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Abstract: Following the idea of T. Wongyat and W. Sintunavarat, we obtain some existence and
uniqueness results for the solution of an integral equation with supremum. The paper ends with
the study of Gronwall-type theorems, comparison theorems and a result regarding a Ulam-Hyers
stability result for the corresponding fixed point problem.
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1. Introduction

The object of investigation of this paper is the qualitative theory of integral equations with
supremum. These equations arise naturally when solving real-world problems, for example in
the study of systems with automatic regulation and automatic control, problems in control theory.
These types of equations are characterized by the fact that the maximum values of some regulated
state parameters depend on certain time intervals, see for example [1] and the references therein.
Recently, the interest in differential equations with supremum has an intensive development (see [2—4]).
The aim of this paper focuses on two aspects: one is to prove existence and uniqueness results
using w-weak generalized contractions theorem; the other is to prove a Gronwall-type theorem
and comparison theorems. Using this theory symmetry is important in determining the qualitative
properties of the solution of the integral equation.

We consider the following class of integral equation with supremum

x(1) = 9(t) + [ f(t,5,%(5), sup x())ds, t € [a,8 M)

0€a,s]

with a, B real and @ < B, the functions ¢ € C ([, B],R), f € C ([, B] x [a, B] x R?,R) are given.
To prove our results, we shall use the w-weak generalized contractions theorem due to T. Wongyat and
W. Sintunavarat [5] and we obtain an existence and uniqueness result for the solutions of this equation.

2. Preliminaries

We consider (7,d) a metric space. In the sequel, we will use the following definitions and
theorems, for details, see [5,6].
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Definition 1. ([6]) Let (T, d) a metric space and a function q: T x T — [0,00). We say that q is a w-distance
on T, if the below conditions hold, for all x,y,z € T:

M q0oy) <q(xz) +q(zy);
(2)  q(x,-): T — [0,00) is lower semicontinuous;
(3)  foreach e > 0, there exists § > 0 such that q(x,y) < é and q(x,z) < 6 imply d(y,z) < e.

We recall that each metric on the nonempty set 7 is a w-distance on 7.

Definition 2 ([5]). We say that the function {: T x T — [0,00) is a wO-distance on T, if it is a w-distance
on T with q(x,x) =0, forall x € T.

Definition 3 ([5]). We say that the function : [0,00) — [0, 00) is an altering distance function, if the below
assertions hold:

(1) The function § is continuous and nondecreasing;
(2)  (t) is zero if and only if t = 0.

Definition 4 ([5]). Let (T, d) be a metric space. We say that a w-distance q is a ceiling distance of d if and
onlyifq(x,y) > d(x,y), forallx,y € T.

Definition 5 ([5]). We consider q a w-distance on the metric space (T ,d), the altering distance function
P: [0,00) — [0,00), and the continuous function ¢: [0,00) — [0, 00) with ¢(t) is zero if and only if t = 0.
If the below inequality holds we say that the operator A: T — T is a w-generalized weak contraction mapping

Y (9(A(x), A(Y))) < ¢ (m(x,y) — ¢ (qa(x,y))), forall x,y € T, @)
where
m(x,y) := max {q(x,y), q(x,A(y)) ‘;‘1 (A(x),y) } . -

If g = d, then we say that A is a generalized weak contraction mapping.

Now we consider (7,d) a complete metric space. The following fixed point result of the equation
A(x) = x, x € T via w-distances represents the motivation of our work.

Theorem 1 ([5]). We consider q: T x T — [0, 00) a continuous w-distance on T and a ceiling distance of d,
the altering distance function i [0,00) — [0, 00), and the continuous function ¢: [0,00) — [0, 00) with ¢(t)
is zero if and only if t = 0. Let A: T — T a continuous operator such that

P (q(A(x), Ay))) <o (m(x,y) —¢(q(x,y))), forallx,y € T. 4)

Then, A has a unique fixed point in T and the sequence of successive approximations {xy } ,en, defined by
xn = A"(xp), for each xg € T, for all n € N, converges to the unique fixed point of A.

For other fixed points results obtained employing the theory of w-distance, the reader is referred
to [5,7-11].

In this paper, we emphasize some connection between w-generalized weak contraction mapping
and the Picard operator theory.

In the sequel, we recall the following results (see [12-14]).

Let (7,d) be a metric space. We say that the operator A: 7 — T is weakly a Picard operator
(WPO) if the successive approximations sequence { A" (x) },cn, converges for all x € 7 and its limit
(which generally depend on x) is a fixed point of A. If an operator A is WPO with F4 = {x* }, then, we
say that the operator A is a Picard operator (PO).
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If A: T — T is a WPO, we can define the operator A®: T — F4, by A®(x) := l_gr_l A"(x).
n o

Definition 6. Let A be a weakly Picard operator and ¢ > 0. We say that the operator A is a c-weakly Picard
operator if
d(x, A®(x)) < cd(x,A(x)), forallx € T.

If 7 is a nonempty set, then (7,d, <) is an ordered metric space, where < is a partial order
relation on 7.
Now we present some properties regarding WPOs and POs.

Theorem 2 ([12]). (Characterization theorem) Let (‘T ,d) be a metric space. The operator A: T — T is WPO
if there exists a partition of T, T = AUAX A, such that
S

(@) Ty €I(A), forall A € A;
(b) Al : Ty = Tris PO, forall A € A.

Theorem 3 ([13]). (Abstract Gronwall Theorem) Let (T, d, <) be an ordered metric space and we consider the

operator A: T — T. We suppose

(i) The operator A is increasing with respect to <;
(i) A is a Picard operator with F4 = {x*}.

Then the below conclusions hold:

(i) forxeT,x <A(x)=x<x*
(ii)) forx e T,x > A(x) = x > x*.

Theorem 4 ([13]). (Abstract Comparison Lemma) Let (T ,d, <) be an ordered metric space and we consider
the operators A, B,C: T — T with the properties:

(i) A<B<LCG
(ii) A, B,C are WPOs;
(iii) B is an increasing operatot.

Then, for x,y,z € T,x <y <z = A%®(x) < B®(y) < C%(z).

We present now the concept of Hyers—-Ulam stability in the setting of metric spaces given by
LA. Rusin [15].

Definition 7. Let (7, d) be a metric space and we consider the operator A: T — T. Then, we say that the

fixed point equation
x = A(x) ®)

is Ulam—Hyers stable if there exists c 4 € RY_ such that: for any € > 0 and for each solution y* € T of (5), i.e.,
d(y*, A(y*)) < e, there exists a solution x* of (5) such that

d(y*,x*) < cye.
We recall the following abstract result of the Ulam—-Hyers stability of the fixed point Equation (5).

Theorem 5. (Ulam—Hyers stability, [15]) Let (T ,d) be a metric space. Suppose that A: T — T is a c-Picard
operator. Then, Equation (5) is Ulam—Hyers stable.

For more results regarding WPOs and POs, see [3,4,14-16].
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3. Main Result
Let the operator A: C([«, B],R) — C([«, B],R) expressed by

A(x) —i—/ftsxs,supx( ))ds, (6)

0€(a,s

where f € C([a,B] x [, 8] x R%,R), x € C([w, ], R) and t € [a, B].
Our first result is the following theorem.

Theorem 6. We consider the integral Equation (1) with o, real and a« < B, the functions ¢ €
C([a, B, R), f € C ([, B] x [a, B] x R?,R) are given. We assume the following:

(i) The operator A: C([a, B], R) — C([a, B], R) defined by (6) is continuous;
(ii) The altering distance function {: [0,00) — [0, c0) satisfies (t) < t, for all t > 0, and the continuous
function ¢: [0,00) — [0, 00) satisfies ¢p(t) is zero if and only if t = 0;

(iii) The below inequality holds

+

f(t,s,y(s), sup y(9))‘

0€[a,s] 0€a,s]

’f(tfsfx(S), sup x(6))

sup y(6)

0€a,s]

sup x(0)| +

0€a,s]

B—ua

¢ < sup [x(1)[+ sup |y(I)| + sup
I€ap] Ieap] Ie[ap]

B—ua

2‘8|§0( )| forallx ye C([ ‘B],]R), t,s € [uc,ﬁ].

¥ (IX(S)I + ly(s)l +

)

sup x(6)
o€l

<

sup y/(6)
0€al]

+ sup
1€ [wp]

)

Then the integral equation with supremum (1) has a unique solution and the sequence of successive
approximations {x, } ,en, defined by x,, = A" (xo), for each xo € C([a, B],R), for all n € N, converges to the
unique solution of Equation (1).

Proof. Let 7 = C([a, B], R) and we consider the metricd: 7 x T — [0, c0) defined as below

d(x,y) = s?pm |x(t) —y(t)], forall x,y € C([a, B],R). ?)
te|un,

It is clear that (7,d) is a complete metric space. We consider the function g: C([«, B],R) x
C([a, B],R) — [0, c0) defined by:

g(x,y) :== sup |x(t)|+ sup |y(t)|, forall x,y € C([a, B],R). (8)
te(a,pl te(n,pl

We get that g is a w-distance on 7 and also a ceiling distance of d.
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We will show that A satisfies the contraction condition (4).
[A(x)(5)] + [A(y) (8)]
t
= |<o<t> + [ Flt;s,x(s), sup x(6))ds| +
44

0eu,s]

t
D+ [ £(tsy(s), sup y(@)ds

o a,s]

B+ + o)l

/th(t,s,x(s), sup x(0))ds

0€(a,s)

/ftsy ), sup y(0))ds

0€(a,s)

< 2|p(t) +/(

f(t,s,x(s), sup x(0))| +

0€a,s]

f(t,5,y(s), sup ]/(9))‘) ds

0€a,s]

1 t
<20p(t)+5— [ [w <|x<s>|+|y<s>|+ sup x(6)| + | sup y(@))
p—ala 0€(a,s] 0€a,s]
—¢ < sup [x(I)] + sup |y(I)| + sup | sup x(6)|+ sup | sup y(6) > —2|4)(f)|] ds
le(a,pl le(a,p) le(a,f] |0€(a,]] Ie(a,f] |0€(a]]

<y —¢(q(xy))).

We obtain that

sup [Ax(t)| + sup |Ay(H)] < ¢ (9(x,y) — ¢ (4(x,y)))
te[apl tefapl

and using (8) we get

q(Ax, Ay) < (q(x,y) — ¢ (q(x,y))), forallx,y € T.

Hence we have

¥ (q(Ax, Ay)) < q(Ax, Ay) < ¥(q(x,y)) — ¢(q(x,y)), forallx,y € T.

Therefore the condition (4) holds and thus we may conclude that A has a unique fixed point. So there
exists a unique solution for the integral equation with supremum (1). [

From the above theorem, the operator A defined in (6) is a PO. Now we establish a Gronwall-type
theorem for Equation (1).

Theorem 7. We consider the integral Equation (1) with «, real, & < B, and the functions ¢ €
C([a,B,R), f € C([a,B] x [, B] x R,R) are given. We assume that the conditions (i)—(iii) from Theorem 6
hold. Furthermore, we suppose that

(iv) f(t,s,-): R — Ris an increasing function with respect to the last arqument, for all t,s € [, B].

Let x* € C([a, B], R) be the unique solution of the integral Equation (1). Then, the following conditions
are satisfied:

(1) forall x € C([a, B],R) with

)+ f (t,s, sup x(0))ds, t € [a,B],

0e(n,s]

we have x < x*;
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(2)  forall x € C([a, ], R) with

)+ f (t,s, sup x(0))ds, t € [, B],

0€(a,s]

we have x > x*.

Proof. From (iv), we have that the operator A defined in (6) is increasing with respect to the partial
order.

By the proof of Theorem 6, it follows that A is a Picard operator. The conclusion of the theorem
follows from Theorem 3. [

We establish now a comparison theorem for Equation (1), using Theorem 4.

Theorem 8. We consider the integral Equation (1) with «, B real, x < B, and we suppose that ¢; € C ([w, ], R)
and f; € C([a,B] % [a,B] xR,R), i = 1,2,3 are given. We assume that the conditions (i)-(iii) from
Theorem 6 hold. Furthermore, we suppose that

Q) p1<¢2<93 fi<for<f3
(i) @2, fo are increasing.

Let x; € C([a, B], R) be a solution of the equation

= ;¢ —I—/ﬂ (t,s, sup x( ))ds, t € [a,B],i=1,2,3.

0€a,s]
Ifx1(a) < xo(a) < x3(a), then x1 < x2 < x3.

Proof. The proof follows from the Theorem 4. O

Now we prove a Ulam-Hyers stability result for the integral Equation (1).

Theorem 9. We consider the integral equation with supremum (1) and we suppose that all the conditions of
Theorem 6 are satisfied. Then, the integral Equation (1) is Ulam—Hyers stable.

Proof. Applying Theorem 6 and Theorem 5 we get the conclusion of the theorem. [

4. Conclusions

The purpose of this paper is to establish some fixed point results for generalized contraction
operators with respect to w-distances. The operators considered here contain a supremum over a
certain time interval. Section 3 begins with an existence and uniqueness theorem proved using the
method of w-distances. Adding to the hypotheses that sustain the existence and uniqueness of the
solution, the fact that f is an increasing function, we obtain Gronwall-type and comparison theorems.
In the last part of the paper we study the Ulam-Hyers stability using Picard operators techniques.
We define a fixed point equation from the integral equation with supremum. If the defined operator is
c-weakly Picard we have Ulam-Hyers stability of the corresponding fixed point problem.
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