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Abstract: The variety of viscoelastic systems and structures, for the most part, is studied analytically,
with significant results. As a result of analytical, numerical and experimental research, which was
conducted on a larger variety of linear viscoelastic systems and structures. We analyzed the dynamic
behavior for the viscoelastic composite materials, anti-vibration viscous-elastic systems consisting of
discrete physical devices, road structures consisting of natural soil structures with mineral aggregates
and asphalt mixes, and mixed mechanic systems of insulation of the industrial vibrations consisting
of elastic and viscous devices. In this context, the compound rheological model can be schematized
as being V − (E|V) type of the Newton Voigt–Kelvin model with inertial excited mass, applicable to
linear viscoelastic materials.

Keywords: dynamic response; viscoelastic systems; Newton Voigt–Kelvin modelling; harmonic actions

1. Introduction

For some materials, systems and harmonically excited linear viscoelastic structures, the dynamic
behavior can be described by the rheological Newton Voigt–Kelvin model.

The dynamic model consists in the fact that the Newton Voigt–Kelvin linear viscoelastic system
consists of a mobile mass m driven by an inertial rotational excitation force, named dynamic action F(t),
and the fixed basis part that the dynamic action is transmitted to, named transmitted dynamic force
Q(t). [1–3].

The dynamic analysis of the response highlights the parametric evolution of the amplitudes of the
instantaneous displacements, of the transmitted dynamic force and of the dissipated energy in relation
to the continuous variation of the excitation pulsation ω or Ω = ω

ωn
and, according to the discrete

variation of the linear viscosity parameters c or ζ, where ωn is the natural pulsation of the system and ζ
is the fraction of the critical amortization so that c = 2ζωnm.

The families of curves were numerically lifted and experimentally checked on significant domains
of technical interest, the specific conclusions being established with the dynamic behavior of the
materials, systems and Newton Voigt–Kelvin V − (E|V) type modelled structured. [4,5].

A high number and are experimentally verified areas of technical interest established specific
conclusions consistent with the dynamic behavior of materials, systems and structures modeled with
Newton Voigt–Kelvin type V − (E|V). [6–8].

2. Dynamic Response at Displacements

The viscoelastic materials that can be modelled by the combination of Newton and Voigt—Kelvin
models in series, that is V − (E|V), are characterized by partial rigidity that reflects the elastic behavior
expressed by the rigidity coefficients k, as well as the dissipative viscous behavior expressed by the
partial dissipation coefficient c and the global dissipation cM, where M is a real and positive multiplier.
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The dynamic model is shown in Figure 1, where F = F(t) = F0sinωt is the disruptive force and
F0 = m0rω2 is the amplitude of disruptive force, c is the linear viscous amortization proportional to
the deformation rate of the viscous element, m is the mass, k the rigidity of the Hooke elastic element,
and kM is the overall amortization coefficient of the Newton viscous element. [9,10].
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Figure 1. Newton Voigt–Kelvin V − (E|V ) model with harmonically excited mass.

The parametric data for an experimental dynamic model are the following: m = 4 × 103 kg;
m0r = 20 kgm; k = 108 N/m; N = 10; c = (7, 9, 11, 13)× 105 Ns/m; ζ= 0.15; 0.18; 0.22; 0.32;ω = 0 ÷ 500 rad/s;
Ω = 0 ÷ 10.

The parametric values represent the result of the statistical processing for a number of over
1200 samples obtained “in situ” by vibration compaction of road structures. Thus, samples were taken
from construction sites in Romania on the following highways: Cluj—Napoca—Oradea (Transylvania),
Bucharest—Constanta, Timis, oara—Deva, Sebes, —Turda. It is mentioned that the soils used on certain
parts had a high content of sand (40%), mixed with river mineral aggregates (20%), clay (30%),
crushed stone (5%) and stabilizer (5%) [11–14].

For this composition, as a result of geotechnical tests, the rheological Newton Voigt–Kelvin model
was finalized.

The mentioned rheological model was verified at the dynamic compaction, with vibrating rollers
of the road structures with asphalt mixtures. Thus, for the mixture recipe of the asphalt cover,
which contains an increased dose of bitumen, a good behavior, according to the Newton Voigt–Kelvin
model, was found experimentally in the laboratory and “in situ”.

The Newton Voigt–Kelvin linear dynamical system of V − (E|V ) type, with m mass and x = x(t),
y = y(t) coordinates, has the unidirectional vertical displacement. Dampers have constant c and Mc,
and the spring has constant k (Figure 1).

For the system in Figure 1, the movement differential equations, expressed in complex, are as
follows [15–17]:  m

..
x̃ + Mc

( .
x̃−

.
ỹ
)
= F0e jωt

kỹ + c
.
ỹ = Mc

(̃
.
x−

.̃
y
) (1)

Solutions x̃ and ỹ are as follows:

x̃ = X̃e jωt with
.
x̃ = jωX̃e jωt and

..
x̃ = −ω2X̃e jωt

ỹ = Ỹe jωt with
.
ỹ = jωỸe jωt
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which, inserted in (1), generate an algebraic equation system in X̃ and Ỹ, as:
(
−mω2 + jcωM

)
X̃ − jcωỸ = F0

jcωMX̃ − [k + jcω(1 + M)]Ỹ = 0
(2)

with the system determinant D, as:

D =
[
mkω2 + c2ω2M2

]
− jcω

[
Mk−mω2(1 + M)

]
or

D(ζ, Ω) = k2
{[

Ω2 + (2ζΩ)2M2
]
− j(2ζΩ)

[
M−Ω2(1 + M)

]}
Solving system (2), we have:

X̃ = F0
k + jcω(1 + M)

−[mkω2 + c2ω2M2] − jcω [Mk−mω2(1 + M)]
(3)

Noting in relation (1), with a1 = k; a2 = cω(1 + M); a3 = −

[
mkω2 + c2ω2M2

]
;

a4 = cω
[
Mk−mω2(1 + M)

]
, we have:

X̃ = F0
a1 + ja2

a3 − ja4

For solution X̃ of system (2), as complex function, with j =
√
−1, we have:

X̃ = F0
1

a2
3 + a2

4

[(a1a3 − a2a4) + j(a2a3 + a1a4)]

Amplitude
∣∣∣X̃∣∣∣ = X0 is as follows:

∣∣∣X̃∣∣∣2 = X2
0 = F2

0

a2
1 + a2

2

a2
3 + a2

4

For solution

X0(c,ω) = F0

√√
k2 + c2ω2(1 + M)2

[kmω2 + c2ω2M2]2 + c2ω2[Mk−mω2(1 + M)]2
(4)

and in relative measures Ω and ζ, we have:

X0(ζ, Ω) =
F0

k

√√√√
1 + (2ζΩ)2(1 + M)2[

Ω2 + (2ζΩ)2M2
]2
+ (2ζΩ)2

[
M−Ω2(1 + M)

]2 (5)

Figure 2 presents the curve families X0(ζ, Ω) for force F0 = m0rω2
≡

m0r
m kΩ2.
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Figure 2. Curves family X0(ζ, Ω), in m, for force F0 = m0rω2
≡

m0r
m kΩ2.

The boundary conditions for the family of curves in Figure 2 are as follows:

for Ω→ 0 we have lim
Ω→0

X0(ζ, Ω)

for Ω→∞ we have lim
Ω→0

X0(ζ, Ω) = m0r
m

which is reflected for all curves in Figure 2.
For solution Ỹ of the system (2), as complex function, with j =

√
−1, we have:

Ỹ = F0
jcωM

[kmω2 + c2ω2M2] − jcω[Mk−mω2(1 + M)]
(6)

where we note α = 0, β = cωM, δ = cω
[
Mk−mω2(1 + M)

]
, γ = −

[
kmω2 + c2ω2M2

]
, G = γ2 + δ2.

Thus, we have:

Ỹ = F0
1

γ2 + δ2
[βδ+ jβγ] (7)

with amplitude Y0 as: ∣∣∣∣Ỹ∣∣∣∣2 = Y2
0 = F2

0
β2

γ2 + δ2

For solution

Y0 = F0
β√

γ2 + δ2

In natural measure, we have Y0(c,ω) as:

Y0(c,ω) = F0
cωM√

[kmω2 + c2ω2M2]2 + c2ω2[Mk−mω2(1 + M)]2
(8)

For the solution in relative measures, it can be written:

Y0(ζ, Ω) =
F0

k
(2ζΩ)M√[

Ω2 + (2ζΩ)2M2
]2
+ (2ζΩ)2

[
M−Ω2(1 + M)

]2
(9)
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The graphical representation of amplitude Y0(ζ, Ω) for F0 = m0rω2
≡

m0r
m kΩ2 is given in Figure 3.

1 
 

 

 

 

Figure 3. Curves family Y0(ζ, Ω), in m, for force F0 = m0rω2
≡

m0r
m kΩ2.

From the analysis of the response in harmonic regime it is found that Y0(ζ, Ω) is the amplitude of
the kinematic excitation of the Voigt–Kelvin model.

3. Transmitted Dynamic Force

The transmitted force at fix support is Q̃, as:

Q̃ = kỹ + c
.
ỹ

For solution
Q̃ = (k + jcω)Ỹe jωt

where Q̃ = Q̃(t) is the expression in complex form of the force transmitted to the support.
Introducing Q̃ in relation (7) and use the previous notes, where cω = 1

Mβ, we have:

Q̃ = F0
β

γ2 + δ2

[(
kδ−

1
M
βγ

)
+ j

(
kγ+

1
M
βδ

)]
(10)

with amplitude Q0 as:

Q0 = βF0

√
k2M2 + β2

GM2 (11)

Returning to natural parameters, we have:

Q0(c,ω) = F0
cωM

√

k2+c2ω2√
[kmω2+c2ω2M2]2+c2ω2[Mk−mω2(1+M)]2

= F0
cωM

√

k2+c2ω2
√

G

(12)
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For solution in relative measures, relation (12) is as:

Q0(ζ, Ω) = F0
(2ζΩ)M

√
1 + (2ζΩ)2√[

Ω2 + (2ζΩ)2M2
]2
+ (2ζΩ)2

[
M−Ω2(1 + M)

]2
= F0

(2ζΩ)M
√

1 + (2ζΩ)2

√
H

(13)

with representation in Figure 4.
 

2 

 

 

Figure 4. Curves family Q0(ζ, Ω) for force F0 = m0rω2
≡

m0r
m kΩ2.

The following notes were used:

G =
[
kmω2 + c2ω2M2

]2
+ c2ω2

[
Mk−mω2(1 + M)

]2
(14)

H =
[
Ω2 + (2ζΩ)2M2

]2
+ (2ζΩ)2

[
M−Ω2(1 + M)

]2
(15)

so that G and H are in the following relation:

G = k4H (16)

4. Dynamic Insulation Capacity

In this case, the dynamic transmissibility may be defined as:

T =
Q0

F0

Taking into account relations (12) and (13), the calculation formulas emerge as:

T0(c,ω) =
cωM

√
k2 + c2ω2

[kmω2 + c2ω2M2]2 + c2ω2[Mk−mω2(1 + M)]2
(17)
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T0(ζ, Ω) =
(2ζΩ)M

√
1 + (2ζΩ)2√[

Ω2 + (2ζΩ)2M2
]2
+ (2ζΩ)2

[
M−Ω2(1 + M)

]2
(18)

with representation in Figure 5.

 

2 

 

 

Figure 5. Curves family T0(ζ, Ω).

5. Deformation of Damper Systems

(a) For the damper with multiplied M viscous characteristic, that is in the case of the amortization
constant cM, the instantaneous deformation is [18–20]:

ṽ = x̃− ỹ =
(
X̃ − Ỹ

)
e jωt

By replacing X̃ in relation (7.165) and Ỹ in relation (7.168), with the specification that ṽ may be
written as:

ṽ = Ṽ0e jωt (19)

we can obtain the amplitude of deformation V0, as follows:

Ṽ0 = X̃ − Ỹ (20)

and in the end:

V0 = F0

√
k2 + c2ω2

a2
3 + a2

4

(21)

from which

V0(c,ω) = F0

√
k2 + c2ω2

G
(22)

For solution in relative measures, as follows:

V0(ζ, Ω) =
F0

k

√
1 + (2ζΩ)2

H
(23)
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(b) For damper c, the instantaneous deformation is the same as the instantaneous displacement ỹ.
The maximum deformation (amplitude) is Y0, given by relation (8) for solution (9) were we use the
previous notes β, γ, δ. Thus, we have:

Y0(c,ω) = F0
cωM
√

G
(24)

Y0(ζ, Ω) =
F0

k
(2ζΩ)M
√

H
(25)

6. Dissipated Energy

For the studied model, the dissipated energy on cycle is as:

Wd = WI
d + WII

d

where WI
d = πcωY2

0 is the dissipated energy for the constant damper c; WII
d = πMcωV2

0—the dissipated
energy on the damper with the amortization multiplication Mc. [21,22].

Taking into account relations (20) and (24), energy on cycle may be expressed as:

Wd(c,ω) =
πcω

G
F2

0M
[
k2 + c2ω2(1 + M)

]
(26)

Taking into account that F0 = m0rω2
≡

m0r
m kΩ2, in relative measures, relation (26) becomes:

WF
d (ζ, Ω) =

π(2ζΩ)

kH
F2

0M
[
1 + (2ζΩ)2(1 + M)

]
(27)

with a graphical representation in Figure 6.
 

3 

 

Figure 6. Curves family of the dissipated energy on cycle WF
d (ζ, Ω).

7. Conclusions

The Newton Voigt–Kelvin linear viscoelastic model can be used to study the dynamic behavior of
technologically made materials, systems and structures, having the role both to ensure predictable
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values of the dynamic forces transmitted to the basis as well as to assess the dissipated energy. Based on
some anti-vibration devices, favorably assembled for the realization of the Zener linear model, we
studied and established solutions for dynamic insulation of the industrial vibrations for dynamic
equipment in technological flows at working frequencies between 20 Hz and 50 Hz. [23–25].

Additionally, by compacting with vibratory rollers, for certain categories of stratifications of road
structures, dynamic behaviors were identified according to the Newton Voigt–Kelvin linear model.

The numerical and experienced dynamic analysis for some categories of engineering applications,
enabled the adaptation of a Newton Voigt–Kelvin rheological model, with mass and harmonic excitation
with inertial rotating force.

The advantage of the proposed model is that, for composite materials containing structural
components with significantly increased viscosity compared to elastic components, the dynamic
response is more accurate and precise. Additionally, the shape of the representative curves is
sometimes very different from other composite viscoelastic models.

The establishment of the calculation relations and the parametric graphical representation with
the identification of the dynamic regimes enable an eloquent evaluation of the dynamic process in
its significant evolution. Thus, based on the substantiation of the calculation relations and of the
parametric evaluation of the families of lifted curves for a structural multilayer road system compacted
with a Bomag vibrating roller, the following conclusions can be summarized [26,27]:

(a) Amplitudes X0 and Y0 highlight the maximum displacements of mass m and, respectively,
of the viscoelastic component (c, k) in connection with the viscous component (Mc), being useful in the
evaluation of the technological parameters;

(b) The families of curves of amplitudes X0 and Y0 represented in relation to the relative parameters
ζ and Ω highlight the parametric distribution according to the dynamic excitation regimes according
to the variation of Ω;

(c) The dynamic area of interest for the stable behavior of the technological vibrations is specific to
the domain for which amplitudes tend towards stable asymptotic values for Ω > 8; thus, at significantly
high values of the excitation pulsation, under conditions of predictable amortization, amplitudes X0

and Y0 present a stable level at small variations in the excitation pulsation [28];
(d) The maximum transmitted dynamic force Q0 in the post-resonance domain for ω >> ωn.

For solution Ω >> 1, present monotonically increasing values depending on the pulsation and the
dimension of the viscous amortization;

(e) Transmissibility is decreasing at high values of the excitation pulsation, at discrete variation in
the amortization;

(f) The dissipated energy is increasing, depending on the post-resonance variation of the excitation
pulsation and the discrete increase in the amortization.

Consequently, based on the physical and mechanical parameters specific to the equivalent Newton
Voigt–Kelvin rheological model for materials, systems and viscoelastic structures, we can assess the
parametric measures of the dynamic response and of the behavior in the harmonic excitation regime
with harmonic rotation forces.

The experimental results performed in the laboratory, and “in situ” in Romania, mostly included in
the works cited above [23,26–28], as well as the laboratory results presented in the works [24,25,29,30],
highlighted the importance of adopting the Newton Voigt–Kelvin model, for specified materials
compared to other viscoelastic composite models.

Funding: This research received no external funding.
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