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Abstract: A continuum model for tumor invasion in a two-dimensional spatial domain based on the
interaction of the urokinase plasminogen activation system with a model for cancer cell dynamics
is proposed. The arising system of partial differential equations is numerically solved using the
finite element method. We simulated a portion of biological tissue imposing no flux boundary
conditions. We monitored the cancer cell dynamics, as well the degradation of an extra cellular matrix
representative, vitronectin, and the evolution of a specific degrading enzyme, plasmin, inside the
biological tissue. The computations were parameterized as a function of the indirect cell proliferation
induced by a plasminogen activator inhibitor binding to vitronectin and of the indirect plasmin
deactivation due to the plasminogen activator inhibitor binding to the urokinase plasminogen
activator. Their role during the cancer dynamical evolution was identified, together with a possible
marker helping the mapping of the cancer invasive front. Our results indicate that indirect cancer
cell proliferation biases the speed of the tumor invasive front as well as the heterogeneity of the
cancer cell clustering and networking, as it ultimately acts on the proteolytic activity supporting
cancer formation. Because of the initial conditions imposed, the numerical solutions of the model
show a symmetrical dynamical evolution of heterogeneities inside the simulated domain. Moreover,
an increase of up to about 12% in the invasion speed was observed, increasing the rate of indirect
cancer cell proliferation, while increasing the plasmin deactivation rate inhibits heterogeneities and
networking. As cancer cell proliferation causes vitronectin consumption and plasmin formation,
the intensities of the concentration maps of both vitronectin and plasmin are superimposable to the
cancer cell concentration maps. The qualitative imprinting that cancer cells leave on the extra cellular
matrix during the time evolution as well their activity area is identified, framing the numerical results
in the context of a methodology aimed at diagnostic and therapeutic improvement.
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1. Introduction

Tumor proliferation and growth are governed by complex mechanisms, involving several cell
types, in which mutual molecular interactions are mediated by a variety of chemical signaling [1–3].
In the last decades, besides clinical and experimental studies, mathematical modeling has provided an
important tool for the investigation of oncologic diseases, in order to orient both biomathematics and
bioengineering research towards improvement of diagnostic and therapeutic methodologies. In general,
cancer proliferation is a multi-scale process, beginning at the sub-cellular level, passing through the
intercellular one, and ending at the tissue level [1,4,5]. Consequently, a wealth of model studies has
been produced contributing to a better comprehension of the matter [6–12].

Since early studies, the tumor invasion process has been described in terms of reaction–diffusion
models; see, among others, studies [13–15] and references therein. Cell adhesion effects in tumor growth
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have been investigated [16–19], whereas recent research interest focused on the role of proteolysis in
tumor proliferation and invasion, and in particular matrix metalloproteinases (MMP) [20] and the
urokinase plasminogen activator (uPA) [21,22]; the latter, in particular, is an enzyme that activates the
abundantly present but inactive plasminogen to its active and extra-cellular matrix (ECM) degrading
form, plasmin, ultimately promoting cancer invasion.

Once cancer cells have been seeded, malignant cell proliferation begins with cell growth in the
avascular phase [23–27]; then cancer cells stimulate angiogenesis [28–32], the mechanism responsible
for the formation of new blood vessels around the tumor mass, allowing nutrients to feed malignant
cells [33–35]. At this stage, the new vasculature allows both tumor growth enhancement and an
increase in invasion speed of the healthy tissue; metastasis, which is one of the hallmarks of cancer,
takes place [3,31,36,37]. It consists of the spread of cancer cells away from their initial localization
through vascular and lymphatic systems.

Cancer cells are considered as immersed in the ECM, which is a medium containing all the
nutrients necessary for cell growth, where a complex chemical signaling activated by the enzymatic
system triggers the degradation of proteins such as vitronectin (VN). We are concerned with the role
played in the ECM proteolysis by the urokinase plasminogen activator (uPA) enzyme, together with an
ECM degrading enzyme, plasmin, and a specific inhibitor secreted by healthy cells in order to regulate
proteolysis, the plasminogen activator inhibitor type-1 (PAI-1). Then, considering the uPA system
as constituted by uPA, VN, plasmin, and PAI-1, its coupling with cancer cells dynamics gives us a
dynamical model for tumor progression in which the cancer cell motility process is accounted for not
only by diffusion mechanisms, but also by chemotactic and haptotactic stimuli [21,22].

Chemotaxis occurs when cancer cells move because they are attracted by sensed chemical species
dissolved in the ECM. It can happen that the sensed chemicals are not solved, but adhere to some ECM
component, specifically VN, to form a chemical/VN complex. At this point, cancer cells can bind to such
chemicals, ultimately all moving together, until another chemical/VN complex is encountered carrying
a chemical at a higher concentration, onto which the transported cancer cell can attach, making a
new bond; such a movement mechanism is called haptotaxis. In both chemotaxis and haptotaxis,
cancer cells move according to concentration gradients of the sensed chemicals influencing the cell
migration inside the ECM.

Cancer cells’ proliferation and growth consist of a complex system of chemical signaling among
several biological players, which needs to be schematized and simplified when mathematically
modeled; for this reason, in the model description some biological details will be omitted, together with
the discussion of biological mechanisms not explicitly included in the modeling scheme. We direct
the interested reader to [21,38,39] for further details. To invade the healthy tissue, cancer cells trigger
the degradation of the ECM macromolecules, such as VN, by secreting the uPA enzyme, a serine
protease that activate plasminogen to plasmin. Plasminogen is a protein present in ECM as well
as in the blood, while plasmin degrades basement membranes and ECM. uPA binds to its cellular
receptor uPAR, which in turn contains a binding site for vitronectin [21]. uPA activity is inhibited by
the plasminogen activator inhibitor PAI-1, a specific inhibitor secreted by healthy cells that regulates
excesses of proteolysis induced by uPA [21], which is present in plasma and tissues [40]. The binding
with VN stabilizes PAI-1 [41]. Cell migration is reduced by PAI-1, as well as by uPA inhibition and by
competing with integrin for a binding site on VN [42]. On the other hand, through a regulatory effect
of the uPAR/VN binding, PAI-1 may promote cellular motility [43].

The evolution of the model depicted above takes into account the interaction of cancer cell
dynamics with the uPA system, expressed in terms of partial differential equations (PDE). Efforts have
been made in recent years to improve the mathematical modeling of cancer invasion and to develop
appropriate computational techniques. Solid tumor growth has been modeled in the frame of the theory
of mixtures [44–46], using computational techniques based on the level set method [47,48], as well
adaptive [49,50], multi-grid [46], finite difference [22], and hybrid finite volume/finite element [51]
algorithms. Very recently, a two-scale approach for cancer invasion was implemented [52] in order to
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obtain a qualitative description of the tumor invasive pattern, using a mixed finite difference/finite
element discretization for, respectively, macro- and micro-dynamics approximations.

In a series of papers [53–57], we investigated cancer cell proliferation and growth in human tissue,
modeling different biological conditions in the early avascular phase. We simulated the invasion in
one-dimensional domains in which the arising system of PDE was solved using the moving mesh
partial differential equation (MMPDE) numerical technique, implemented in the finite element method
(FEM) [58]. We found that solid tumor progression is characterized by irregular proliferation patterns,
with effects depending on the diffusion properties of cancer cells as well as on crowding and nutrient
parameters. Despite the variety of studies performed up to now, the need for thorough investigations
of tumor heterogeneities arises due to their relevant role in cancer treatments. In fact, an accurate
determination of tumors’ spatial extensions and invasive fronts can give precious indications from
both clinical and surgical point of views. In this respect, the contribution from mathematical modeling
can provide sophisticated models and similarly sophisticated simulations for the biological systems
considered. The recent work of Peng et al. [52] tackled the problem of studying the neighborhood of
the invasive edge of the tumor using a two-scale model for the interaction of cancer cells with the
uPA system in two spatial dimensions. Their numerical results give a qualitative contour of tumors’
invasive front by relying on micro-dynamics computations. Nevertheless, other finer mechanisms can
act on the system; they were not yet included in the models, being considered secondary.

In the present study we implemented a model in a two-dimensional domain in order to simulate
cancer invasion in the early avascular phase of a thin slice of biological tissue, when the malignant
formation is confined to a small volume, typically within a cubic millimeter [27]. The arising PDE
system was solved using the FEM. We focused our attention on the PAI-1 protein as an inhibitor of uPA
activity, and in particular on the mechanisms that are triggered when PAI-1/VN and PAI-1/uPA bonds
occur; for this reason our model differs from the one presented in study [22], but also from that of
study [21]. We monitored the dynamical evolution of cancer cells, vitronectin, and plasmin-degrading
enzymes, allowing the highlighting of regions of augmented degrading activity as a function of
two parameters accounting for the abovementioned mechanisms in cancer dynamics: indirect cell
proliferation induced by PAI-1/VN binding and indirect plasmin deactivation due to the PAI-1/uPA
binding. After an initial invasive front propagating symmetrically towards the domain boundaries,
the numerical solutions show sharp heterogeneous clusters that exhibit certain symmetries concerning
their spatial distribution. The obtained numerical results allow us to conclude that the modeled indirect
mechanisms influence the speed of the tumor invasion front and its heterogeneous development.
Additionally, monitoring the plasmin concentration maps during the tumor evolution gives a finer
indication of the tumor activity area inside the simulated domain, and as a result is more sensitive to
the biological dynamics with respect to the VN maps as well as to the cancer cell maps themselves.
In the next section we will refer to the model introduced in [22], which we modified in order to account
for the indirect contributions described above.

2. Theory and Method

Considering a portion of biological tissue in which a cluster of cancer cells is initially seeded,
we monitor the dynamical evolution during their interaction with the uPA system components inside
the domain. We denote with Ω ⊂ R3 a fixed volume occupied by the tissue, having S as its bounding
surface and n as the number of interacting species in Ω; at each time step t ∈ [0,T] and position
x = (x,y,z) ∈Ω, ci = ci (x,t), for i = 1, . . . , n, represents the concentration of the ith species in Ω.
Then, introducing c = (c1, . . . , cn), the mass conservation law for each species gives:

d
dt

∫
Ω

ci(x, t)dx = −

∫
S

ϕi(x, t) · dS +

∫
Ω

fi(c)dV (1)
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where fi(c) is a source term taking into account contributions coming from all the interacting species in
Ω, andϕi(x,t) is the flux of ci through S. From Equation (1), using the divergence theorem, the evolution
equation for the ith species is obtained:

∂ci
∂t

= −∇ ·ϕi + fi(c), i = 1, . . . n. (2)

In the following we define that, for i = 1, . . . , 5, each concentration ci(x,t) corresponds, respectively,
to cancer cells (c), VN (v), uPA (u), PAI-1 (p), and plasmin (m).

From the general Equation (2), we move on to examine the model equation for each of the
interacting species inside the biological tissue. Contributions to cancer cells dynamics come from
random diffusion at a rate Dc; haptotaxis due to VN and chemotaxis due to uPA and PAI-1, are accounted
for by the χv, χu and χp coefficients, respectively; cell production is accounted for by the logistic term
through the µ1 coefficient. We next turn our attention to PAI-1/VN interaction near the cancer cell’s
surface, since it is relevant for the mass conservation of cancer cells. In Chaplain and Lolas [21] it was
observed that such a bond indirectly promotes cancer cell proliferation. The mechanism starts as a
signaling triggered by PAI-1/VN binding; PAI-1 molecules removed by VN result in the activation of
the uPA to cancer cell binding through the uPA receptor (uPAR) located at the cell surface, which in
turn activates plasmin formation, which can be considered a PAI-1/VN by-product fostering cancer
proliferation. Then, we account for such indirect proliferation mechanism with the φ14 coefficient:

∂c
∂t

= ∇ ·
[
Dc∇c− c

(
χv∇v + χu∇u + χp∇p

)]
+ µ1c(1− c/c0) + φ14pv. (3)

The constant c0 is intended as the carrying capacity of the cancer cell population, and will be
defined later on, also for scaling purposes. The ECM representative VN macromolecule is confined
within the cellular environment, and then the relative flux term vanishes giving the model equation:

∂v
∂t

= φ21up + µ2v(1− v/v0) −φ22vp− δvm (4)

Contributions to the above equation come from production due, indirectly, to uPA/PAI-1 interaction
at a rate φ21: such binding, in fact, facilitates the VN binding to uPAR, then initiating a signaling
promoting its own production [21,22,52]. A logistic proliferation is also present at rate µ2, while VN
consumption, instead, is due to its neutralization by PAI-1 and its degradation by plasmin, at rates φ22

and δ, respectively. Similarly to cancer cell population, in Equation (4) the constant v0 is intended as
the carrying capacity of the vitronectin population, which will be used for scaling purposes later on.

Concerning uPA, it diffuses at a rate Du, and is produced by cancer cells at a rate α31; moreover,
it is inhibited via interaction with PAI-1 and degraded by interaction with cancer cells, at rates φ31 and
φ33, respectively:

∂u
∂t

= ∇ · (Du∇u) + α31c−φ31pu−φ33cu (5)

In the mass conservation for PAI-1, besides its diffusion at a rate Dp, a term accounting for PAI-1
production by healthy cells at a rate α41 is present, triggered by chemical signaling starting from
plasminogen activation [21]. PAI-1 degradation comes from its interaction with uPA and VN at rates
φ41 and φ42, respectively:

∂p
∂t

= ∇ ·
(
Dp∇p

)
+ α41m−φ41pu−φ42pv (6)

Concerning plasmin, besides its diffusion at a rate Dm, it is indirectly promoted by the PAI-1/VN
and cancer cells/uPA interactions at rates φ52 and φ53, respectively. In fact, uPA binds to its uPAR
receptor, which is located at the cell surface, where proteolytic activity increases due to uPA plasminogen
activation to plasmin [21,22,52]. On the other hand, as in the case of the cancer cells equation, the binding
PAI-1/VN promotes the interaction of uPA with cancer cells via the uPAR, inducing indirect plasmin
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formation through the activation of plasminogen to plasmin [21,22]. Plasmin degrades globally [22]
at a rate φ54. On the other hand, the PAI-1/uPA binding prevents the activation of plasminogen to
plasmin by uPA, resulting in indirect inhibition of plasmin formation [21]; we then introduce such a
contribution through the φ51 coefficient:

∂m
∂t

= ∇ · (Dm∇m) −φ51pu + φ52pv + φ53cu−φ54m. (7)

In Figure 1 we visually summarize the complex plot of interactions among the five species involved
in the model. It was derived from paper [53], and the modeled mechanisms are highlighted with
dashed lines: red lines refer to indirect proliferation contribution due to PAI-1/VN binding, whilst green
lines refer to indirect plasmin deactivation from PAI-1/uPA binding.
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Figure 1. Visual overview schematizing the interactions among the species inside the simulated domain,
imposing zero-flux boundary conditions. Red dashed lines refer to indirect cancer cells proliferation
due to plasminogen activator inhibitor tpe-1 (PAI-1)/vitronectin (VN) binding; green dashed lines refer
to indirect plasmin deactivation from PAI-1/urokinase plasminogen activator (uPA) binding.

The set of Equations (3)–(7) constitutes a system of non-linear coupled PDE, which we solved over a
two-dimensional domain in order to obtain the tumor dynamical evolution. We imposed the following
set of initial conditions: c(x,0) = exp(−|x|2ε−1), v(x,0) = 1 − 0.5c(x,0), u(x,0) = 0.5c(x,0), p(x,0) = 0.05c(x,0),
and m(x,0) = 0, where ε = 0.01 mm2. In other words, we define that at t = 0 the domain occupied by
the biological tissue is almost filled by the ECM, and an initial cluster of cancer cells already exists.
Chemical signaling in the biological environment starts the production of uPA and PAI-1 proportionally
to cancer cells, while plasmin will be produced later, during the evolution process. Since we simulated
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the cancer cell proliferation in the early stage of the tumor formation, we posited that all the system
components stay confined within the biological domain, and then we applied zero-flux boundary
conditions to the domain boundaries. The spatial FEM discretization was performed using the method
of lines, with a uniform, mapped mesh with 104 elements, over a two-dimensional spatial domain with
a 1 mm2 area, while for time discretization we used an implicit Euler method. Moreover, the local
variable distribution was interpolated with quadratic shape functions, using Galerkin’s method for the
residuals of differential equations [58].

For computational convenience we chose to non-dimensionalize the model Equations (3)–(7);
we then introduced a set of reference quantities taken from the literature [22], representative of
typical values for the considered system that we use to rescale the variables and the parameters
entering into the model. In particular, cancer cells and VN were scaled to their carrying capacity,
c0 = 6.7 × 107 cell cm−3, and v0 = 1 nM, respectively; for uPA, PAI-1 and plasmin, instead, u0 = 1 nM,
p0 = 1 nM, and m0 = 0.1 nM were used, respectively. We also obtained from the literature all of the
parameters used in the model [21,22], markedly the reference value D = 10−6 cm2s−1 used to scale
the diffusion coefficients and the reference distance for cancer cells in the early stages of invasion,
L = 0.1 cm, used to scale the spatial dimensions. It follows that defining τ = L2D−1 = 104, time is
scaled accordingly. Cancer cell proliferation indirectly induced by PAI-1/VN interaction was monitored
imposing φ14 ∈ [0, 0.275, 0.55]. This choice was determined after noticing that the parameter values
for the PAI-1/VN interaction fall within the non-dimensional range 0 ÷ 0.55 [21,22,52,53]. Moreover,
in [21], the authors used a plasmin deactivation rate indirectly induced by the PAI-1/uPA interaction
falling within the non-dimensional range 0.15 ÷ 0.75; we thus chose the parameter φ51 ∈[0, 0.375, 0.75].
The other parameters used in the model simulation are summarized in Table 1, first column, while in
the third and fourth columns their non-dimensional forms and non-dimensional values are reported,
respectively. We performed our computations over a two-dimensional biological tissue, discretizing
the domain for a x ∈ [0,1], y ∈ [0,1] non-dimensional interval, for t ∈ [0,100] corresponding to about
11.6 days, with a time step size δt = 0.1.

Table 1. Summary of the parameters used in the simulations.

Parameter Units Non-Dimensional Parameter Value Description

Dc cm2s−1 Dc/D 3.5 × 10−4 Cancer cell diffusion coefficient
Du cm2s−1 Du/D 2.5 × 10−3 uPA 1 diffusion coefficient
Dp cm2s−1 Dp/D 3.5 × 10−3 PAI – 1 2 diffusion coefficient
Dm cm2s−1 Dm/D 4.91 × 10−3 Plasmin diffusion coefficient
χu cm2s−1nM−1 u0D−1χu 3.05 × 10−2 uPA chemotactic coefficient
χp cm2s−1nM−1 p0D−1χp 3.75 × 10−2 PAI -1 chemotactic coefficient
χv cm2s−1nM−1 v0D−1χv 2.85 × 10−2 VN 3 haptotactic coefficient
µ1 s−1 τµ1 0.25 Cancer cell proliferation rate
µ2 s−1 τµ2 0.15 ECM 4 proliferation rate
α31 cell−1cm3s−1nM τc0u0

−1α31 0.215 uPA production rate
α41 s−1 τm0p0

−1α41 0.5 PAI - 1 production rate
δ s−1nM−1 τm0δ 8.15 VN degradation rate from interaction with plasmin
φ14 cell cm−3s−1nM−2 τp0v0c0

−1φ14 0, 0.275, 0.55 Cancer cell proliferation rate from PAI-1/VN interaction
φ21 s−1nM−1 τu0p0v0

−1φ21 0.75 VN production rate from uPA/PAI-1 interaction
φ22 s−1nM−1 τp0φ22 0.55 VN neutralization rate from interaction with PAI-1
φ31 s−1nM−1 τp0φ31 0.75 uPA inhibition rate from interaction with PAI-1
φ33 cell−1cm3s−1 τc0φ33 0.3 uPA degradation rate from interaction with uPAR
φ41 s−1nM−1 τu0φ41 0.75 PAI-1 degradation rate from interaction with uPA
φ42 s−1nM−1 τv0φ42 0.55 PAI-1 degradation rate from interaction with VN
φ51 s−1nM−1 τp0u0m0

−1φ51 0, 0.375, 0.75 Plasmin deactivation rate from PAI-1/uPA interaction
φ52 s−1nM−1 τp0v0m0

−1φ52 0.11 Plasmin production rate from PAI-1/VN interaction
φ53 cell−1cm3s−1 τu0c0m0

−1φ53 0.75 Plasmin production rate from cancer cell/uPA interaction
φ54 s−1 τφ54 0.5 Plasmin degradation rate

1 urokinase plasminogen activator; 2 plasminogen activator inhibitor type-1; 3 vitronectin; 4 extra-cellular matrix.

3. Results and Discussion

We started our computations using the parameter values reported in Table 1 with φ51 = 0,
i.e., considering that plasmin deactivation indirectly induced by the PAI-1/uPA interaction is initially
zero, and for φ14 ∈ [0, 0.275, 0.55]. In Figures 2–4 the concentration maps over the simulated domain are
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shown for, respectively, cancer cells, VN, and plasmin, with snapshots taken at t = 40 (about 4.6 days),
60 (about 6.9 days), 80 (about 9.3 days), and 100 (about 11.6 days), as labeled at the beginning of each
panel row; in each column, instead, panels are grouped according to the labeled φ14 value above them.
Concentrations are linearly mapped on a color scale between the blue and yellow colors. At t = 0
the variables’ distribution is according to the initial conditions, hence they are omitted. The above
graphical scheme will be maintained throughout the paper.
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parameters are as in Table 1. The concentration is linearly mapped on a color scale between the blue
and yellow colors.
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As shown in Figure 2, at t = 40, the initial cluster of cancer cells seeded at x = (0,0) grew, and the
invasion front developed while propagating with a sharp wave-front inside the squared domain, with a
slight increasing invasion speed from φ14 = 0 to φ14 = 0.55; at t = 60 the invasion front reached the
domain boundaries crushing on them, and at the same time a faintly visible secondary invasion front
started propagating near x = (0,0). Because of the boundary conditions imposed, all of the interacting
species remained confined into the domain; hence from t = 80 to t = 100, while the first invasion front
stayed crushed on the domain boundaries, the secondary invasion front started degrading itself in a
diffuse and heterogeneous pattern of cancer cells. At t = 80 we observe cancer cells heterogeneously
arranged in a network-like structure clustering with growing φ14 values. At t = 100 the cancer cell
distribution appeared branched with φ14 = 0, evolving towards denser and more heterogeneous
cell clusters for increasing φ14 values. Cancer cells are spread out over the whole domain, even if
their nucleation is not clearly visible on the boundary surfaces. Additionally, a symmetry of the
heterogeneities spatial distribution with respect to the diagonal, starting from the domain origin,
is observed, due to the initial conditions imposed for the solution of the PDE system.
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Concerning VN distribution, shown in Figure 3—it should behave like the film-negative of the
corresponding cancer cell distribution shown in Figure 2: at t = 0 (not shown) the domain was filled
with the ECM, except for the initial cluster of cancer cells. For t > 0 the tumor invasion began, and the
ECM was progressively degraded, leaving, for t = 60, a residual background inside the domain
whose intensity depends on the φ14 parameter. In fact, the VN distribution was eroded at the domain
boundaries and near x = (0,0), while inside the simulated domain the VN diffusion increased according
to the φ14 value. At t = 80, nevertheless, the VN maps unexpectedly showed a growing concentration
according to the cancer cell clustering (see Figure 2) where instead VN should have been consumed.
Such a behavior in part persisted at t = 100, though it was limited to certain regions of the simulated
domain, particularly for φ14 = 0. This matter turns clearer looking at the plasmin concentration of
Figure 4: in each panel, the map overlaps with the corresponding map of Figure 2, showing diffuse
patterns related to the activity area of cancer cells, especially at the boundary regions, which are not
well visible in Figure 2.

The model simulations for φ51 = 0.375 are shown in Figures 5–7 for, respectively, cancer cells,
VN, and plasmin. Comparing the concentration maps for cancer cells at t = 40 and t = 60 of Figures 2
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and 5, indirect plasmin deactivation did not seem to influence the speed of the invasion front, depending
only on φ14. At the higher time steps, instead, the network branching became sharper with respect
to Figure 2, with the mesh size reducing faster as φ14 increased. Moreover, the cancer cell clusters
appeared more densely distributed and interconnected across the domain, both at t = 80 and at t = 100.

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 20 

Symmetry 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/symmetry 

cells heterogeneously arranged in a network-like structure clustering with growing φ14 values. At t = 
100 the cancer cell distribution appeared branched with φ14 = 0, evolving towards denser and more 
heterogeneous cell clusters for increasing φ14 values. Cancer cells are spread out over the whole 
domain, even if their nucleation is not clearly visible on the boundary surfaces. Additionally, a 
symmetry of the heterogeneities spatial distribution with respect to the diagonal, starting from the 
domain origin, is observed, due to the initial conditions imposed for the solution of the PDE system. 

Concerning VN distribution, shown in Figure 3—it should behave like the film-negative of the 
corresponding cancer cell distribution shown in Figure 2: at t = 0 (not shown) the domain was filled 
with the ECM, except for the initial cluster of cancer cells. For t > 0 the tumor invasion began, and the 
ECM was progressively degraded, leaving, for t = 60, a residual background inside the domain 
whose intensity depends on the φ14 parameter. In fact, the VN distribution was eroded at the domain 
boundaries and near x = (0,0), while inside the simulated domain the VN diffusion increased 
according to the φ14 value. At t = 80, nevertheless, the VN maps unexpectedly showed a growing 
concentration according to the cancer cell clustering (see Figure 2) where instead VN should have 
been consumed. Such a behavior in part persisted at t = 100, though it was limited to certain regions 
of the simulated domain, particularly for φ14 = 0. This matter turns clearer looking at the plasmin 
concentration of Figure 4: in each panel, the map overlaps with the corresponding map of Figure 2, 
showing diffuse patterns related to the activity area of cancer cells, especially at the boundary 
regions, which are not well visible in Figure 2. 

The model simulations for φ51 = 0.375 are shown in Figures 5–7 for, respectively, cancer cells, 
VN, and plasmin. Comparing the concentration maps for cancer cells at t = 40 and t = 60 of Figures 2 
and 5, indirect plasmin deactivation did not seem to influence the speed of the invasion front, 
depending only on φ14. At the higher time steps, instead, the network branching became sharper 
with respect to Figure 2, with the mesh size reducing faster as φ14 increased. Moreover, the cancer cell 
clusters appeared more densely distributed and interconnected across the domain, both at t = 80 and 
at t = 100.  

The VN concentration maps, shown in Figure 6, give us a clear negative image of the cancer cell 
distribution of Figure 5, also for the higher time steps, contrary to the case with φ51 = 0. In addition, 
the plasmin distribution, shown in Figure 7, which is superimposable to the cancer cell maps of 
Figure 5, exhibited a diffuse pattern, further evidencing the tumor activity regions inside the 
simulated domain, especially close to the domain boundaries. 

t φ14 = 0 φ14 = 0.275 φ14 = 0.55 

40 

   

60 

   
Symmetry 2020, 12, x FOR PEER REVIEW 11 of 20 

Symmetry 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/symmetry 

80 

   

100 

   

Figure 5. Snapshots of cancer cell concentrations obtained in the simulated domain imposing φ51 = 
0.375. The non-dimensional time steps are t = 40, 60, 80, and 100, while φ14 = 0, 0.275, and 0.55; the 
other parameters are as in Table 1. The concentration is linearly mapped on a color scale between the 
blue and yellow colors. 

t  φ14 = 0 φ14 = 0.275 φ14 = 0.55 

40 

   

60 

   

80 

   

Figure 5. Snapshots of cancer cell concentrations obtained in the simulated domain imposingφ51 = 0.375.
The non-dimensional time steps are t = 40, 60, 80, and 100, while φ14 = 0, 0.275, and 0.55; the other
parameters are as in Table 1. The concentration is linearly mapped on a color scale between the blue
and yellow colors.

The VN concentration maps, shown in Figure 6, give us a clear negative image of the cancer cell
distribution of Figure 5, also for the higher time steps, contrary to the case with φ51 = 0. In addition,
the plasmin distribution, shown in Figure 7, which is superimposable to the cancer cell maps of Figure 5,
exhibited a diffuse pattern, further evidencing the tumor activity regions inside the simulated domain,
especially close to the domain boundaries.

Imposing a plasmin deactivation coefficient φ51 = 0.75, the distribution maps for cancer cells,
shown in Figure 8, were similar to the previous cases, as far as the lower time steps are concerned.
For t = 80, instead, the network branching appeared to be slightly affected by theφ14 coefficient, while at
t = 100 the branching seemed inhibited, particularly at lower φ14 values. Concerning VN, as shown in
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Figure 9, the concentration maps appeared even more definite, while the plasmin concentration maps,
shown in Figure 10, always enhanced cancer cell activity regions.
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Figure 6. Snapshots of VN concentrations obtained in the simulated domain imposing φ51 = 0.375.
The non-dimensional time steps are t = 40, 60, 80, and 100, while φ14 = 0, 0.275, and 0.55; the other
parameters are as in Table 1. The concentration is linearly mapped on a color scale between the blue
and yellow colors.

Some considerations need to be taken into account concerning the changing VN behavior from φ51

= 0 toφ51 = 0.375 andφ51 = 0.75. As cancer cell proliferation occurs at the expense of VN, the suppression
of the plasmin deactivation contribution by imposingφ51 = 0 should produce a decrease in VN; however,
an unexpected and unreasonable growth of VN concentration was observed—see Figure 3 at t = 80
and t = 100. We can thus deduce that contributions coming from indirect plasmin deactivation that
is different from zero improves the model and makes it more realistic. During the early stage of the
tumor proliferation at the expense of VN, the primary invasion front intensity grew until t = 60, when it
crushed on the domain boundaries, and the secondary front started to grow from the original seeding
site. Whatever the values of φ14 and φ51 were, such an occurrence was evidenced in the maps of both
VN and plasmin. At this stage, the VN degradation by the primary invasion front was not complete,
as witnessed by the presence of the background at t = 60; therefore some residual healthy tissue
remained in the domain, on which the secondary invasion front could proliferate. In fact, for t > 60,
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the domain became completely invaded, and clusters of cancer cells spread and branched all over
it, starting to build a network as the secondary invasion front evolved. Nevertheless, the VN maps
for t > 60 evidenced that residual healthy ECM was still present, except for domain regions where
the degrading activity of cancer cells left a kind of imprint in correspondence to high concentration
areas of cancer cells. A similar behavior was observed in [52], where the authors simulated tumor
progression in a two-dimensional domain, also exploring the micro-dynamics of cancer invasion;
their qualitative drawing of the tumor invasive boundary appeared, on average, to be in agreement
with ECM consumption maps, except at higher time steps. By comparison, our results, obtained on a
spatial domain four times smaller and using a different model, with different model parameters and a
different numerical method, while using the FEM and interpolating the variable distribution inside
each element with quadratic shape functions, gave us a numerical result similar to that obtained with
the mixed method used in [52] at a lower computational cost.
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Figure 7. Snapshots of plasmin concentration obtained in the simulated domain imposing φ51 = 0.375.
The non-dimensional time steps are t = 40, 60, 80, and 100, while φ14 = 0, 0.275, and 0.55; the other
parameters are as in Table 1. The concentration is linearly mapped on a color scale between the blue
and yellow colors.

Considering the above numerical results, we can try to formulate some hypotheses on the biology
of the simulated system. First of all, we would like to point out that the branching formations observed
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in the cancer cell pattern for t > 60 are in agreement with other 2D simulations [22]. As noted above,
when increasing the φ14 coefficient a slight increase of the invasion speed occurs, regardless of the
φ51 coefficient, meaning that the tumor invasion speed can be regulated by the PAI-1/VN interactions,
as observable in Figures 2 and 5, and, at t = 40. Secondly, suppressing the contribution coming from
indirect plasmin deactivation does not seem to give reliable results, and therefore leads us to infer
that such a contribution needs to be considered. Nevertheless, focusing on the results obtained for
φ51 = 0.375 and φ51 = 0.75, in the former case the invasion patterns showed stronger heterogeneities
with respect to φ51 = 0.75, at t = 80 and t = 100, as if high plasmin deactivation rates had a limited
influence on cancer cell dynamics. Heterogeneity and fast invasion of biological tissues are hallmarks
of malignancy [3], which is then supported by increasing rates of PAI-1/VN binding. The PAI-1/uPA
binding, instead, seems to have a slower influence on cancer cell dynamics, being more detectable for
t = 100: it reverberates on plasmin deactivation, and for φ51 = 0.75 results in more stable (t = 80) and
less heterogeneous (t = 10) proliferation patterns.
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In [22] the interaction of the uPA system with cancer cells was modeled using a uniform finite
volume discretization in space, monitoring the effects of varying selected model parameters in one and
two spatial dimension. It was found that increasing the rate of plasmin production, simulated while
by taking into account its indirect production by the uPA/uPAR interaction and then by increasing
the φ53 parameter, induced a lowering of the speed of the invasion front. Our simulations, instead,
showed that indirect plasmin deactivation induced by the PAI-1/uPA interaction, therefore decreasing
the amount of available plasmin, had no effect on the speed of the invasive front.
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The non-dimensional time steps are t = 40, 60, 80, and 100, while φ14 = 0, 0.275, and 0.55; the other
parameters are as in Table 1. The concentration is linearly mapped on a color scale between the blue
and yellow colors.

It has been experimentally observed [59] that when plasmin activates on membranes of breast cells
they become malignant as plasmin induces the formation of heterogeneous multicellular spheroids.
Here we observed two somewhat competing effects triggered by the two modeled indirect mechanisms:
on the one hand, growing φ14 rates increased the speed and heterogeneities of the invasive front;
on the other hand, growing φ51 rates induced more plasmin deactivation, thus damping the φ14 action.
Such findings confirm our deductions that the plasmin patterns give an early prediction for cancer
activity, and plasmin is itself a marker for tumor formation. In paper [60] it was experimentally
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shown that PAI-1 overexpression reduces cancer cell migration in vitro, and metastasis in vivo,
through uPA inhibition, while the role of the PAI-1/VN binding in tumor invasion appears unclear;
moreover, a simultaneous interaction of PAI-1 with both vitronectin and uPA is needed to inhibit
metastasis, while the inhibition of tumor growth is primarily due to the uPA inhibitory activity of
PAI-1. Our numerical results then help distinguish the separate effects of the PAI-1/VN and PAI-1/uPA
bindings, assessing the role of the PAI-1/VN binding in heterogeneous cancer proliferation; further,
they answer the question of predicting the spatial extent of tumor formation by observing the plasmin
evolution patterns, indicating plasmin as a marker to monitor the heterogeneity of cancer evolution
in vivo. Finally, our results suggest a possible method for cancer treatments, designing therapies
aimed at supporting plasmin deactivation, and, above all, targeting PAI-1/VN binding. Furthermore,
monitoring the plasmin dynamics can give a practical tool to foresee malignant and heterogeneities
evolution. In this vein, a new series of simulations are planned using a different geometry in 2D and in
3D, in order to include in the model external contributions as well as effects due to nutrient feeding on
cancer evolution.
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4. Conclusions

In this paper we presented a mathematical model for tumor invasion, simulating the interaction
of the uPA system with a model for cancer cells in a two-dimensional portion of biological tissue in
the very early stage of invasion. We focused our attention on the concentration maps of cancer cells,
VN macromolecules as representative of the ECM environment, and plasmin, monitoring their dynamic
evolution as a function of two model parameters indirectly affecting the tumor dynamics: the plasmin
deactivation indirectly induced by the PAI-1/uPA interaction and the cancer cell proliferation indirectly
induced by the PAI-1/VN interaction. The analysis of the computed concentration maps for cancer
cells demonstrated that two regimes for the dynamical evolution can be distinguished: the first is the
very early stage of cancer cell proliferation characterized by a sharp invasion front, in the form of a
wave propagating across the domain as a consequence of ECM degradation, whose speed depends
on the φ14 parameter. At this stage, when increasing the φ14 parameter from 0 to 0.55, an average
speed increase of about 12% was observable in the cancer cell proliferation maps, and this behavior
seems independent from the φ51 parameter. Once the domain has been invaded, in the presence of a
residual ECM, as a consequence of a secondary invasive front cancer cells start to cluster inside the
domain and close to its boundaries. From here heterogeneous and symmetric structures start to branch
out in a network whose mesh size depends on the φ14 parameter. In particular, when increasing the
φ14 parameter value, the mesh tends to thicken, except for φ51 = 0.75 when changes in the φ14 value
slightly affect cancer heterogeneities. In this respect, it is noteworthy to highlight that at higher φ51

values the secondary invasion front activity appeared slightly inhibited. The VN concentration maps
can be viewed as a photograph giving a qualitative image of the boundaries of the tumor invasion
front. Nevertheless, some inconsistencies occurring in the maps at φ51 = 0, at higher time steps,
persuade us to consider this value for the parameter as unreasonable. On the other hand, viewing
the plasmin as a kind of marker for cancer formation, its concentration maps are revealed to be more
reliable in comparison to VN maps for monitoring the cancer activity area. Finally, the computed
plasmin concentration maps add useful information about the spatial extension of the tumor activity,
highlighting features not clearly visible in the cancer cell concentration maps, delimiting a kind of
“confidence interval” for malignant activity. Hence, therapies aimed at targeting the PAI-1/VN binding
and at the same time supporting the PAI-1/uPA interaction could be a strategy for effective cancer
treatments. In addition, plasmin concentration can be considered as a useful marker for an effective
delimitation of the tumor invasive boundary.
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