕ b, b] = gyrϕ[a, b], ∀a, b ∈ B. (56)

5. Linearity of gyrations with respect to addition and multiplication:

gyrϕ[a, b]
[
(t1 ⊗ϕ c1)⊕ϕ (t2 ⊗ϕ c2)

]
= (t1 ⊗ϕ (gyrϕ[a, b]c1))⊕ϕ (t2 ⊗ϕ (gyrϕ[a, b]c2)) (57)

for all c1, c2 ∈ B and t1, t2 ∈ [0, ∞).

Proof. The proof follows straightforwardly from the definition of the operation ⊕ϕ given in (27).
We have,

a⊕ϕ ((−a)⊕ϕ b) = ϕ−1[ϕ(a)⊕E ϕ(ϕ−1(ϕ(−a)⊕E ϕ(b))]

= ϕ−1[ϕ(a)⊕E ((−ϕ(a))⊕E ϕ(b))]

= ϕ−1[ϕ(b)] = b .

(58)

Hence, Property 1 is satisfied.
We have,

a⊕ϕ (b⊕ϕ c) = ϕ−1(ϕ(a)⊕E ϕ(ϕ−1(ϕ(b)⊕E ϕ(c)))

= ϕ−1[ϕ(a)⊕E (ϕ(b)⊕E ϕ(c))]

= ϕ−1[(ϕ(a)⊕E ϕ(b))⊕E (gyr[ϕ(a), ϕ(b)]ϕ(c))]

= ϕ−1[ϕ(a)⊕E ϕ(b)]⊕ϕ ϕ−1(gyr[ϕ(a), ϕ(b)]ϕ(c))

= (a⊕ϕ b)⊕ϕ (gyrϕ[a, b]c) .

(59)

Hence, Property 2 holds.
We have,

a⊕ϕ b = ϕ−1(ϕ(a)⊕E ϕ(b))

= ϕ−1(gyr[ϕ(a), ϕ(b)](ϕ(b)⊕E ϕ(a)))

= gyrϕ[a, b]ϕ−1(ϕ(b)⊕E ϕ(a))

= gyrϕ[a, b](b⊕ϕ a).

(60)

Thus, Property 3 is valid.
We have,

gyrϕ[a⊕ϕ b, b] = gyr[ϕ(a⊕ϕ b), ϕ(b)]

= gyr[(ϕ⊕E ϕ(b)), ϕ(b)]

= gyr[ϕ(a), ϕ(b)] = gyrϕ[a, b] .

(61)
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Thus, Property 4 is valid.
Finally, we have,

gyrϕ[a, b]
[
(t1 ⊗ϕ c1)⊕ϕ (t2 ⊗ϕ c2)

]
= gyr[ϕ(a), ϕ(b)]ϕ−1

[
ϕ(ϕ−1(t1 ⊗E ϕ(c1)))⊕E ϕ(ϕ−1(t2 ⊗E ϕ(c2)))

]
= ϕ−1

[
gyr[ϕ(a), ϕ(b)][(t1 ⊗E ϕ(c1))⊕E (t2 ⊗E ϕ(c2))]

]
= ϕ−1

[
(t1 ⊗E (gyr[ϕ(a), ϕ(b)]ϕ(c1)))⊕E (t2 ⊗E (gyr[ϕ(a), ϕ(b)]ϕ(c2)))

]
= ϕ−1

[
ϕ(t1 ⊗ϕ (gyrϕ[a, b]c1))⊕E ϕ(t2 ⊗ϕ (gyrϕ[a, b]c2))

]
= (t1 ⊗ϕ (gyrϕ[a, b]c1))⊕ϕ (t2 ⊗ϕ (gyrϕ[a, b]c2)) .

(62)

Thus, Property 5 is valid, and the proof of the Theorem is complete.

We now check properties of gyrocommutative gyrogroups for the groupoid (B,⊕ϕ).
1. From the following three results, (i) identity (52) of Theorem 1, (ii) ϕ(0) = 0 (see (24)), and (iii)

0⊕E a = a for all a ∈ B, we obtain the existence of a left identity, that is, for all a ∈ B

0⊕ϕ a = a. (63)

2. From identity (52) of Theorem 1 with b = 0 and (63) we obtain the existence of a left inverse,
that is, for all a ∈ B

(−a)⊕ϕ a = 0. (64)

3. Identity (53) of Theorem 1 implies that the binary operation ⊕ϕ obeys the left gyroassociative
law, that is, for all a, b, c ∈ B

a⊕ϕ (b⊕ϕ c) = (a⊕ϕ b)⊕ϕ gyrϕ[a, b]c. (65)

4. From statement 2 of Theorem 1 we see that gyrϕ[a, b] is a unitary matrix for all a, b ∈ B.
Therefore, the mapping c → gyrϕ[a, b]c is invertible. Identity (57) with t1 = t2 = 1 shows that this
mapping is an automorphism of the groupoid (B,⊕ϕ).

5. Identity (56) of Theorem 1 implies that the operator gyrϕ possesses the left reduction property.
Hence, as shown in [21], the groupoid (B,⊕ϕ) is a gyrogroup.
Finally, identity (54) of Theorem 1 implies that the groupoid (B,⊕ϕ) is gyrocommutative so that,

by [21], it is a gyrocommutative gyrogroup.

3.8. The Canonical Metric Tensor For Coaddition

Let �ϕ be the binary operation such that for every a, b ∈ B the solution x of the equation

x⊕ϕ a = b (66)

is given by
x = b �ϕ (−a) . (67)
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The binary operation �ϕ turns out to be

a �ϕ b = a⊕ϕ gyrϕ[a,−b]b

= ϕ−1
[

ϕ(a)⊕ ϕ(gyr[ϕ(a),−ϕ(b)]b)
]

= ϕ−1
[

ϕ(a)⊕ gyr[ϕ(a),−ϕ(b)]ϕ(b)
]

= ϕ−1
[

ϕ(a)� ϕ(b)
]

.

(68)

Then,

(−x)�ϕ (x + ∆x) = ϕ−1
[
(−ϕ(x)� ϕ(x + ∆x)

]
. (69)

Noticing that

ϕ(x + ∆x)− ϕ(x) = ϕ̃(‖x + ∆x‖) x + ∆x
‖x + ∆x‖ − ϕ̃(x)

x
‖x‖

=
1

ϕ̃′(0)

[
ϕ̃(‖x‖)
‖x‖ (I − xx>

‖x‖2 ) +
ϕ̃′(‖x‖)

1− ϕ̃(‖x‖)2
xx>

‖x‖2

]
∆x + o(‖∆x‖) ,

(70)

we see that the canonical metric tensor in the space with the binary operation �ϕ is given by

G�ϕ
(x) =

[
ϕ̃(‖x‖)

ϕ̃′(0)‖x‖

]2

(I − xx>

‖x‖2 ) +

[
ϕ̃′(‖x‖)

ϕ̃′(0)(1− ϕ̃(‖x‖)2)

]2 xx>

‖x‖2 . (71)

Thus, we have the canonical metric tensor G with

m0,�ϕ
(‖x‖2) =

[
ϕ̃(‖x‖)

ϕ̃′(0)‖x‖

]2

m1,�ϕ
(‖x‖2) =

[
ϕ̃′(‖x‖)

ϕ̃′(0)(1− ϕ̃(‖x‖)2)

]2

.

(72)

In particular, for the trivial case with linear ϕ̃ (i.e., when ϕ̃(‖x‖) = ‖x‖) we have

�ϕ = �

m0,�ϕ
(‖x‖2) = 1

m1,�ϕ
(‖x‖2) =

1
(1− ‖x‖2)2 .

(73)

Noticing that if ϕ̃(r) = tanh(t atanh(r)) for some positive number t, as for the cases of Einstein
and Möbius additions, then we see that

m1,�ϕ
(‖x‖2) =

1
(1− ‖x‖2)2 . (74)
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4. Gyrolines and Cogyrolines

Let us consider a Riemannian manifold with a canonical metric tensor G in B,

G(x) = {gij(x)}n
i,j=1 = m0(‖x‖2)(I − xx>

‖x‖2 ) + m1(‖x‖2)
xx>

‖x‖2 . (75)

The geodesics in this manifold are solutions of the second order differential Equation (10), that is,

ẍ +
m′0
m0

2(x> ẋ)ẋ +

[
(

m′1
m1
−

2m′0
m0

)
(x> ẋ)2

‖x‖2 +
m1 −m0 − ‖x‖2m′0

‖x‖2m1
(‖ẋ‖2 − (x> ẋ)2

‖x‖2 )

]
x = 0 . (76)

We denote by ⊕ the binary operation introduced in (14) and assume that Assumption 2 for the
function m1 holds, that is, ∫ ∞

0

√
m1(s2)ds = ∞. (77)

Then, the product t⊗ in (13) is well defined and belongs to B for every a ∈ B, t ∈ R, and a⊕ b is
also well defined and belongs to B for all a, b ∈ B.

Definition 2. For every a, b ∈ B such that b 6= 0 the curve

Qg(a, b) = {a⊕ (t⊗ b) : t ∈ R} (78)

is called a gyroline.

For the Einstein addition ⊕E the gyrolines are Euclidean intervals in B. For Möbius addition the
gyrolines are circular arcs that intersect the boundary of B orthogonally. Every gyroline is a geodesic
in a Riemannian manifold B with a canonical metric tensor G. Notice that in order to get gyrolines
from a binary operation a⊕ b we multiply the second vector b by numbers t, as in (78).

Definition 3. For every a, b ∈ B such that a 6= 0 the curve

Q(a, b) = {(t⊗ a)⊕ b : t ∈ R} (79)

is called a cogyroline.

In this section, we face the following problem. Is it possible to find a canonical metric tensor Gco

such that cogyrolines are geodesics in the Riemannian manifold with a canonical metric tensor Gco?
If b is parallel to a, then cogyrolines coincide with gyrolines and are segments of Euclidean lines:

Q(a, 0) = {at : t ∈ R, ‖at‖ < 1}. We, therefore, assume that b is not parallel to a.

4.1. Einstein Cogyrolines

In this section, we consider the Einstein addition ⊕E and Einstein multiplication ⊗E .

4.1.1. Elliptic Curves

For every b ∈ B not parallel to a ∈ B we define

b⊥ = b− a>b
‖a‖2 a. (80)

Obviously
(b⊥)>a = 0. (81)
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We notice that every cogyroline lies in the two-dimensional plane P(a, b) ⊂ B that contains a
and b.

Theorem 2. For every a ∈ B\{0} and b not parallel to a the cogyroline lies in an ellipse:

Q(a, b) = P(a, b) ∩ {y ∈ B :
[

y>a
‖a‖

]2

+ c
[

y>b⊥
‖b⊥‖

]2

= 1}, (82)

where

c =
1− (a>b)2

‖a‖2

‖b⊥‖2 =
‖a‖2 − (a>b)2

‖a‖2‖b‖2 − (a>b)2 > 1 . (83)

Proof. By (13) with h(t) = tanh(t) we have

t⊗E a = g(t)a , (84)

where

g(t) =
atanh(t tanh(‖a‖))

‖a‖ . (85)

For x(t) = (t⊗E a)⊕E b we have, by (84), (85) and (14),

x(t) =
1

1 + g(t)a>b

[
(g(t) +

a>b
‖a‖2 )a +

√
1− g(t)2‖a‖2(b− a>b

‖a‖2 a)
]

. (86)

Therefore

x(t)>a
‖a‖ =

g(t)‖a‖+ a>b
‖a‖

1 + g(t)a>b

x(t)>b⊥
‖b⊥‖2 =

√
1− g(t)2‖a‖2

1 + g(t)a>b
,

(87)

and for all d ∈ R,

[
x(t)>a
‖a‖

]2

+ d
[

x(t)>b⊥
‖b⊥‖2

]2

=
g(t)2‖a‖2 + 2g(t)a>b + (a>b)2

‖a‖2 + d− d g(t)2‖a‖2

(1 + g(t)a>b)2 . (88)

Setting d = 1− (a>b)2

‖a‖2 , we have

[
x(t)>a
‖a‖

]2

+ d
[

x(t)>b⊥
‖b⊥‖2

]2

=
g(t)2‖a‖2(1− d) + 2g(t)a>b + d + (a>b)2

‖a‖2

(1 + g(t)a>b)2 = 1 . (89)

We now set c = d
‖b⊥‖2 . Then

[
x(t)>a
‖a‖

]2

+ c
[

x(t)>b⊥
‖b⊥‖

]2

= 1 (90)

and

c =
1− (a>b)2

‖a‖2

‖b⊥‖2 =
‖a‖2 − (a>b)2

‖a‖2‖b‖2 − (a>b)2 > 1 . (91)

The proof of the Theorem is, thus, complete.
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We notice that the derivative d
dt (t⊗E a)⊕E b is not equal to zero for all t. Therefore for every

a, b ∈ B the function x(t) = (t⊗E a)⊕E b tends to ± a
‖a‖ as t→ ±∞, and the corresponding cogyroline

is a half of ellipse (semi-ellipse), represented in (82).

4.1.2. The Canonical Metric Tensor for Cogyrolines

Let us find the canonical metric tensor for which every geodesic lies on some ellipse (82).
We consider the following second order differential equation

ẍ +
2(x> ẋ)

1− ‖x‖2 ẋ +

[
‖ẋ‖2 +

(x> ẋ)2

1− ‖x‖2

]
x = 0 . (92)

Theorem 3. Every solution of Equation (92) lies on a cogyroline. Every cogyroline is a set of all points of a
solution x(·) of (92) defined on R.

Proof. Let x be a solution of (92). If the vectors x(t) and ẋ(t) are parallel for any point t ∈ R, then x(t)
belongs to the ray {as : 0 < s < ∞} for all t ∈ R, and the set of points {x(t) : t ∈ R} coincides with
the interval with endpoints ±a/‖a‖, which in turn coincides with a cogyroline.

We assume that the vectors x(t) and ẋ(t) are not parallel for all t ∈ R, and denote by P the
two-dimensional plane that contains the vectors x(t̄) and ẋ(t̄) for some t̄ ∈ R. Then x(t) ∈ P for
all t ∈ R. Introducing an orthogonal basis of P, let x1(·), x2(·) be coordinates of x(·) in this basis.
We denote by y(·) the 2-vector function col(x1(·), x2(·)). Then y(·) satisfies Equation (92).

Let us consider the functions

p1 = ẋ2(1− ‖x‖2) + x2 x> ẋ

p2 = ẋ1(1− ‖x‖2) + x1 x> ẋ .
(93)

Then,

ṗ1 p2 − ṗ2 p1 =

[
ẍ2(1− ‖x‖2)− 2ẋ2(x> ẋ) + ẋ2x> ẋ + x2‖ẋ‖2 + x2x> ẍ

]
p2

−
[

ẍ1(1− ‖x‖2)− 2ẋ1(x> ẋ) + ẋ1x> ẋ + x1‖ẋ‖2 + x1x> ẍ
]

p1

= ẍ2(1− ‖x‖2)ẋ1 − ẍ1(1− ‖x‖2)ẋ2 + (x2 ẋ1 − x1 ẋ2)[(1− ‖x‖2)‖ẋ‖2 + (x> ẋ)2]

= ẋ1(1− ‖x‖2)[ẍ2 + x2(‖ẋ‖2 +
(x> ẋ)2

1− ‖x‖2 )]− ẋ2(1− ‖x‖2)[ẍ1 + x1(‖ẋ‖2 +
(x> ẋ)2

1− ‖x‖2 )] = 0 .

(94)

Since the vectors x and ẋ are not parallel, at least one of p1 and p2 is not equal to zero. Hence,
there exists a number ϕ such that

sin ϕ =
p1√

p2
1 + p2

2

cos ϕ =
p2√

p2
1 + p2

2

.
(95)
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Then

q1 = x1 sin ϕ− x2 cos ϕ =
(1− ‖x‖2)(x1 ẋ2 − x2 ẋ1)√

p2
1 + p2

2

q̇1 = ẋ1 sin ϕ− ẋ2 cos ϕ = − (x> ẋ)(x1 ẋ2 − x2 ẋ1)√
p2

1 + p2
2

.

(96)

The value q1(t) is not equal to zero for all t since the vectors x(t) and ẋ(t) are not parallel.
We define a function α:

α =
1− ‖x‖2

q2
1

, (97)

so that

α̇ =
−2(x> ẋ)q1 − (1− ‖x‖2)2q̇1

q3
1

= 0 . (98)

Therefore, the function α is constant, α(t) ≡ α0.
We now define a unitary matrix U,

U =

(
cos ϕ sin ϕ

sin ϕ − cos ϕ

)
. (99)

Then, Ux = (0, q1)
>, and the equation α0q2

1 = 1− ‖x‖2 is equivalent to

(Ux)>
(

1 0
0 1 + α0

)
(Ux) = 1 . (100)

We denote by a a vector in B parallel to (cos ϕ, sin ϕ)>, and denote

a =
1
2

(
cos ϕ

sin ϕ

)
and b =

1√
1 + a

(
sin ϕ

− cos ϕ

)
. (101)

Then a>b = 0 and [
x(t)>a
‖a‖

]2

+ (1 + α0)

[
x(t)>b
‖b‖

]2

= 1 . (102)

Therefore the whole solution x(·) lies on the same cogyroline determined by the vectors a, b ∈ B
and the number α0.

Since ‖x(t)‖ → 1 as t → ±∞, the set of points {x(t) : t ∈ R} is a cogyroline. The proof of the
Theorem is, thus, complete.

In order to find a canonical metric tensor for which the solutions of Equation (92) are geodesics,
we compare Equation (92) with

ẍ +
m′0
m0

2(x> ẋ)ẋ +

[
(

m′1
m1
−

2m′0
m0

)
(x> ẋ)2

‖x‖2 +
m1 −m0 − ‖x‖2m′0

‖x‖2m1
(‖ẋ‖2 − (x> ẋ)2

‖x‖2 )

]
x = 0 . (103)
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We need to find functions m0 = m0,co,E and m1 = m1,co,E such that for all numbers z ≥ 0

m′0,co,E(z)
m0,co,E(z)

=
1

1− z

m1,co,E(z)−m0,co,E(z)− z m′0,co,E(z)
z m1,co,E(z)

= 1

m′1,co,E(z)
m1,co,E(z)

− 2
m′0,co,E(z)
m0,co,E(z)

−
m1,co,E(z)−m0,co,E(z)− z m′0,co,E(z)

z m1,co,E(z)
=

z
1− z

.

(104)

The elegant solution to the equations in (104) for the unknowns m0,co,E and m1,co,E is

m0,co,E(z) =
1

1− z

m1,co,E(z) =
1

(1− z)3 .
(105)

Let us consider the canonical metric tensor parametrized by the functions m0,co,E and m1,co,E
in (105),

Gco,E(x) =
1

1− ‖x‖2 (I − xx>

‖x‖2 ) +
1

(1− ‖x‖2)3
xx>

‖x‖2 . (106)

The geodesics of the Riemannian manifold with the canonical metric tensor (106) satisfy
Equation (92). Hence, every geodesic in this manifold is a cogyroline, and every cogyroline is a
geodesic in the Riemannian manifold with the canonical metric tensor Gco,E.

The canonical metric tensor GE for the Einstein addition ⊕E is parametrized by the functions m0,E
and m1,E given by [21]

m0,E(z) =
1

1− z

m1,E(z) =
1

(1− z)2 .
(107)

The functions m0 are the same for the tensors GE and Gco,E. The distinction lies in the function m1.

4.1.3. A Binary Operation for Einstein Cogyrolines

The functions m0,co,E and m1,co,E satisfy Assumptions 1 and 2. Hence, we follow the four steps
that lead to a binary operation ⊕co,E in B for which the canonical metric tensor is Gco,E. We assume
a, b ∈ B. If a and b are parallel, then a⊕co,E b can be defined using multiplication of vectors by numbers
in (13). We now assume that the vectors a and b are not parallel. In particular, they are not zero
vectors. We now follow the four steps that lead to the binary operation a⊕co,E b in B when a and b are
not parallel.

Step 1. We evaluate the integral

ṙ(0) =
1
‖b‖

∫ ‖b‖
0

√
m1,co,E(s2)ds

=
1
‖b‖

∫ ‖b‖
0

√
1

(1− s2)3 ds =
1
‖b‖

‖b‖√
1− ‖b‖2

=
1√

1− ‖b‖2
.

(108)
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Step 2. We perform a parallel transport of the vector X0 = ṙ(0)b along the interval {at : 0 ≤ t ≤ 1}.
The vector parallel to X0 at the point a is

X1 =
√

1− ‖a‖2
[

I − aa>

‖a‖2

]
X0 + (1− ‖a‖2)3/2 aa>

‖a‖2 X0. (109)

Step 3. We find a solution x(·) of Equation (92),

ẍ +
2(x> ẋ)

1− ‖x‖2 ẋ +

[
‖ẋ‖2 +

(x> ẋ)2

1− ‖x‖2

]
x = 0 (110)

with initial data x(0) = a, ẋ(0) = X1.
We seek a solution having the form

x(t) = ã sin ϕ(t) + b̃ d cos ϕ(t), (111)

where {ã, b̃} is an orthonormal basis in the plane containing the vectors x(0) and ẋ(0), d being a
number, d ∈ [0, 1), and ϕ is a scalar function to be determined. Then

ẋ = ϕ̇(ã cos ϕ− b̃d sin ϕ)

ẍ = ϕ̈(ã cos ϕ− b̃d sin ϕ)− ϕ̇2(ã sin ϕ + b̃ d cos ϕ)
(112)

and

‖x‖2 = sin2 ϕ + d2 cos2 ϕ

‖ẋ‖2 = ϕ̇2(cos2 ϕ + d2 sin2 ϕ)

x> ẋ = ϕ̇(1− d2) sin ϕ cos ϕ .

(113)

We notice that

1− ‖x‖2 = (1− d2) cos2 ϕ

2(x> ẋ)
1− ‖x‖2 = 2ϕ̇ tan ϕ

‖ẋ‖2 +
(x> ẋ)2

1− ‖x‖2 = ϕ̇2 .

(114)

Therefore Equation (92) takes the form

ã[ϕ̈ + 2ϕ̇2 tan ϕ] cos ϕ− b̃d sin ϕ[ϕ̈ + 2ϕ̇2 tan ϕ] = 0 . (115)

This equation is obviously equivalent to

ϕ̈ + 2ϕ̇2 tan ϕ = 0 , (116)

the general solution of which is
tan ϕ(t) = C0t + C1 , (117)

where C1, C0 are arbitrary constants. Equation (111) shows that a general solution of Equation (92) is

x(t) =
C0t + C1√

1 + (C0t + C1)2
ã +

d√
1 + (C0t + C1)2

b̃ . (118)
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The initial conditions are

x(0) =
C1 ã + db̃√

1 + C2
1

ã

ẋ(0) =
C0

(1 + C2
1)

3/2

[
ã− dC1b̃

]
,

(119)

where

C0 =

√
1− ‖a‖2√
1− ‖b‖2

‖b‖2√
‖b‖2 − (a>b)2

,

C1 =
a>b√

‖b‖2 − (a>b)2
,

d =

√
‖a‖2‖b‖2 − (a>b)2√
‖b‖2 − (a>b)2

,

ã =
b
‖b‖ ,

b̃ =
a‖b‖ − a>b

‖b‖ b√
‖a‖2‖b‖2 − (a>b)2

.

(120)

According to Theorem 3, the function x determines a cogyroline for Einstein addition.
Step 4. Define

a⊕co,E b = x(1)

=
(C0 + C1)ã + db̃√

1 + (C0 + C1)2

=
a
√

1− ‖b‖2 + b
√

1− ‖a‖2√
1− ‖a‖2‖b‖2 + 2a>b

√
(1− ‖a‖2)(1− ‖b‖2)

.

(121)

If we use the standard notation γx = (1− ‖x‖2)−1/2 for all vectors x ∈ B, then (121) may be
written in the symmetric form

a⊕co,E b =
γaa + γbb√

1 + ‖γaa + γbb‖2
. (122)

This operation is obviously commutative. It has been studied in [21].
The binary operation ⊕co,E determines the canonical metric tensor Gco,E .
To define an operation of multiplication of a vector by a number, as it is shown in [21], we have to

calculate the function h(p),

h(p) =
∫ p

0

√
m1,co,E(s2)ds =

∫ p

0

ds
(1− s2)3/2 =

p√
1− p2

, (123)

where m1,co,E is given by (105).
Then

t⊗co,E a =
a
‖a‖ h−1(t h(‖a‖)) = a

t√
1 + (t2 − 1)‖a‖2

. (124)

In particular, if b = λa, then a⊕co,E b = (1 + λ)⊗co,E a.
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For every a, b ∈ B, b 6= 0, the cogyroline S(a, b) of the Einstein addition is given by

S(a, b) = {(t⊗E a)⊕E b : t ∈ R} . (125)

This curve is also a gyroline for the addition ⊕co,

S(a, b) = {b⊕co,E (τ ⊗co,E a) : τ ∈ R}. (126)

4.1.4. Distance and Norm For Cogyrolines

We can define a cogyronorm as a norm ‖ · ‖⊕co,E
as it is described in [21]. In particular, if a, b ∈ B,

then for the function
h(p) =

p√
1− p2

(127)

we have

h(‖a‖) + h(‖b‖) ≥ h(‖a⊕co,E b‖)
‖a‖ ⊕co,E ‖b‖ ≥ ‖a⊕co,E b‖ ,

(128)

and the equalities in each line is attained if and only if there exists a non negative number λ such that
a = λb or b = λa. Here ‖ · ‖ is the Euclidean norm.

The distance between points a and b is given by

distco,E(a, b) = h(‖ 	 a⊕co,E b‖) = ‖ 	 a⊕co,E b‖√
1− ‖	 a⊕co,E b‖2

= γ	a⊕co,E b‖ 	 a⊕co,E b‖ . (129)

For arbitrary three points a, b, c ∈ B we have the triangle inequality

distco,E(a, b) + distco,E(b, c) ≥ distco,E(a, c) (130)

where equality is attained if and only if these points lie on the same cogyroline, and b is between a
and c. Hence, we can define the cogyronorm as follows.

‖a‖co,E = distco,E(0, a) = h(‖a‖) = ‖a‖√
1− ‖a‖2

. (131)

For this norm we have
‖t⊗co,E a‖co,E = |t|‖a‖co,E (132)

for all a ∈ B, t ∈ R, and
‖a‖co,E + ‖b‖co,E ≥ ‖a⊕co,E b‖co (133)

for all a, b ∈ B.

4.2. M öbius Cogyrolines

In this section, we consider cogyrolines for the Möbius addition ⊕M :

a⊕M b =
(1 + 2a>b + ‖b‖2)a + (1− ‖a‖2)b

1 + 2a>b + ‖a‖2‖b‖2 . (134)

4.2.1. Circular Arcs

For every a, b ∈ B if P(a, b) is a two-dimensional plane that contains both a and b,
then the cogyroline

S(a, b) = {(t⊗M a)⊕M b : t ∈ R} (135)
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lies in P. If a = 0, then the cogyroline is a point b. If b is parallel to a, that is, there exists a number λ

such that b = λa, then the cogyroline is a segment {as : ‖as‖ < 1}.

Theorem 4. For every a ∈ B\{0} and b ∈ B not parallel to a the cogyroline S(a, b) is an arc of a circle that
intersects the unit circle at centrally symmetric points, that is, for the vectors

b⊥ = b− a>b
‖a‖2 a (136)

and

y =
1− ‖b‖2

‖b⊥‖2 b⊥ (137)

we have
S(a, b) = P(a, b) ∩ {w ∈ B : ‖w‖2 + y>w = 1, y>a = 0, ‖y‖ > 1} . (138)

Proof. Since the right-hand side of (138) is a curve in B that does not intersect itself, and that connects
the points a and −a, it is sufficient to prove that for every point x ∈ S(a, b) we have

‖x‖2 + y>x = 1 . (139)

We notice that (139) is equivalent to the equation

‖x +
1
2

y‖2 = 1 +
1
4
‖y‖2 , (140)

which determines a circle with radius
√

1 + 1
4‖y‖2.

To verify (139) we assume that x ∈ S(a, b). Then, for some t ∈ R we have

x = (t⊗M a)⊕M b

=
(1 + 2(t⊗M a)>b + ‖b‖2)(t⊗M a) + (1− ‖t⊗M a‖2)b

1 + 2(t⊗M a)>b + ‖t⊗M a‖2‖b‖2 .
(141)

Let

g(t) =
tanh(t atanh(‖a‖))

‖a‖ . (142)

Then, t⊗ a = g(t)a, and

x =
(1 + 2g(t)a>b + ‖b‖2)g(t)a + (1− ‖g(t)a‖2)b

1 + 2g(t)a>b + ‖g(t)a‖2‖b‖2 . (143)
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Let us now calculate ‖x‖2,

‖x‖2 =

[
‖a‖2g(t)2(1 + 2g(t)a>b + ‖b‖2)2

+ 2a>bg(t)(1 + 2g(t)a>b + ‖b‖2)(1− g(t)2‖a‖2)

+ ‖b‖2(1− g(t)2‖a‖2)2
]

1
(1 + 2g(t)a>b + ‖g(t)a‖2‖b‖2)2

=
(1 + 2g(t)a>b + g(t)2‖a‖2‖b‖2)(2g(t)a>b + g(t)2‖a‖2 + ‖b‖2)

(1 + 2g(t)a>b + ‖g(t)a‖2‖b‖2)2

=
2g(t)a>b + g(t)2‖a‖2 + ‖b‖2

1 + 2g(t)a>b + ‖g(t)a‖2‖b‖2 .

(144)

Noticing that y>b = 1− ‖b‖2, we have

y>x =
(1− g(t)2‖a‖2)(1− ‖b‖2)

1 + 2g(t)a>b + ‖g(t)a‖2‖b‖2 . (145)

Adding Equations (144) and (145) yields (139), that is,

‖x‖2 + y>x = 1 , (146)

and the proof of the Theorem is complete.

4.2.2. The Canonical Metric Tensor for Cogyrolines

As in Section 4.1.2, we consider the second order differential equation

ẍ +
4(x> ẋ)

1− ‖x‖2 ẋ +
2‖ẋ‖2

1 + ‖x‖2 x = 0 . (147)

Theorem 5. For every solution x(·) of Equation (147) the set of its points {x(t) : t ∈ R} is a cogyroline.
Every cogyroline is a set of points of a solution x(·) of (147) defined on R.

Proof. Let x0 ∈ B and x′0 ∈ Rn be arbitrary non parallel vectors. Below we prove that a solution x(·)
of (147) with initial conditions x(0) = x0 and ẋ(0) = x′0 lies on a circular arc S(a, b) defined in (138) for
any a, b ∈ B. Since there are no stationary points of Equation (147) in B, and every solution x(·) with
initial conditions x(0) ∈ B can’t reach the points ±a, these would imply that the set of all points of the
solution x(·) coincides with S(a, b), and the statement of the theorem holds.

For a curve y(t) = (t⊗M a)⊕M b we use representation (143) to get the initial conditions

y(0) = b

ẏ(0) =
dy
dg
|g=0

dg
dt
|t=0 = [(1 + ‖b‖2)a− 2a>b b]atanh(‖a‖) .

(148)

We consider a solution x(·) of (147) with initial conditions x(0) = x0 and ẋ(0) = x′0, and choose
vectors a, b such that

x0 = x(0) = b

x′0 = ẋ(0) = ẏ(0) = [(1 + ‖b‖2)I − 2bb>]a atanh(‖a‖) .
(149)
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Since
det[(1 + ‖b‖2)I − 2bb>] = (1 + ‖b‖2)n−1(1− ‖b‖2) 6= 0 , (150)

where n = dim(x), we can define a vector w,

w = [(1 + ‖b‖2)I − 2bb>]−1x′0 . (151)

Let a number δ be such that
‖w‖ = δ atanh(|δ|) . (152)

Set ã = δ
‖w‖w, a = ã

2‖ã‖ . Then for the solution x(·) we have x(0) = b ∈ S(a, b), and ẋ(0) is parallel
to the vector tangent to the curve S(a, b).

Now we can define vectors b⊥ = b− a>b
‖a‖2 a and y = 1−‖b‖2

‖b⊥‖2 b⊥. Noticing that b>⊥b = ‖b⊥‖2 and

a>b⊥ = 0, we have

‖x(0)‖2 + y>x(0) = ‖b‖2 +
1− ‖b‖2

‖b⊥‖2 b>⊥b = 1 (153)

and

2x(0)> ẋ(0) + y> ẋ(0) = (2b> +
1− ‖b‖2

‖b⊥‖2 b>⊥)[(1 + ‖b‖2)a− 2a>b b]atanh(‖a‖) = 0 . (154)

According to Theorem 4, a solution x lies on the circular arc S(a, b) if and only if

‖x(t)‖2 + y>x(t) = 1 (155)

for all t ∈ R. To prove the theorem it is sufficient to show that (155) holds, which we accomplish
in (164).

The vector y belongs to the two dimensional plane that contains x(0) and ẋ(0). Hence, there exist
numbers α̃ and β̃ such that y = αx(0) + βẋ(0). Solving Equations (153) and (154) for these
numbers yields

α̃ =
‖ẋ(0)‖2(1− ‖x(0)‖2) + 2(x(0)> ẋ(0))2

‖x(0)‖2‖ẋ(0)‖2 − (x(0)> ẋ(0))2

β̃ =
−(x(0)> ẋ(0))(1 + ‖x(0)‖2)

‖x(0)‖2‖ẋ(0)‖2 − (x(0)> ẋ(0))2 .

(156)

We now introduce the functions

α(t) =
‖ẋ(t)‖2(1− ‖x(t)‖2) + 2(x(t)> ẋ(t))2

‖x(t)‖2‖ẋ(t)‖2 − (x(t)> ẋ(t))2

β(t) =
−(x(t)> ẋ(t))(1 + ‖x(t)‖2)

‖x(t)‖2‖ẋ(t)‖2 − (x(t)> ẋ(t))2 .

(157)

If α(t)x(t) + β(t)ẋ(t) = const = y for all t ∈ R, then ‖x(t)‖2 + y>x(t) = 1 for all t ∈ R.
Furthermore, we drop for clarity the argument (t). We denote by p and q the numerator and
denominator of the sum αx + βẋ,

p
q
=

[‖ẋ‖2(1− ‖x‖2) + 2(x> ẋ)2]x− (x> ẋ)(1 + ‖x‖2)ẋ
‖x(t)‖2‖ẋ(t)‖2 − (x(t)> ẋ(t))2 . (158)
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We need to show that ṗq− q̇p = 0. We have

ṗ = [2ẋ> ẍ(1− ‖x‖2)− ‖ẋ‖22(x> ẋ) + 4(x> ẋ)(‖ẋ‖2 + ẋ> ẍ)]x

+ [‖ẋ‖2 + 2(x> ẋ)2]ẋ− (‖ẋ‖2 + x> ẍ)(1 + ‖x‖2)ẋ

− 2(x> ẋ)2 ẋ− (x> ẋ)(1 + ‖x‖2)ẍ

= [2(1− ‖x‖2)(ẋ> ẍ) + 2(x> ẋ)‖ẋ‖2 + 4(x> ẋ)(x> ẍ)]x

− [(1 + ‖x‖2)(x> ẍ) + 2‖x‖2‖ẋ‖2]ẋ− [(x> ẋ)(1 + ‖x‖2)]ẍ

q̇ = 2(x> ẋ)‖ẋ‖2 + 2(ẋ> ẍ)‖x‖2 − 2(x> ẋ)[‖ẋ‖2 + (x> ẍ)]

= 2(ẋ> ẍ)‖x‖2 − 2(x> ẋ)(x> ẍ) .

(159)

Therefore,
ṗq− q̇p = Ax + Bẋ + Cẍ , (160)

where

A = 2(ẋ> ẍ)[−(1 + ‖x‖2)(x> ẋ)2] + 2(x> ẍ)[(x> ẋ)‖‖̇2(1 + ‖x‖2)]

+ 2(x> ẋ)‖ẋ‖2(‖x‖2‖ẋ‖2 − (x> ẋ)2)

B = (ẋ> ẍ)[2(x> ẋ)‖x‖2(1 + ‖x‖2]− (x> ẍ)[(1 + ‖x‖2)(‖x‖2‖ẋ‖2 + (x> ẋ)2)]

− 2‖x‖2‖ẋ‖2(‖x‖2‖ẋ‖2 − (x> ẋ)2)

C = −(x> ẋ)(1 + ‖x‖2)(‖x‖2‖ẋ‖2 − (x> ẋ)2) .

(161)

Since x is a solution of Equation (147), we have

ẍ = −−4(x> ẋ)
1− ‖x‖2 ẋ− 2‖ẋ‖2

1 + ‖x‖2 x . (162)

Straightforwardly, with the value of ẍ in (162), we have

Ax +Bẋ + Cẍ = 0 . (163)

Hence,
‖x(t)‖2 + y>x(t) = 1 (164)

for all t ∈ R, and the proof of Theorem 5 is complete.

Equation (147) has the same form as (5) with m0 = m0,co,E, m1 = m1,co,E if for all x ∈ B the
following equations hold

m′0,co,E

m0,co,E
=

2
1− ‖x‖2 ,

m1,co,E −m0,co,E − ‖x‖2m′0,co,E

m1,co,E
=

2‖x‖2

1 + ‖x‖2 ,

m′1,co,E

m1,co,E
− 2

m′0,co,E

m0,co,E
− 2

1 + ‖x‖2 = 0 .

(165)
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The equations in (165) possess the solution

m0,co,E(‖x‖2) =
1

(1− ‖x‖2)2

m1,co,E(‖x‖2) =
(1 + ‖x‖2)2

(1− ‖x‖2)4 .

(166)

Let us introduce the canonical metric tensor parametrized by m0 and m1 in (166),

Gco,M (x) =
1

(1− ‖x‖2)2 (I − xx>

‖x‖2 ) +
(1 + ‖x‖2)2

(1− ‖x‖2)4
xx>

‖x‖2 . (167)

The geodesics of the Riemannian manifold with metric tensor (167) satisfy Equation (147). Hence,
every geodesic in this manifold is a cogyroline, and every cogyroline is a geodesic in the Riemannian
manifold with the metric tensor Gco,M.

We notice that the canonical metric tensor GM for Möbius addition is parametrized by the functions
m0 and m1 given by

m0,M(‖x‖2) =
1

(1− ‖x‖2)2

m1,M(‖x‖2) =
1

(1− ‖x‖2)2 ,
(168)

where, remarkably, m0 = m1, as shown in [21].
The functions m0 are the same for the tensors GM and Gco,M . Again, as for the case of the Einstein

addition, the difference lies in the function m1.

4.2.3. A Binary Operation for M öbius cogyrolines

In this section, we introduce a new binary operation ⊕co,M such that every Möbius cogyroline is a
gyroline for this operation, and vice versa, every gyroline for this operation is a Möbius cogyroline.
According to Theorem 5 it is sufficient to find a smooth binary operation satisfying Condition (2) with
a canonical metric tensor (4) equal to Gco,M given in (167).

Introduce an operation ⊕co,M : B×B→ B,

a⊕co,M b =
2(γ2

a a + γ2
bb)

1 +
√

1 + 4‖γ2
a a + γ2

bb‖2
, (169)

where γx = (1− ‖x‖2)−1/2 for all x ∈ B. This operation is well defined, smooth, and satisfies the
invariance condition (2).

Theorem 6. The canonical metric tensor (4) of the operation ⊕co,M coincides with Gco,M .

Proof. In order to use the formula (4) we consider the first two terms of the Taylor series at a point x
of the following function:

(−x)⊕co,M (x + ∆x) =
2xx> + (1− ‖x‖2)I

(1− ‖x‖2)2 ∆x + o(‖∆x‖). (170)

Therefore, the matrix g(x) in (3) is equal to

g(x) =
2xx> + (1− ‖x‖2)I

(1− ‖x‖2)2 , (171)
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and we get the canonical metric tensor

G(x) = g(x)>g(x) =
1

(1− ‖x‖2)2

[
I − xx>

‖x‖2

]
+

(1 + ‖x‖2)2

(1− ‖x‖2)4
xx>

‖x‖2 , (172)

which coincides with the metric tensor Gco,M in (167). The theorem is thus proved.

Notice that the operation ⊕co,M is commutative.
To define an operation of multiplication of a vector by a number we have to calculate the function

h(p) =
∫ p

0

√
m1,co,M(s2)ds =

∫ p

0

1 + s2

(1− s2)2 ds =
p

1− p2 . (173)

Then
t⊗co,M a =

a
‖a‖ h−1(t h(‖a‖)) = 2ta

1− ‖a‖2 +
√
(1− ‖a‖2)2 + 4t2‖a‖2

. (174)

In particular, if b = λa with a real number λ, then a⊕co,M b = (1 + λ)⊗co,M a.
For every a, b ∈ B, b 6= 0, the cogyroline S(a, b) of Möbius addition is given by

S(a, b) = {(t⊗M a)⊕M b : t ∈ R} . (175)

This curve is also a gyroline for the addition ⊕co,M ,

S(a, b) = {b⊕co,M (τ ⊗co,M a) : τ ∈ R} . (176)

4.2.4. Distance and Norm For Cogyrolines

We can define a cogyronorm as a norm ‖ · ‖⊕co,M
as it is described in [21]. For the function h

in (173), we have,

h(‖a‖) + h(‖b‖) ≥ h(‖a⊕co,M b‖)
‖a‖ ⊕co,M ‖b‖ ≥ ‖a⊕co,M b‖ .

(177)

Equalities in (177) are attained if and only if there exists a non negative number λ such that a = λb
or b = λa. Here ‖ · ‖ is the Euclidean norm.

4.3. Cogyrolines in Spaces Parametrized by Functions ϕ

Consider again an arbitrary bijection ϕ̃: [0, 1)→ [0, 1), which is differentiable, strictly increasing,
and ϕ̃′(0) > 0. Following (25) for every x ∈ B we define

ϕ(x) = ϕ̃(‖x‖) x
‖x‖ . (178)

In Section 3, we introduced a canonical metric tensor Gϕ, corresponding functions m0, m1, and a
binary operation ⊕ϕ, which has the same properties as Einstein operation ⊕E. In this section we
consider cogyrolines in the space with canonical metric tensor Gϕ. The cogyrolines with parallel a 6= 0
and b are intervals of the form {t a

‖a‖ : |t| < 1}. Hence further in this section we assume that a and
b are not parallel. Recall that we have the Einstein addition if ϕ̃(s) = s, and the Möbius addition if
ϕ̃(s) = 2s

1+s2 .
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4.3.1. A Relation with Gyrolines in the Space with Einstein Addition

The cogyroline in the space with canonical metric tensor Gϕ and corresponding binary operation
⊕ϕ and scalar multiplication ⊗ϕ (see Section 3) is defined as the set

S(a, b) = {(t⊗ϕ a)⊕ϕ b : t ∈ R} , (179)

where a and b are arbitrary points in the open ball B.
According to the definition of the operations with subindex ϕ, the set (179) coincides with the set

S(a, b) = {ϕ−1[t⊗E ϕ(a))⊕E ϕ(b)] : t ∈ R} . (180)

As we have seen above for non parallel points a and b, the set (181),

SE(a, b) = {(t⊗E a)⊕E b : t ∈ R} , (181)

is the following semiellipse in the plane P(a, b) containing a and b:

SE(a, b) = P(a, b) ∩ {y ∈ B :
[

y>a
‖a‖

]2

+ c
[

y>b⊥
‖b⊥‖

]2

= 1, y>b⊥ > 0}, (182)

where b⊥ = b− a>b
‖a‖2 a, and

c =
‖a‖2 − (a>b)2

‖a‖2‖b‖2 − (a>b)2 > 1 . (183)

The set of such semiellipses parametrized by points a, b ∈ B and numbers c > 1 coincides with
the set of all cogyrolines in the space with the binary operation ⊕E .

In Section 4.1.3 we proved (see (126)) that there exists a binary operation ⊕co,E with scalar
multiplication⊗co,E such that every cogyroline is a gyroline in the space with the binary operation⊕co,E :

SE(a, b) = {b⊕co,E (τ ⊗co,E a) : τ ∈ R} . (184)

Every such a line is the set of all the points of some geodesic in the space with the canonical metric
tensor (106) parametrized by the functions

m0,co,E(r2) =
1

1− r2 and m1,co,E(r2) =
1

(1− r2)3 . (185)

Such geodesics satisfy the second order differential Equation (92),

ẍ +
2(x> ẋ)

1− ‖x‖2 ẋ +

[
‖ẋ‖2 +

(x> ẋ)2

1− ‖x‖2

]
x = 0 . (186)

In this section, we are going to find a canonical metric tensor Gco,ϕ parametrized by functions
m0,co,ϕ and m1,co,ϕ, and an equation for geodesics such that every cogyroline in the space with a
canonical metric tensor Gϕ is a gyroline in the space with the canonical metric tensor Gco,ϕ.

4.3.2. Description of the Set of Cogyrolines

From (180) and (181), it follows that every cogyroline is an image of a semiellipse SE(a, b) under
the mapping ϕ−1.
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Let us assume y ∈ SE(a, b) and z = ϕ−1y ∈ S(a, b). Then y = ϕ(z), and

1 =

[
y>a
‖a‖

]2

+ c
[

y>b⊥
‖b⊥‖

]2

=

[
ϕ(z)>a
‖a‖

]2

+ c
[

ϕ(z)>b⊥
‖b⊥‖

]2

=
ϕ̃(‖z‖)
‖z‖ {

[
z>a
‖a‖

]2

+ c
[

z>b⊥
‖b⊥‖

]2

} .

(187)

The vectors a
‖a‖ , b⊥

‖b⊥‖
form an orthonormal basis in the plane P(a, b). Therefore

[
z>a
‖a‖

]2

+

[
z>b⊥
‖b⊥‖

]2

= ‖z‖2, (188)

and (187) is equivalent to

(c− 1)
[

z>b⊥
‖b⊥‖

]2

= ‖z‖2
[

1
ϕ̃(‖z‖)2 − 1

]
. (189)

Introduce a vector d =
√

c− 1 b⊥
‖b⊥‖

. Assume z(·) is a cogyroline which belongs to the set
S(a, b). Denote

f (s) = s

√
1

ϕ̃(s)2 − 1 . (190)

Then for all t ∈ R
z(t)>d = f (‖z(t)‖). (191)

Moreover, Equation (191) parametrizes all the cogyrolines by a non zero n-vector d as follows.
For every cogyroline there exists d such that (191) holds for all t ∈ R, and for every d ∈ Rn\{0} for
every cogyroline for which (191) holds for at least one number t, it holds for all t ∈ R.

4.3.3. Differential Equations for Geodesics

For the sake of clarity we drop the argument t. Differentiating the equation

z>d = f (‖z‖) (192)

we have

ż>d = f ′(‖z‖) z> ż
‖z‖ (193)

and

z̈>d = f ′′(‖z‖) (z
> ż)2

‖z‖2 + f ′(‖z‖)
[
‖ż‖2 + z> z̈
‖z‖ − (z> ż)2

‖z‖3

]
. (194)

The curve z lies in the plane S(a, b), and the vectors z and ż are non parallel. Therefore there exist
functions g0, g1 such that

z̈ = g0z + g1ż. (195)

Multiplying this equation by d from the right yields

f ′′(‖z‖) (z
> ż)2

‖z‖2 + f ′(‖z‖)
[
‖ż‖2 + z> z̈
‖z‖ − (z> ż)2

‖z‖3

]
= z̈>d = g0z>d + g1ż>d . (196)

Therefore

z̈>(d− f ′(‖z‖) z
‖z‖ ) = f ′′(‖z‖) (z

> ż)2

‖z‖2 + f ′(‖z‖)
[
‖ż‖2

‖z‖ −
(z> ż)2

‖z‖3

]
(197)
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and

g0z>(d− f ′(‖z‖) z
‖z‖ ) + g1ż>(d− f ′(‖z‖) z

‖z‖ )

= f ′′(‖z‖) (z
> ż)2

‖z‖2 + f ′(‖z‖)
[
‖ż‖2

‖z‖ −
(z> ż)2

‖z‖3

]
.

(198)

Noticing that by (193) the coefficient of g1 in (198) is equal to zero, and solving (198) for g0 yields

g0 =

f ′′(‖z‖) (z
> ż)2

‖z‖2 + f ′(‖z‖)
[
‖ż‖2

‖z‖ −
(z> ż)2

‖z‖3

]
f (‖z‖)− ‖z‖ f ′(‖z‖) . (199)

Equation (10) has the form

z̈ +
m′0
m0

2(z> ż)ż + [(
m′1
m1
−

2m′0
m0

)
(z> ż)2

‖z‖2 +
m1 −m0 − ‖z‖2m′0

‖z‖2m1
(‖ż‖2 − (z> ż)2

‖z‖2 )]z = 0 . (200)

Equations (195) and (200) coincide with m0 = m0,co,ϕ, m1 = m1,co,ϕ if

g1 = −
m′0,co,ϕ

m0,co,ϕ
2(z> ż) (201)

and
m′1,co,ϕ

m1,co,ϕ
−

2m′0,co,ϕ

m0,co,ϕ
−

m1,co,ϕ −m0,co,ϕ − ‖z‖2m′0,co,ϕ

‖z‖2m1,co,ϕ
=
− f ′′(‖z‖) + f ′(‖z‖)

‖z‖
f (‖z‖)− ‖z‖ f ′(‖z‖) (202)

and
m1,co,ϕ −m0,co,ϕ − ‖z‖2m′0,co,ϕ

‖z‖2m1,co,ϕ
=

− f ′(‖z‖)
‖z‖

f (‖z‖)− ‖z‖ f ′(‖z‖) . (203)

We add Equations (202)–(203), and solve Equation (203) for m1,co,ϕ. Then we get the following
system of equations for m0,co,ϕ and m1,co,ϕ as functions of f :

m′1,co,ϕ

m1,co,ϕ
−

2m′0,co,ϕ

m0,co,ϕ
=

− f ′′(‖z‖)
f (‖z‖)− ‖z‖ f ′(‖z‖)

m1,co,ϕ =
(m0,co,ϕ + ‖z‖2m′0,co,ϕ)( f (‖z‖)− ‖z‖ f ′(‖z‖))

f (‖z‖) .

(204)

The solution of the system (204) is given by

m0,co,ϕ(s)|s=‖z‖2 =
C

( f (‖z‖))2

m1,co,ϕ(s)|s=‖z‖2 =
C( f (‖z‖)− ‖z‖ f ′(‖z‖))2

( f (‖z‖))4 ,

(205)

where C is a positive constant.
Let Gco,ϕ be the canonical metric tensor parametrized by the functions

m0,co,ϕ(‖z‖2) =
C

( f (‖z‖))2

m1,co,ϕ(‖z‖2) =
C( f (‖z‖)− ‖z‖ f ′(‖z‖))2

( f (‖z‖))4

(206)



Symmetry 2020, 12, 1525 30 of 36

and let ⊕co,ϕ be the binary operation in the space with this canonical metric tensor. Then the set of
cogyrolines S(a, b) in (179) coincides with the set of gyrolines in the space with the canonical metric
tensor Gco,ϕ.

Furthermore, let us normalize the functions m0,co,ϕ and m1,co,ϕ such that their values at zero are
equal to one. To this end we need to choose C = 1

ϕ̃′(0)2 . Then

m0,co,ϕ(r2) =

[
ϕ̃(r)

ϕ̃′(0)r
√

1− ϕ̃(r)2

]2

m1,co,ϕ(r2) =
ϕ̃′(r)2

ϕ̃′(0)2(1− ϕ̃(r)2)3 .

(207)

We now recall the values of these functions in (33) for the space with the binary operation ⊕ϕ:

m0,ϕ(r2) =

[
ϕ̃(r)

ϕ̃′(0)r
√

1− ϕ̃(r)2

]2

m1,ϕ(r2) =

[
ϕ̃′(r)

ϕ̃′(0)(1− ϕ̃(r)2)

]2

.

(208)

Obviously, the functions m0,ϕ and m0,co,ϕ coincide, while the functions m1,ϕ and m1,co,ϕ

are different.
In particular, if ϕ̃(s) = s, we get the functions for Einstein cogyrolines:

m0,co,E(r2) =
1

1− r2

m1,co,E(r2) =
1

(1− r2)3 .
(209)

If ϕ̃(s) = 2s
1+s2 , we get the functions for Möbius cogyrolines:

m0,co,M(r2) =
1

(1− r2)2

m1,co,M(r2) =
(1 + r2)2

(1− r2)4 .
(210)

5. Curvature

Every geodesic in a manifold with canonical metric tensor

G(x) = m0(‖x‖2)

[
I − xx>

‖x‖2

]
+ m1(‖x‖2)

xx>

‖x‖2 , (211)

parametrized by the functions m0 and m1, lies in a two dimensional plane containing x(0) and ẋ(0).
Hence, let us calculate the Gaussian curvature of geodesics in a two dimensional space R2. In this
section we assume that the second derivatives of the functions m0 and m1 exist and they are continuous.

5.1. Brioschi Formula

Let us denote two dimensional vectors by (u, v)>, where u and v are scalars. We use the standard
notation for Riemannian line elements,

ds2 = E du2 + 2F dudv + G dv2 . (212)
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Since ds2 = (du, dv)G(x)(du, dv)>, we have

E = m0 + (m1 −m0)
u2

u2 + v2 =
v2m0 + u2m1

u2 + v2

F = (m1 −m0)
uv

u2 + v2

G = m0 + (m1 −m0)
v2

u2 + v2 =
u2m0 + v2m1

u2 + v2 .

(213)

It should be noted that it is always clear from the context whether G = G(u, v) represents the
scalar function in (212) or the canonical metric tensor G = G(x) in (211).

According to Brioschi formula the Gaussian curvature for a curve with the Riemannian line
element (212) is given by [22],

K =
A− B

(EG− F2)2 , (214)

where

A = det

 − 1
2 Evv + Fuv − 1

2 Guu
1
2 Eu Fu − 1

2 Ev

Fv − 1
2 Gu E F

1
2 Gv F G

 (215)

and

B = det

 0 1
2 Ev

1
2 Gu

1
2 Ev E F
1
2 Gu F G

 . (216)

Here, a lower index of E, F, G means a derivative with respect to a corresponding variable as,
for instance, Eu = ∂E

∂u .

5.2. Calculating the Curvature

In this section, we present a list of results of direct calculations of elements of determinants in
Formula (214) as well as the value of K in terms of the functions m0(u2 + v2) and m1(u2 + v2). For the
sake of clarity we omit the argument u2 + v2 of these functions.

Theorem 7. The Gaussian curvature K of a manifold with the canonical metric tensor (211) is given by

K =
(m′0

2m1 + m0m′0m′1 − 2m0m1m′′0 )‖x‖2 − 3m0m1m′0 + m2
0m′1

(m0m1)2 . (217)

Proof. The definitions in (213) imply the following formulas.

EG− F2 = m0m1, (218)

1
2

Eu = um′1 − (m′1 −m′0)
uv2

u2 + v2 + (m1 −m0)
uv2

(u2 + v2)2 ,

1
2

Ev = vm′0 + (m′1 −m′0)
u2v

u2 + v2 − (m1 −m0)
u2v

(u2 + v2)2 ,

1
2

Gu = um′0 + (m′1 −m′0)
uv2

u2 + v2 − (m1 −m0)
uv2

(u2 + v2)2 ,

1
2

Gv = vm′1 − (m′1 −m′0)
u2v

u2 + v2 + (m1 −m0)
u2v

(u2 + v2)2 ,

(219)
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1
2

Evv = 2v2m′′0 + (m′′1 −m′′0 )
2u2v2

u2 + v2

+ (m′1 −m′0)
u2(u2 − 3v2)

(u2 + v2)2 − (m1 −m0)
u2(u2 − 3v2)

(u2 + v2)3 + m′0

1
2

Guu = 2u2m′′0 + (m′′1 −m′′0 )
2u2v2

u2 + v2

+ (m′1 −m′0)
v2(v2 − 3u2)

(u2 + v2)2 − (m1 −m0)
v2(v2 − 3u2)

(u2 + v2)3 + m′0,

(220)

Fuv = (m′′1 −m′′0 )
4u2v2

u2 + v2

= (m′1 −m′0)
2v4 − 4u2v2 + 2v4

(u2 + v2)2 + (m1 −m0)
−u4 + 6u2v2 − v4

(u2 + v2)3 ,

(221)

− 1
2

Evv + Fuv −
1
2

Guu = −2(u2 + v2)m′′0 − 3m′0 + m′1, (222)

Fu −
1
2

Ev = −vm′0 + (m′1 −m′0)
u2v

u2 + v2 + (m1 −m0)
v3

(u2 + v2)2

Fv −
1
2

Gu = −um′0 + (m′1 −m′0)
uv2

u2 + v2 + (m1 −m0)
u3

(u2 + v2)2 ,

(223)

det


− 1

2 Evv + Fuv − 1
2 Guu

1
2 Eu Fu − 1

2 Ev,

Fv − 1
2 Gu E F

1
2 Gv F G


= −2m0m1m′′0 (u

2 + v2)− 3m0m1m′0 + m′1m2
0 + m0m′0m′1(u

2 + v2)

−
(2m0m′0m′1 − 4m′0

2m1 + m0m′0
2 + m0m2

1)u
2v2

u2 + v2

+
m0(m1 −m0)(m′1 + m′0)2u2v2

(u2 + v2)2 − m0(m1 −m0)
2u2v2

(u2 + v2)3 ,

(224)

det


0 1

2 Ev
1
2 Gu

1
2 Ev E F

1
2 Gu F G



= −m′0
2m1(u2 + v2)−

(2m0m′0m′1 − 4m′0
2m1 + m0m′0

2 + m0m2
1)u

2v2

u2 + v2

+
m0(m1 −m0)(m′1 + m′0)2u2v2

(u2 + v2)2 − m0(m1 −m0)
2u2v2

(u2 + v2)3 .

(225)

Finally,

K =
(m′0

2m1 + m0m′0m′1 − 2m0m1m′′0 )(u
2 + v2)− 3m0m1m′0 + m2

0m′1
(m0m1)2 . (226)
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Noticing that u2 + v2 = ‖x‖2, we have

K =
(m′0

2m1 + m0m′0m′1 − 2m0m1m′′0 )‖x‖2 − 3m0m1m′0 + m2
0m′1

(m0m1)2 , (227)

as desired.

5.3. Gaussian Curvatures of Several Particular Spaces

For the space B with the Einstein addition ⊕E we have, by [21],

m0,E(‖x‖2) =
1

1− ‖x‖2

m1,E(‖x‖2) =
1

(1− ‖x‖2)2 .

(228)

For the functions m0 and m1 in (228), the curvature formula (227) gives

K = −1 . (229)

For the space with Möbius addition we have, by [21],

m0,M(‖x‖2) =
1

(1− ‖x‖2)2

m1,M(‖x‖2) =
1

(1− ‖x‖2)2 .

(230)

For the functions m0 and m1 in (230), the curvature formula (227) gives

K = −4 . (231)

For the space with the set of geodesics that are cogyrolines for Einstein addition, that is, for the
space with the canonical metric tensor (106), we have, by (105),

m0,co,E(‖x‖2) =
1

1− ‖x‖2

m1,co,E(‖x‖2) =
1

(1− ‖x‖2)3 .

(232)

For the functions m0 and m1 in (232), the curvature formula (227) gives

K = 0 . (233)

For the space with the set of geodesics that are cogyrolines for Möbius addition (i.e., for the space
with the canonical metric tensor (167)), we have, by (166),

m0,co,M(‖x‖2) =
1

(1− ‖x‖2)2

m1,co,M(‖x‖2) =
(1 + ‖x‖2)2

(1− ‖x‖2)4 .

(234)
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For the functions m0 and m1 in (234), the curvature formula (227) gives

K = 0 . (235)

5.4. Spaces with Zero Gaussian Curvature

In this subsection we find conditions on the functions m0 and m1 under which the Gaussian
curvature K is equal to zero, and check these conditions for the canonical metric tensors generated by
cogyrolines (208). Recall that according to Assumption 1 we have m0(0) = m1(0) = 1. Let us denote
by z the argument ‖x‖2 in the curvature formula (227).

Theorem 8. The Gaussian curvature of a canonical metric tensor G parametrized by functions m0 and m1 is
equal to zero if and only if

m1(z)m0(z) = [(zm0(z))′]2 . (236)

Proof. According to (227) the Gaussian curvature K is equal to zero if and only if

m′1
m1

=
3m0m′0 + 2zm0m′′0 − zm′0

2

m2
0 + zm0m′0

. (237)

The right-hand side of (237) is equal to

2
(m2

0 + zm0m′0)
′

m2
0 + zm0m′0

− 3
m′0
m0

=

[
ln

(m2
0 + zm0m′0)

2

m3
0

]′
. (238)

Therefore Equation (237) may be integrated, obtaining

m1 = C
(m2

0 + zm0m′0)
2

m3
0

= C
[(zm0)

′]2

m0
. (239)

Using the normalization condition m0(0) = m1(0) = 1, we get C = 1. Hence, the space with the
functions m0 and m1 parametrizing the canonical metric tensor G has the Gaussian curvature equal to
zero if and only if

m1(z)m0(z) = [(zm0(z))′]2 . (240)

We have seen that the curvature of spaces defined by cogyrolines of Einstein addition or Möbius
additions are equal to zero. Let us check if the same property holds for all the spaces considered in
Section 3.

Theorem 9. Let G be a canonical metric tensor parametrized by the functions m0,co,ϕ and m1,co,ϕ given by (207),
that is,

m0,co,ϕ(r2) =
ϕ̃(r)2

ϕ̃′(0)2r2(1− ϕ̃(r)2)
,

m1,co,ϕ(r2) =
ϕ̃′(r)2

ϕ̃′(0)2(1− ϕ̃(r)2)3 .

(241)

Then the corresponding Gaussian curvature is equal to zero.
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Proof. We need to check Condition (236). Since

zm0,co,ϕ(z) =
ϕ̃(
√

z)2

ϕ̃′(0)2(1− ϕ̃(
√

z)2)
, (242)

we have [
(zm0,co,ϕ(z))′

]2

=

[
ϕ̃(
√

z)ϕ̃(
√

z)′√
zϕ̃′(0)2(1− ϕ̃(

√
z)2)

]2

= m0,co,ϕ(z)m1,co,ϕ(z). (243)

Hence, Equation (236) is satisfied, and the theorem is proved.

Thus, for every function ϕ̃ the curvature of the space, defined by cogyrolines of spaces with a
canonical metric tensor Gϕ in (32), is equal to zero.

6. An Open Problem

It remains an open problem, as to whether there exist binary operations in B other than those
described in Section 3, for which Properties (15)–(19) are satisfied, and the gyration operators are linear
with unitary matrices.
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