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Abstract: We outline and review the computations of polarized and unpolarized nucleon structure
functions within the bosonized Nambu-Jona-Lasinio chiral soliton model. We focus on a consistent
regularization prescription for the Dirac sea contribution and present numerical results from that
formulation. We also reflect on previous calculations on quark distributions in chiral quark soliton
models and attempt to put them into perspective.
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1. Introduction

In this mini-review we reflect on nucleon structure function calculations in chiral
soliton models. This is an interesting topic not only because structure functions are of high
empirical relevance but maybe even more so conceptually as of how much information
about the nucleon structure can be retrieved from soliton models. In this spirit, this paper
to quite an extent is a proof of concept review.

Solitons emerge in most nonlinear field theories as classical solutions to the field
equations. These solutions have localized energy densities and can be attributed particle
like properties. In the context of strong interactions, that govern the structure of hadrons,
solitons of meson field configurations are considered as baryons [1].

Nucleon structure functions play an important role in deep inelastic scattering (DIS)
that reveals the parton substructure of hadrons. In DIS leptons interact with partons by
the exchange of a virtual gauge particle. Here we will mainly consider electrons that
exchange a virtual photon with either a pion or a nucleon. The process is called deep
inelastic as the produced hadrons are not detected. In a certain kinematical regime, the so-
called Bjorken limit to be defined below, the DIS cross-section can be parameterized as
the product of the cross-section for scattering off partons and distribution functions that
measure the probabilities to find these partons inside the hadron. This is the factorization
scheme [2]. In this picture the structure functions are linear combinations of parton
distribution functions.

DIS can also be explored without direct reference to partons by writing the cross-
section in terms of lepton and hadron components. The latter is the hadron matrix element
of a current-current correlator and is parameterized by form factors. The structure functions
are obtained from these form factors in a certain regime for the kinematic variables, again
the Bjorken limit. The operator product expansion formally relates distribution and struc-
ture functions by expressing the hadron matrix elements of the current-current correlator
as matrix elements of bilocal and bilinear quark operators in the Bjorken limit. The mi-
croscopic theory for the structure of hadrons is quantum-chromo-dynamics (QCD) which
is the nonabelian gauge theory SU(NC), where NC = 3 is the number of color degrees of
freedom. Though (perturbative) QCD only relates these functions at different energy scales
and does so very successfully [3] within the DGLAP formalism [4–6], neither structure
nor distribution functions can be computed from first principles in QCD, except, maybe
within the lattice formulation [7,8] (Another possibility is to apply QCD renormalization

Symmetry 2021, 13, 108. https://doi.org/10.3390/sym13010108 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2581-7717
https://orcid.org/0000-0002-1217-0889
https://doi.org/10.3390/sym13010108
https://doi.org/10.3390/sym13010108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13010108
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/1/108?type=check_update&version=2


Symmetry 2021, 13, 108 2 of 39

group equations to the empirical data at large energies and scale them down to the point at
which the probability interpretation becomes inconsistent [9].). Hence model calculations
seem unavoidable for a theoretical approach to the structure functions that contain the
information of the nonperturbative nature of hadrons. In such models it may or may not
be possible to relate structure and distribution functions. For the quark model that we
will employ, regularization stands in the way and we attempt to compute the structure
functions directly from the current-current correlator.

Though chiral (soliton) models for baryons have so far not been derived from QCD,
there is ample motivation to explore nucleon properties in chiral models. The soliton
approach goes back to the Skyrme model [10] while the connection to QCD was later
established by considering baryons in a generalized version of QCD with NC large [1]. Soon
after those mainly combinatoric arguments for considering baryons in an effective meson
theory, static baryons properties were derived within the Skyrme model [11]. The soliton
approach has ever since been very actively explored, cf. the reviews [12–16]. The point
of departure for most of these models is an effective meson theory that reflects the major
symmetries of QCD on the hadron level. In the low energy regime this is essentially the
chiral symmetry with the pions as would-be Goldstone bosons being the basic field degrees
of freedom (On the other end, the heavy quark effective symmetry has also been combined
with the soliton picture. This is outside the scope of this review. The interested reader
may trace relevant publications from Ref. [52] in the recent article [17].). Other mesons
like ω and ρ were then incorporated according to the rules of chiral symmetry. A major
endeavor is to determine as many as possible model parameters from mesons to gain
a high predictive power in the soliton sector, i.e., for baryon properties. Many of these
properties have been reproduced in chiral soliton models to the accuracy that one expects
from keeping the leading (and eventually next-to-leading) terms of a power expansion in

1
NC

when the actual value is NC = 3.
Unfortunately, this is not the case for nucleon structure functions and very early on

it was recognized that soliton models based on meson fields disagree with the parton
model. Rather than leading to the parton model Callan-Gross relation between the unpo-
larized structure functions, the Skyrme model yields the Callan-Gross analog for boson
constituents [18] when evaluating current-current correlations that eventually lead to the
structure functions. This problem is not unexpected as taking a purely meson model as
point of departure implicitly relates local quark bilinears to the field degrees of freedom.
On the other side, in QCD, the structure functions are related to bilocal quark bilinears and
a successful exploration of these functions needs to trace the details of the bosonization pro-
cedure. To solve this fundamental problem of the soliton picture it is therefore compulsory
to consider a model in which the bosonization is explicitly performed. Such a model starts
from a chirally symmetric quark self-interaction and introduces auxiliary boson fields that
make feasible the computation of the fermion path integral. Subsequently these boson
fields take the role of the mesons in an effective theory. The Skyrme model problem is then
approached by formulating the current-current correlations before bosonization. For this
purpose we will here consider bosonization [19] of the Nambu-Jona-Lasinio model [20] that
has well established soliton solutions [21–23]. The model by itself is not renormalizable and
the regularization prescription is part of the model definition. Incorporating regularization
is the major concern when computing structure functions in a bosonized chiral model.
Essentially there are two approaches for computing nucleon structure functions. They
differ conceptually but lead to similar results. The one that we will focus on here starts with
a fully regularized action and extracts the structure functions from the absorptive part of
the Compton tensor. We note that this approach is general enough to also predict the pion
structure function [24]. We will take the position that we only identify the symmetries of
QCD when adopting this model to describe hadrons. At this stage of the project we will not
identify the quark degrees of freedom with those of QCD, which, for example, means that
the current quark mass is a free parameter. The theoretical framework has been derived
already some time ago [24] while the numerical results arising from costly simulations
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have only been obtained recently [25,26]. As mentioned above, a major motivation for the
soliton picture arises from generalizing QCD to a nonabelian gauge theory with large NC.
In this review we will make NC explicit in formulas, but actual calculations are performed
with NC = 3.

Formal considerations of QCD relate DIS in the Bjorken limit to hadron matrix ele-
ments of bilocal bilinear quark operators. There are soliton model approaches that sandwich
the quark operators from the self-consistent chiral soliton in those nucleon matrix elements
and impose regularization a posteriori [27–39]. We will comment on those approaches in
Section 7.

The study of structure functions in soliton models has, to quite some extent, been
triggered by the so-called proton spin puzzle [40]: Data on the polarized structure function
suggested that, together with flavor symmetric relations, almost none of the nucleon spin
was due to the spin of the quark constituents. This picture emerges from the nonrelativistic
quark model in which the nucleon spin equals the matrix element of the axial singlet
current. It is actually this matrix element that relates to the data and chiral soliton models
indeed yield a small value, some versions even predict zero [41,42]. See Ref. [43] for a
recent review on the present understanding of the proton spin structure.

Earlier we have noted the relevance of structure and/or distribution functions for DIS.
There are other regimes of relevance. Let us first make explicit the factorization theorem
for the cross-section for electron hadron scattering [2],

σe(x, Q2) = ∑
a

∫ 1

x
dξ fa(ξ)σea

(
x
ξ

, Q2
)

. (1)

Here fa(ξ) is the distribution function for parton a with momentum fraction ξ in the hadron
and σea is the (Born) cross-section for electron parton scattering. Note that the sum over a
also includes different distributions for the same parton such as polarized and unpolarized.
Furthermore x and Q2 are Lorentz invariant kinematical variables that will be defined
in Section 2. Essentially we are interested in the case where x is fixed but Q2 becomes
large. The fa(ξ) are equally important for the Drell-Yan process in which two hadrons
(A and B) scatter into a lepton-antilepton pair and other hadrons. That pair originates
from a virtual gauge boson that is produced by quarks (q) and antiquarks (q) within the
hadrons. Without going into further detail this suggests that the scattering cross-section is
parameterized by the same distribution functions as DIS

σ ∼∑
a

∫ 1

xA

dξq fq(ξq)
∫ 1

xB

dξq fq(ξq)σ
′(ξq, ξq, Q2) , (2)

where σ′ is the cross-section for turning the quark-antiquark pair into a lepton-antileption
pair by the exchange of a virtual gauge boson. For the detailed definition of the kinematic
variables xA and xB for the two hadrons A and B we again refer to Ref. [2]. Here we will
not pursue the Drell-Yan process any further because it is not related to a current-current
correlation matrix element of a single hadron. However, we will shortly come back to the
Drell-Yan process in Section 7.

The expansion, Equation (1) indicates that different distributions fa(ξ) contribute
with different inverse powers of Q to the total cross-section through σea. Accordingly
distributions are categorized by their twist which is extracted from the leading inverse
power of Q in σe. The definition of twist dwells in the operator product expansion and
relates to the dimensionality and spin of the operators in that expansion. Here it is sufficient
to mention that the leading contribution (as Q increases) has twist-2, distributions that
contribute like 1/Q to the total cross-section have twist-3 etc. [44].

The following section contains a brief recap of basic definitions in the context of
structure functions. Section 3 describes the path from the self-interacting fermion theory to
the bosonized chiral model together with a review of the pion structure function calculation.
This will be followed by the construction of the soliton in that model in Section 4. We
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explain the soliton model calculation of structure in Section 5 and discuss the numerical
results in Section 6. As mentioned, in Section 7 we will discuss related distribution function
calculations in the chiral quark soliton model. Some concluding remarks are contained in
Section 8.

2. Framework of Deep Inelastic Scattering

Deep inelastic scattering (DIS) is a major tool to explore the composition of the nucleon.
In this process electron scattering produces a virtual photon which then interacts with
the charged components of the nucleon. To extract the structure functions, the scattering
products need not be detected as they are summed over in the final scattering cross section.

The interaction vertex for the disintegration of the nucleon is the matrix element of the
(electromagnetic) current Jµ(ξ). The cross-section contains the squared absolute value of
this matrix element and we sum/integrate over all final states subject to energy momentum
conservation. This defines the hadron tensor for electron nucleon scattering

Wµν(p, q; s) =
1

4π ∑
X

〈
p, s
∣∣∣Jµ(0)

∣∣∣X〉〈X
∣∣∣J†

µ(0)
∣∣∣p, s

〉
(2π)4δ4(p + q− pX) , (3)

where s denotes the nucleon spin. The nucleon momentum is p and q = k − k′ is the
momentum of the virtual photon, see Figure 1. As the interaction is inelastic we have
q0 > 0. This, together with translational invariance, yields

Wµν(p, q; s) =
1

4π

∫
d4ξ eiq·ξ

〈
p, s
∣∣∣[Jµ(ξ), J†

ν (0)]
∣∣∣p, s

〉
. (4)

The interaction is space-like and it is customary to introduce Q2 = −q2 > 0 as well as
ν = p·q

MN
where MN is the nucleon mass. In the nucleon rest frame ν is the energy transferred

from the electron to the virtual photon. Most prominent is the Bjorken variable

x =
Q2

2MNν
, (5)

which in the parton model denotes the momentum fraction associated with a particular
parton. Since on-shell p2 = M2

N , Q2 and x can be taken as the only dynamical Lorentz
invariant variables so that the hadron tensor has the form factor decomposition

Wµν(p, q; s) =
(
−gµν +

qµqν

q2

)
MNW1(x, Q2)

+
(

pµ − qµ
p·q
q2

)(
pν − qν

p·q
q2

)
1

MN
W2(x, Q2)

+iεµνλσ
qλ MN

p·q

([
G1(x, Q2) + G2(x, Q2)

]
sσ − q·s

q·p pσG2(x, Q2)
) (6)

for parity conserving processes like electromagnetic scattering of photons. The structure
functions are the form factors in the so-called Bjorken scaling limit that takes Q2 → ∞ with
x fixed. For the spin independent, unpolarized structure functions f1(x) and f2(x) that is

MNW1(x, Q2)
Bj−→ f1(x) and

p · q
MN

W2(x, Q2)
Bj−→ f2(x) . (7)

For the spin dependent, polarized structure functions no further scaling is involved and

G1(x, Q2)
Bj−→ g1(x) and G2(x, Q2)

Bj−→ g2(x) . (8)

Contracting the hadron tensor with the projectors listed in Table 1 extracts the pertinent
structure functions. For the unpolarized structure functions these projectors directly lead to
the Callan-Gross relation f2 = 2x f1. Observe also that these projectors are to be combined
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with appropriate selections for the spin orientation of the nucleon state as indicated in the
last row of Table 1.

Table 1. Projection operators which extract the leading large Q2 components from the hadron
tensor. The projectors given in the spin independent cases presume the contraction of Wρσ with
Sµνρσ = gµρgνσ + gρνgµσ − gµνgρσ. The last row denotes the required spin orientation of the nucleon.

f1 f2 g1 gT = g1 + g2

− 1
2 gµν −xgµν i

2MN
εµνρσ qρ pσ

q·s
−i

2MN
εµνρσsρ pσ

spin
independent

spin
independent ~s ‖ ~q ~s ⊥ ~q

Figure 1. Feynman diagram describing the kinematical set-up, where k and k′ are the momenta of the
initial and final electrons, respectively, while p is the momentum of the incoming proton, typically
taken in the rest frame. The set of final hadrons, X is not detected and summed over, cf. Equation (3).

Even though we employ the Bjorken limit to the form factors, that leading expansion
may still contribute with different (inverse) powers of Q to the total cross-section and thus
the structure functions may be assigned different (leading) twist.

Similarly to the commutator in the hadron tensor we consider the matrix element of
the time-ordered current-current product

Tµν(p, q; s) = i
∫

d4ξ eiq·ξ
〈

p, s
∣∣∣T(Jµ(ξ)J†

ν (0)
)∣∣∣p, s

〉
= (2π)3 ∑X

{
δ3(~pX−~q−~p)

p0
X−q0−p0−iε

〈
p, s
∣∣∣Jµ(0)

∣∣∣X〉〈X
∣∣∣J†

µ(0)
∣∣∣p, s

〉
+ δ3(~pX+~q−~p)

p0
X+q0−p0−iε

〈
p, s
∣∣∣Jµ(0)

∣∣∣X〉〈X
∣∣∣J†

µ(0)
∣∣∣p, s

〉}
.

(9)

Cauchy’s principal value prescription 1
x±iε = P

(
1
x

)
∓ iπδ(x) shows that the imaginary

part of the first term is proportional to the hadron tensor as in Equation (3) while the second
term does not have an imaginary part for the present kinematical set-up. Hence we have

Wµν(p, q; s) =
1

2π
AbsTµν , (10)

where Abs stands for absorptive part. From the physics point of view, Tµν is the forward
amplitude for nucleon Compton scattering and the hadron tensor is its absorptive part.

This paves the way towards computing the structure functions in the bosonized quark
model. The action for that model is obtained from a functional integral of a self-interacting
quark model. Within that formulation matrix elements of time-ordered products are
straightforward to compute. Subsequently Cutkosky’s rules are applied to extract their
absorptive parts.

3. The Chiral Quark Model

We consider the simplest SU(2) Nambu-Jona-Lasinio (NJL) model which contains
a chirally symmetric quartic fermion interaction in the scalar and pseudoscalar bilinears.
In Minkowski space the Lagrangian reads [20],
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LNJL = q
(

i∂/−m0
)

q +
G
2

[
(qq)2 + (qiγ5~τ q)2

]
. (11)

The field q(x) denotes a spinor with two flavors (up, u and down, d). There are no color
interactions but each spinor has NC color components. Furthermore, m0 and G are the
current quark mass (average up and down quark mass) and the dimensionful coupling
constant, respectively. The symmetry transformations are q −→ q + i~ε ·~τq for m0 ∝ 1 and
q −→ q + iγ5~ε5 ·~τq for m0 = 0.

The effective bosonized action for the NJL model is constructed with the help of the
auxiliary matrix field M that has a quadratic potential and couples linearly to the quark
bilinears qq and qiγ5~τ q. Then the fermion part of the functional integral can be computed
and its logarithm is an effective action which becomes a nonlinear and nonlocal theory for
M [19]. The entries of this matrix are identified with the fields of the low-lying mesons.
The model (by invention) breaks chiral symmetry dynamically for sufficiently large G and
therefore the most import modes of M are the pseudoscalar pions (π±, π0). The members of
this isospin triplet would be Goldstone bosons in the chiral limit characterized by m0 = 0.

At face value the effective action diverges and is not renormalizable. It is therefore
mandatory to supplement it with a regularization prescription. It is standard to Wick-rotate
to Euclidian space in which the effective action is complex. Apart from the cosmological
constant contribution (which diverges quarticly but has no dynamical effect), the real part
of this Euclidian action is quadratically divergent while the imaginary part is (conditionally)
convergent. It is customary not to regularize the latter in order to properly reproduce
the axial anomaly which can be analyzed by introducing photon fields, γ, (via minimal
substitution in LNJL) and studying the decay π0 → γγ. On the other hand, the real part
is subjected to standard regularization methods like proper-time [45] or Pauli-Villars [46].
Within the perturbative realm (i.e., zero soliton sector) one can even work with a sharp
momentum cut-off [47,48].

We would like to avoid the Wick-rotation because we want any imaginary part in our
calculation of the hadron tensor being solely due to the absorptive components that we
will extract via Cutkosky’s rules. There is indeed a procedure to identify the Minkowski
space analogs of the real and imaginary parts of the Euclidian action [49,50]. To this end
we define Dirac operators

iD = i∂/− (S + iγ5P) + v/ + a/γ5 =: iD(π) + v/ + a/γ5

iD5 = −i∂/− (S− iγ5P)− v/ + a/γ5 =: iD(π)
5 − v/ + a/γ5 ,

(12)

where S = 1
2 (M + M†) and P = 1

2 (M − M†). Furthermore, vµ and aµ denote external
(classical) source fields with respect which we will compute functional derivatives to
explore correlation functions. Finally, we have also defined Dirac operators without those
sources (D(π) and D(π)

5 ) for later use. Wick-rotating D5 produces the conjugate of the
Wick-rotation of D so that 1

2 Tr log[DD5] corresponds to the real part of the Euclidian action
while its imaginary part is associated with 1

2 Tr log[D(D5)
−1]. The introduction of D5 comes

at a price. Some of the Ward identities derived from the standard Dirac operator D do not
hold anymore and rather occur with opposite signs [24]. We will later cure that obstacle
by a particular calculational procedure to extract the polarized structure functions. This
procedure is part of the regularization scheme. Even though the proper-time scheme has
been very successfully applied for the solitons of the NJL model, we do not implement
it here. This scheme induces an exponential dependence on the cut-off and it is unclear
how to implement the Bjorken limit. Rather we adopt a version of the Pauli-Villars scheme
in which the cut-off essentially is additive to the quark mass and does not interfere with
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the Bjorken limit. With all these preliminaries we are now in a position to write down the
effective action for M:

ANJL = AR +AI +
1

4G
∫

d4x tr
[
m0(M + M†)−MM†]

AR = −i NC
2 ∑2

i=0 ciTr log
[
−DD5 + Λ2

i − iε
]

,
AI = −i NC

2 Tr log
[
−D(D5)

−1 − iε
]

.
(13)

HereAR andAI are the Minkowski analogs of the real and imaginary parts of the Euclidian
space effective action. Furthermore, “Tr” denotes the functional trace that includes space-
time integration on top of summing over the discrete Dirac and flavor indexes. The Pauli–
Villars regularization scheme requires

c0 = 1 , Λ0 = 0 ,
2

∑
i=0

ci = 0 and
2

∑
i=0

ciΛ2
i = 0 . (14)

For simplicity we reduce the number of regulators by the limiting case Λ1 = Λ2 = Λ. For
any quantity Q(Λ2) that is subject to regularization we then have

2

∑
i=0

ciQ(Λ2
i ) = Q(0)−Q(Λ2) + Λ2Q′(Λ2) , (15)

where the prime denotes the derivative with respect to the argument. For notational
simplicity we will usually write the formulas as on the left hand, understanding that the
right hand side is implemented in actual computations.

To analyze the model we need to find the ground state solution, 〈M〉. For symmetry
reasons any nonzero solution can only be a (real) constant that is proportional to the unit
matrix. We therefore substitute 〈M〉 = m in the so-called gap equation

1
2G

(
m−m0

)
= −4iNCm

2

∑
i=0

ci

∫ d4k
(2π)4

[
−k2 + m2 + Λ2

i − iε
]−1

(16)

that arises from δANJL
δM = 0. For sufficiently large coupling G this equation has a solution

with m� m0 which obviously plays the role of a mass parameter when substituted for M
into D (or D5). It is therefore called the constituent quark mass.

Any nontrivial vacuum solution signals dynamical symmetry breaking and applying a
symmetry transformation onto that solution leads to (would-be) Goldstone bosons. In this
case the relevant transformation is chiral and the would-be Goldstone boson (We expect
that boson to be massless only when the original theory has an exact chiral symmetry,
m(0) = 0.) is the pseudoscalar iso-triplet pion ~π. This field is most conveniently introduced
via the nonlinear realization

M = mU = m exp
[
i

g
m
~π ·~τ

]
= m + ig~π ·~τ +O(~π2) , (17)

where U is the chiral field while g is the Yukawa coupling constant. In the next step, we
expand the effective action to quadratic order in the pion fields

ANJL = g2
∫ d4 p

(2π)4
~̃π(p) · ~̃π(−p)

[
2NCq2Π(p2)− 1

2G
m0

m

]
+O

(
~π4
)

, (18)

which has been written for the Fourier transform ~̃π(p) =
∫

d4x e−ip·ξ~π(ξ). The quadratic
contribution contains the polarization function

Π(p2) =
∫ 1

0 dx Π(p2, x)
with Π(p2, x) = −i ∑2

i=0 ci
d4k

(2π)4

[
−k2 − x(1− x)p2 + m2 + Λ2

i − iε
]−2 .

(19)
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The factor in square brackets in Equation (18) times g2 is the inverse pion propagator.
Requiring this propagator to have a pole at the physical pion mass mπ enforces

m0 = 4NCGmm2
πΠ(m2

π) . (20)

Furthermore, the residue of that pole should be one thereby relating the Yukawa coupling
constant g to other model parameters,

1
g2 = 4NC

∂

∂m2
π

[
m2

πΠ(m2
π)
]

. (21)

We construct the axial current from the functional derivative with respect to the axial
source aµ

Aµ(ξ) =
δANJL

δaµ(ξ)

∣∣∣
vν ,aν=0

.

Expanding Aµ(ξ) to linear order in ~̃π(p) yields the matrix element (a and b are flavor labels)

〈0|A(a)
µ (ξ)|π̃(b)(p)〉 !

= δab fπ(p)pµe−ip·ξ

from which we get the on-shell pion decay constant fπ(0) = fπ = 4NcmgΠ(m2
π). Taking

this together with Equations (20) and (21) gives three equations for four model parameters
(g, Λ, G and m0) after inserting the empirical data fπ = 93 MeV and mπ = 138 MeV. This
leaves one parameter, say G, undetermined. We employ the gap Equation (16) to express
that undetermined parameter as a function of the constituent quark mass m which we take
as the sole variable from now on. After all, we have quite some intuition about m and
expect it to be somewhere around 400 MeV. This procedure is reflected by the first three
columns of Table 2 in the proceeding section. In this calculation the current quark mass is
only about one third of what is obtained within proper-time regularization scheme [22].
This significant difference again suggests that quarks fields of the model are merely some
effective degrees of freedom, with little or no relation to fundamental particles.

To apprehend the nucleon structure function calculation let us have a short look at
DIS off pions which is characterized by a single structure function, F(x),

1
2π

Abs Tµν(p, q)
Bj−→ F(x)

[
−gµν +

qµqν

q2 −
1
q2

(
pµ −

qµ

2x

)(
pν −

qν

2x

)]
, (22)

where the Bjorken limit defined after Equation (6) has been indicated. In order to compute
the Compton amplitude (22) we calculate the time-ordered product

T
(

Jµ(ξ)Jν(0)
)
=

δ2

δvµ(ξ)δvν(0)
ANJL

∣∣∣∣∣
vµ=0

(23)

from the action, ANJL in Equation (12) with aµ = 0 and the substitution vµ → vµQ, where
Q = 1

3 diag(2,−1) is the quark charge matrix. In principle we would have to fully expand
ANJL to quadratic order in both the photon vector source, vµ and the pion field ~̃π(p).
Fortunately there is some simplification in expanding DD5. Contributions to this product
that are quadratic in either of the two fields add Feynman diagrams to the Compton
amplitude that depend only on one of the two momenta. This type of local diagrams does
not have an absorptive component. It is thus sufficient to consider

−DD5 = ∂2 + m2 + gγ5[∂/, ~π ·~τ]− i(∂/v/Q+ v/Q∂/) + igγ5[~π ·~τ, v/Q] + . . . . (24)

Even with this simplification, the expansion of the logarithm inAR (AI does not contribute)
has some unwanted terms with the flavor trace tr[~πQ~πQ] that would lead to different
structure functions for the charged and uncharged pions. Fortunately these terms cancel
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in the Bjorken limit. Even when omitting terms which are suppressed in this limit or
eventually do not contribute to the absorptive part, the pion Compton amplitude is still
quite cumbersome to compute [24]

∫
d4ξ eiq·ξ 〈π(p)| δ2

δvµ(ξ)δvν(0)ANJL

∣∣∣∣∣
vµ=0

|π(p)〉

= 5g2 NC
9 ∑2

i=0 ci
∫ d 4k

(2π)4
1

−k2+m2+Λ2
i −iε

1
[−(k−p)2+m2+Λ2

i −iε]
2

×
{

−(k−p)2+m2+Λ2
i

−(k+q−p)2+m2+Λ2
i −iε

tr(p/γµq/γν + p/γνq/γµ)

− −(k−p)2+m2+Λ2
i

−(k−q−p)2+m2+Λ2
i −iε

tr(p/γµq/γν + p/γνq/γµ)

+2m2

[
tr([k/−p/]γνq/γµ)

−(k−q−p)2+m2+Λ2
i −iε
− tr([k/−p/]γµq/γν)

−(k+q−p)2+m2+Λ2
i −iε

]}
.

(25)

The last two terms are products of four propagators as expected from an expansion up
to fourth order. The first two terms only have three propagators and are represented by
diagrams with a pion and a photon at a single vertex. This interaction stems from the last
term in Equation (24). As in Equation (9) the absorptive part is extracted by putting all
intermediate propagators on-shell according to Cutkosky’s rule

1
−k2+m2+Λ2

i −iε
−→ −2iπδ(k2 −m2 −Λ2

i )

1
−(k±q−p)2+m2+Λ2

i −iε
−→ − iπ

q− δ(q+ ± (k− p)+) .
(26)

In the second substitution we introduced light-cone coordinates (the full definition is
given in Section 6.3) because they render the implementation of the Bjorken limit quite
transparent: q− → ∞ and q+ → −xp+ = − xmπ√

2
(in the pion rest frame). These coordinates

bring in the factor 1
q− when extracting the absorptive part. A posteriori this justifies the

omission of all terms in Equation (25) that did not contain a factor q/ in the numerator
(The full calculation also produces terms involving (k/− p/± q/)2 in Equation (25). With
Equation (26) it is obvious that they do not contribute to the absorptive part even though
they have a finite Bjorken limit.). After taking the traces in color and spinor spaces the

structure function can be read off from T11 + T22
Bj−→ 2F(x) using, e.g.,

γ1q/γ1 Bj−→ 1
2

q−γ1γ+γ1 = −1
2

q−γ+ .

We find

F(x) = − 5i
18 (4NCg2)∑2

i=0 ci
∫ d4k

(2π)4
2πδ(k2−m2−Λ2

i )

[−(k−p)2+m2+Λ2
i −iε]

2

×
{[
−(k− p)2 + m2 + Λ2

i
]
[δ(k+ − p+ − q+)− δ(k+ − p+ + q+)]p+

+m2[δ(k+ − p+ + q+)− δ(k+ − p+ − q+)](k+ − p+)
}

.

(27)

The δ-functions straightforwardly produce the k+ integrals fixing this variable to either
mπ(1− x) or mπ(1 + x). The integral over k− can then be computed via the δ-function in
first numerator. The result from these two integrals is

F(x) =
5

18
(4NCg2)

2

∑
i=0

ci

∫ d2k⊥
(2π)3

{
M2

i (x)θ(x)θ(1− x)

x(1− x)
[
M2

i (x)−m2
π

]2 +
(
x ←→ −x

)}
, (28)
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where M2
i (x) = 1

x(1−x)

[
m2 + Λ2

i + k2
⊥
]
. This expression for the pion structure function

was earlier obtained using light-cone wave-functions [49–51]. In the chiral limit, mπ = 0,
this structure function is just a constant on the interval −1 ≤ x ≤ 1. It is interesting
to note that the light-cone coordinate momentum variables can also be integrated in the
pion polarization function, Equation (19) leading to the same k⊥ integral allowing the
compact expression

F(x) =
5
9
(4NCg2)

∂

∂p2

[
p2Π(p2, x)

]∣∣∣∣∣
p2=m2

π

. (29)

At this point one important aspect has not been considered. As it stands, Equation (29) is
the pion structure function at the scale at which the NJL-model is supposed to approximate
QCD. Stated otherwise, the structure function computed from Equation (29) approximates
the QCD result at a (presumably) low renormalization scale. To allow a comparison with
data, the QCD evolution equations must be applied to the model prediction. At that stage,
the low renormalization scale enters as a new parameter that is tuned to optimize the
agreement with the data at the higher energy scale of the experiments. This calculation has
been carried out in Ref. [52]. Here we will not further elaborate on QCD evolution but will
get back to it in Section 6 in the context of the nucleon structure functions.

The main lesson learned from this pion structure function study is that the calculation
simplifies significantly when identifying the propagators that carry the momentum which is
large in the Bjorken limit and ignoring the others (the many terms not shown in Equation (25))
and/or simplifying them by approximating them with free quark propagators.

4. Self-Consistent Soliton

The soliton is a static meson configuration that minimizes the bosonized action.
To construct this configuration we define a Dirac Hamiltonian h via the Dirac operators in
Equation (12)

iD(π) = β(i∂t − h) and iD(π)
5 = (−i∂t − h)β . (30)

Its diagonalization
hΨα = εαΨα , (31)

yields eigenvalues εα and eigen-spinors Ψα = ∑β VαβΨ(0)
α as linear combinations of the free

Dirac spinors Ψ(0)
α in a spherical basis.

When constraining the meson configuration to the chiral circle, i.e., parameteriz-
ing M = mU with only U being dynamical, the so-called hedgehog configuration [53]
minimizes the action in the unit baryon number sector (We refer to the earlier review
articles [22,23] for obstacles and their solutions for hedgehog configurations away from
the chiral circle.). This, together with (the assumption of) spherical symmetry suggest the
ansatz

h =~α · ~p + β m U5(~r) where U5(~r) = exp[ir̂ ·~τ γ5Θ(r)] . (32)

The radial profile function Θ(r) is called the chiral angle. The hedgehog configuration,
Equation (32), is invariant under so-called grand spin transformations that combine flavor
and coordinate rotations. Accordingly, the Dirac and flavor components of the eigenfunc-
tions Ψα are products of radial functions and grand spin eigenfunctions. The latter are
products of spherical harmonic functions, spinors and iso-spinors. Final discretization is
accomplished by imposing boundary conditions on the radial functions at a distance D
much larger than typical extensions of the chiral angle [54]. Different boundary conditions
are equivalent in the limit D → ∞; however, at large but finite D a certain choice may be
preferable depending on which quantity is to be computed [55]. All possible boundary
conditions require that there is no flux through the sphere at D.

Once the structure of the spinors is established, particular profile functions can be
considered. For profiles with Θ(0) = −π and limr→∞ Θ(r) = 0 the diagonalization,
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Equation (31) yields a distinct, strongly bound level, (eigenvalue εv, eigen-spinor Ψv) in the
grand spin zero channel. This level is referred to as the valence quark level [22]: the wider
the chiral angle, the more strongly bound is this distinct level. Its (explicit) occupation
ensures unit baryon number.

The functional trace in AR (AI vanishes for static configurations) is computed as
an integral over the time interval T and a discrete sum over the basis levels defined by
Equation (31). In the limit T → ∞ the vacuum contribution to the static energy is then
extracted from AR → −TEvac. Collecting pieces, we obtain the total energy functional
as [22,23]

Etot[Θ] = NC
2 [1 + sign(εv)]εv

−NC
2 ∑2

i=0 ci ∑α

{√
ε2

α + Λ2
i −

√
ε
(0)2
α + Λ2

i

}
+ m2

π f 2
π

∫
d3r [1− cos(Θ)] .

(33)

Here we have also subtracted the vacuum energy associated with the nondynamical meson
field configuration Θ ≡ 0 (denoted by the superscript on the energy eigenvalues) that
is often called the cosmological constant contribution. This subtraction will also play
an important role for the unpolarized isoscalar structure function as it enters via the
momentum sum rule. Obviously, the soliton energy is linear in NC as ascertained for
baryon masses in QCD [1].

The soliton profile is then obtained as the profile function Θ(r) that minimizes the total
energy Etot self-consistently subject to the above mentioned boundary conditions on Θ(r).
The energy eigenvalues εα are functionals of the chiral angle through the diagonalization
in Equation (31). Hence the minimization of Etot[Θ] involves

δεα

δΘ(r)
= m

∫
d3r′ Ψ†

α(~r
′)β
[
− sin Θ(r′) + ir̂′ ·~τ cos Θ(r′)

]
Ψα(~r ′)δ(r− r′) ,

by the chain rule. Self-consistency arises as the wave-functions in this functional derivative
emerge from diagonalizing an operator that contains Θ(r). Though this Hartree-type
problem is quite elaborate, it has been established some time ago [56–58] and ever been
refined [22,23]. The two main contributions to Etot[Θ] act in opposite directions: the
binding of the distinct level is attractive while the Dirac sea piece (partially) compensates
for this reduction. As the binding of the valence level increases with the constituent quark
mass m, the soliton is kinematically stable against decaying into NC unbound quarks for
m & 400 MeV, cf. Table 2.

This soliton represents an object which has unit baryon number but neither good
quantum numbers for spin and flavor (isospin). Such quantum numbers are generated by
canonically quantizing the time-dependent collective coordinates A(t) that parameterize
the spin-flavor orientation of the soliton via

U5(~r, t) = A(t)U5(~r)A†(t) , (34)

where U5(~r) is the self-consistent static configuration from Equation (32). For a rigidly
rotating soliton the Dirac operator becomes, after transforming to the flavor rotating
frame [45],

iD(π) = Aβ

(
i∂t −

1
2
~Ω ·~τ − h

)
A† and iD(π)

5 = A
(
−i∂t +

1
2
~Ω ·~τ − h

)
βA† . (35)

Actual computations involve an expansion with respect to the angular velocities ~Ω that are
defined by that time derivative of the collective coordinates as

A† d
dt

A =
i
2
~Ω ·~τ . (36)
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According to the canonical quantization rules the angular velocities are replaced by the
spin operator

~Ω −→ 1
α2

~J . (37)

The constant of proportionality is the moment of inertia

α2 = NC
4 [1 + sign(εv)]∑β 6=v

|〈v|τ3|β〉|2
εβ−εv

+NC
8 ∑α 6=β ∑2

i=0 ci
|〈α|τ3|β〉|2

ε2
α−ε2

β

{
ε2

α+εαεβ+2Λ2
i√

ε2
α+Λ2

i
−

ε2
β+εαεβ+2Λ2

i√
ε2

β+Λ2
i

}
,

(38)

expressed by introducing eigenstates |α〉 of h; i.e., Ψα(~r) = 〈~r|α〉. The moment of inertia is
O(NC) and is extracted as twice the constant of proportionality of the O(~Ω2) term in the
Lagrange function (A/T). With Equation (37) the expansion in ~Ω is thus equivalent to the
one in 1

NC
. After quantizing the collective coordinates the Hamilton operator is that of a

rigid rotor leading to the energy formula

E(j) = Etot +
1

2α2 j(j + 1) , (39)

with spin eigenvalues j = 1
2 for the nucleon and j = 3

2 for the ∆-resonance. Note that
this energy formula contains a piece linear in NC and one linear in 1

NC
. The contribution

O(N0
C), which is the vacuum polarization energy from the meson fluctuations, is generally

omitted in soliton models. There is no robust calculation of this vacuum polarization
energy because these models are not renormalizable. Estimates indicate that the O(N0

C)
component significantly reduces the energy [59,60]. Since this part does not depend on the
baryon quantum numbers, it is customary to only consider mass differences, in particular,
the ∆-nucleon mass difference ∆M = 3

2α2 . The results shown in Table 2 suggest that
m ≈ 400 MeV reproduces the experimental value of 293 MeV reasonably well.

The nucleon wave-function becomes a (Wigner D) function of the collective coordi-
nates. A useful relation in computing matrix elements of nucleon states |N〉 is [11]

〈N|Dab|N〉 = −
4
3
〈N|Ia Jb|N〉 with Dab =

1
2

tr
(

A†τa Aτb

)
. (40)

Here Ia and Jb are iso- and spin operators, respectively. The above matrix element arises
from the operator identity Ia = −Dab Jb which by itself reflects the invariance of the
hedgehog configuration under combined isospin and coordinate rotations.

As an example for the computation of a static nucleon property we consider the
vacuum contribution to the axial charge, ga, of the nucleon because in Section 5 it will
be paradigmatic for how sum rules for structure functions emerge in this model and
its treatment. In the first step we require the spatial components of the axial current as
functions of the collective coordinates A. This is achieved by expanding the regularized
action to leading order in the axial source a/ with a0 = 0

ANJL = −i NC
2 ∑2

i=0 ciTr log
{

β
(
∂2

t + h2)β + β(i∂t + h)a/γ5 + a/γ5(−i∂t + h)β + Λ2
i − iε

}
= −i NC

2 ∑2
i=0 ciTr log

{
∂2

t + h2 + {h, a/γ5β}+ Λ2
i − iε

}
.

(41)

The next simplification is that we only need the (space) integral of that current and therefore
may take a/γ5β = −~a(a) ·~αγ5

τa
2 = −~a(a) ·~Σ τa

2 with constant~a(a) to compute

∂ANJL

∂~a(a)

∣∣∣
~a(a)=0

= i NC
2 ∑2

i=0 ciTr
{(

∂2
t + h2 + Λ2

i − iε
)−1
{

h,~Σ τa
2

}}
= i NC

2 ∑2
i=0 ciT

∫ dω
2π Tr′

{(
−ω2 + h2 + Λ2

i − iε
)−1
{

h,~Σ τa
2

}}
.

(42)

As for any path integral, the limit T → ∞ extracts the vacuum (Dirac sea) component. In
the next step we want to evaluate the remaining trace Tr′ using the eigenvalues εα and the
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eigenstates |α〉 of h. Substituting the rotating hedgehog configuration from Equation (34)
and using the cyclic property of the trace yields

∂ANJL

∂~a(a)

∣∣∣
~a(a)=0

= i NC
2 ∑2

i=0 ciT
∫ dω

2π ∑α

{(
−ω2 + ε2

α + Λ2
i − iε

)−12εα

〈
α
∣∣∣~ΣA† τa

2 A
∣∣∣α〉}

= −NC
2 TDab ∑2

i=0 ci ∑α
εα√

ε2
α+Λ2

i

〈
α
∣∣∣~Σ τb

2

∣∣∣α〉 ,
(43)

where the frequency integral has been computed by contour integration. The vacuum
contribution to the axial charge is then obtained as the proton matrix element

g(s)a = lim
T→∞

1
T

〈
P

∣∣∣∣∣2 ∂ANJL

∂a(3)z

∣∣∣∣∣
~a(3)=0

∣∣∣∣∣P
〉

=
NC
6

2

∑
i=0

ci ∑
α

εα√
ε2

α + Λ2
i

〈α|Σ3τ3|α〉 , (44)

with spin projection J3 = + 1
2 . In addition, we have the contribution from the valence quark

that we get via a similar derivative after “gauging” the valence level

NC
2

[1 + sign(εv)]εv −→
NC
2

[1 + sign(εv)]Dab

〈
v
∣∣∣h +~a(a) ·~Σ τb

2

∣∣∣v〉 (45)

so that g(v)a = −NC
6 [1 + sign(εv)]〈v|Σ3τ3|v〉. In total we have

ga = g(v)a + g(s)a

= −NC
6 [1 + sign(εv)]〈v|Σ3τ3|v〉+ NC

6 ∑2
i=0 ci ∑α

εα√
ε2

α+Λ2
i
〈α|Σ3τ3|α〉 . (46)

It is illuminating to make the single cut-off regularization from Equation (15) explicit

ga = −
NC
6

[1 + sign(εv)]〈v|Σ3τ3|v〉+
NC
6 ∑

α

[
sign(εα)− εα

ε2
α +

3
2 Λ2

(ε2
α + Λ2)

3
2

]
〈α|Σ3τ3|α〉 . (47)

The strongly bound valence level is also included in the sum over α. As the binding of
that level is increased, for example by increasing the constituent quark mass m in the
self-consistent construction, the corresponding energy eigenvalue eventually changes sign.
The particular combination of valence and sea contributions ensures that ga is continuous
as the terms with sign(εv) cancel. This feature is universal for any quantity; there is no
discontinuity as the sign of the valence energy eigenvalue changes (Taking the “chemical
potential” to be zero is a choice anyhow.). This is also true for the energy, Equation (33)
and the moment of inertia, Equation (38). This occurs essentially by construction as the
prefactor 1

2 [1 + sign(εv)] is introduced to ensure unit baryon number (In analogy to ga
the baryon number is obtained from a functional derivative with respect to constant v0.
The vacuum contribution stems from AI and is not regularized. As mentioned earlier
AI is conditionally convergent in the sense that the sum over α must be taken over a
symmetric interval.)

B =
1
2
[1 + sign(εv)]−

1
2 ∑

α

sign(εα) .

Stated otherwise, when the valence level is so strongly bound that its energy eigenvalue
is negative, the baryon number is carried by the polarized Dirac sea (vacuum). This is
an implicitly assumed feature of topological chiral soliton models like the Skyrme model
because the topological current is the leading term in the gradient expansion for the vacuum
contribution of the baryon current in chiral quark models [61].
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Table 2. Model parameters and results. See the main text for their definitions.

m[MeV] m0[MeV] Λ[GeV] Etot[MeV] α2[1/GeV] ∆M[MeV] ga

350 7.9 0.77 1267 8.65 173 0.85
400 8.4 0.74 1269 5.89 255 0.80
450 8.5 0.73 1257 4.82 311 0.77

In Table 2 we also list the model predictions for ga. They are about 30% below the
empirical value of 1.26 [62]. Note, however, that only the leading 1

NC
result is given. It

has been asserted that, because of the time-ordering prescription in the path integral for
bosonization, subleading contributions can significantly increase the model prediction [23].
These contributions are, unfortunately, not without further problems. For example, they
violate PCAC: In soliton models a partially conserved axial current (PCAC) results from
the field equation for the soliton. This equation contains only the leading order in 1

NC
and

any subleading piece in the axial current is not covered. Altering the field equation accord-
ingly [63] does not produce a stable soliton when the subleading Dirac sea contribution
(Early studies [64] omitted that part.) is properly included [23].

5. Hadron Tensor for the Nucleon as Soliton

We now get to a central topic of this short review: extracting the nucleon structure
functions from the hadron tensor in the soliton background while realizing regularization
from the onset of the action, Equation (13). Here we will consider mainly the example of the
leading 1

NC
component of the longitudinal polarized structure function, g1. For this example

we will also explain how sum rules are established in the fully regularized formulation.
For further details on other structure functions, that are obtained using quite a similar
procedure, we refer to to original literature [24–26].

Similar to the pion structure function in Section 3 we start from the Compton tensor,
Equation (23). However, this time we have to account for the nonperturbative nature of
the solitonic meson fields and may not approximate D(π) except for the 1

NC
expansion. As

mentioned in that earlier Section, isospin violating contributions may arise that only cancel
once the Bjorken limit is assumed. Can we anticipate this type of cancellations for the soliton
configuration at an earlier stage and thus simplify the calculation (somewhat)? As a matter
of fact the appearance of these terms is indeed an artifact of the simultaneous expansion in
the pion and photon fields, Equation (24). We might equally well have expanded only in
the photon field first (taking the charge matrix Q as part of v/, for simplicity)

−Tr
{(
−D(π)D(π)

5 + Λ2
i

)−1

×
[(

D(π)v/ + v/D(π)
5

)(
−D(π)D(π)

5 + Λ2
i

)−1(
D(π)v/ + v/D(π)

5

)]}
.

(48)

Here square brackets have been introduced to mark those factors that are sensitive to the
large photon momentum. Due to the cyclic properties of the trace this is merely a choice
but it must contain all vertices with v/. In momentum space the propagator inside the
square brackets behaves like 1/Q2 when assuming the Bjorken limit. In particular this
implies that[

. . .
] Bj−→

(
D(π)v/ + v/D(π)

5

)(
−D(π)D(π)

5

)−1(
D(π)v/ + v/D(π)

5

)
Bj−→ −D(π)v/

(
D(π)

5

)−1
v/− v/

(
D(π)

)−1
v/D(π)

5 .
(49)

Terms with either the unit or the
(
−D(π)D(π)

5

)−1
operators between two vector sources

have been omitted because they will either not depend on the photon momentum, cf. the
discussion before Equation (24) or are additionally suppressed by factors of 1

Q2 . The above
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replacement tells us that in the Bjorken limit the propagator through which the large
photon momentum runs will not contain the cut-offs Λi. In particular there will be
no contributions which behave like Q2

Λ2
i
; thereby the proper scaling behavior is manifest.

In other regularization schemes, like e.g., proper-time, wherein the cut-off is not additive
to the loop momenta, the absence of such scaling violating contributions is not apparent.
Previously, in Equation (48), we expanded the operator in powers of the pion field leading
to complicated three and four vertex quark loops. Now we see that the Bjorken limit
enforces the cancellations among those diagrams that we observed for the pion structure
function. The expression (49) simplifies even further by noting that the quark propagator
between the two photon insertions carries the large photon momentum and should hence
be approximated by the free massless propagator,[

. . .
]
−→ D(π)v/(∂/)−1v/− v/(∂/)−1v/D(π)

5 . (50)

The transition from the expression (48) to (50) is illustrated in Figure 2.

Figure 2. Two photon coupling to fermion loop. Thick lines are the full fermion propagators D(π)−1

(or D(π)−1
5 ) without any perturbation expansion. The thin line in the loop represents a free (massless)

fermion propagator, ∂/−1. Dashed lines denote Cutkosky cuts as discussed after Equation (58).

Substituting this simplification into Equation (48) leads to

Tr
{[(

D(π)
)−1
−
(

D(π)
5

)−1
]

v/(∂/)−1v/
}

+ reguarlization terms . (51)

Essentially we only include small and moderate momenta from the loop integrals for one
of the two propagators, keeping in mind that the sum of the momenta in the propagators
is subject to the Bjorken limit. The integration regime in which that large momentum is
distributed (approximately) equally among the two propagators does not contribute in the
Bjorken limit [24].

Having simplified the construction of the Compton tensor with the soliton background
in the Bjorken limit we see that it will be sufficient to differentiate (bringing back the charge
matrix Q)

A(2,v)
Λ,R = −i NC

4 ∑2
i=0 ciTr

{(
−D(π)D(π)

5 + Λ2
i

)−1

×
[
Q2v/(∂/)−1v/D(π)

5 −D(π)(v/(∂/)−1v/)5Q2
]} (52)

with respect to the vector sources. As already mentioned after Equation (12) the operator
D5, which was introduced to accomplish regularization, produces an unconventional Ward
identity because, in contrast to D, this γ5-odd operator has a relative minus sign between
the derivative operator i∂/ and the axial vector source a/γ5. To correct this regularization
artifact in a way consistent with the Bjorken sum rule [65,66] for the nucleon axial charge,
ga, this relative sign must also be reflected in the Dirac decomposition of (v/(∂/)−1v/)5 =
vµ ∂ρ

∂2 vν(γµγργν)5:

γµγργν = Sµρνσγσ − iεµρνσγσγ5 while (γµγργν)5 = Sµρνσγσ + iεµρνσγσγ5 , (53)

where Sµρνσ = gµρgνσ + gρνgµσ− gµνgρσ. We recall that the D5 model, which is not physical,
has been solely introduced as a device to allow for a regularization which maintains the
anomaly structure of the underlying theory by regularizing AR and AI differently. Hence
it is not at all surprising that further specification of this regularization prescription is
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demanded in order to formulate a fully consistent model. We stress that this issue is not
specific to the Pauli–Villars scheme. All schemes that regularize the sum, log (D)+ log (D5)
but not the difference, log (D)− log (D5) will require the specification (53). Since only the
polarized, i.e., spin dependent, structure functions are effected, this issue has not shown
up when computing the pion structure function.

For the imaginary part of the action the expression analogous to Equation (52) reads

A(2,v)
Λ,I = −i NC

4 Tr
{(
−D(π)D(π)

5

)−1[
Q2v/(∂/)−1v/D(π)

5 + D(π)(v/(∂/)−1v/)5Q2
]}

= i NC
4 Tr

{(
D(π)

)−1
Q2v/(∂/)−1v/ +

(
D(π)

5

)−1
(v/(∂/)−1v/)5Q2

}
.

(54)

Again, it is understood that the large photon momentum runs only through the operators
in square brackets in the first equation. Note that in the unregularized case (Λi ≡ 0)
the contributions associated with D5 would cancel in the sum of Equations (52) and (54)
leaving

A(2,v) = A(2,v)
Λ,R +A(2,v)

Λ,I

= i NC
2 Tr

{(
D(π)

)−1[
Q2v/(∂/)−1v/

]}
+ regularization terms ,

(55)

and the adjustment, Equation (53) would not be efficacious. Expanding this expression to
quadratic order in the pseudoscalar field P produces the standard “handbag” diagram with
the propagators connecting the quark-pion and quark-photon vertices [51]. In particular,
there are no isospin violating terms of the form tr(Pv/Pv/).

In the next step we will detail the calculation of the leading 1
NC

contribution from
the polarized vacuum (Dirac sea) to the nucleon structure functions. The contribution of
the distinct valence level will later be added as for as for the nucleon axial charge, ga, in
Equations (45) and (46). For the NJL soliton model this valence quark contribution has been
thoroughly discussed in Refs. [67,68]. In other models, like the MIT bag model [69–71], the
calculation is quite similar [72–75].

The above discussion and definition of the structure functions (form factors) in the
hadron tensor was based on translational invariance. To apply it to a localized soliton con-
figuration we need to restore translational invariance. This is accomplished by introducing
a collective coordinate, ~R, which describes the position of the soliton (nucleon) [76] with its
momentum ~p conjugate to this collective coordinate (This procedure is common to all soli-
ton models when e.g., computing form factors [77].), i.e., 〈~R|~p 〉 =

√
2E exp

(
i~R · ~p

)
. Here

E =
√
~p 2 + M2

N denotes the nucleon energy. The Compton amplitude is then obtained by
taking the pertinent matrix element and averaging over the position of the soliton,

Tab
µν = 2iMN

∫
d4ξ

∫
d3R eiq·ξ

〈
p, s
∣∣∣T{Ja

µ(ξ − R)Jb†
ν (−R)

}∣∣∣p, s
〉

= 2iMN
∫

d4ξ1
∫

d3ξ2 eiq·(ξ1−ξ2)
〈

s
∣∣∣T{Ja

µ(ξ1)Jb†
ν (ξ2)

}∣∣∣s〉 .
(56)

Here we have made use of the fact that the initial and final nucleon states not only have
identical momenta but are actually considered in the rest frame. For simplicity we will treat
ξ2 and R as four-vectors noting that their temporal components vanish, ξ0

2 = R0 = 0. The
spin-isospin matrix elements will be evaluated in the space of the collective coordinates A,
which have been introduced in Equation (35).
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To see how Cutkosky’s rule works in the soliton sector it instructive to briefly (and
only formally) consider the leading 1

NC
contribution in the unregularized case

T
{

Jµ(ξ1)Jν(ξ2)
}

= i NC
2 Tr

{(
−D(π)

)−1
Q2
[
γµδ4(x̂− ξ1)(∂/)

−1γνδ4(x̂− ξ2)

+γνδ4(x̂− ξ2)(∂/)
−1γµδ4(x̂− ξ1)

]}
.

(57)

Here x̂ refers to the position operator. The above functional trace is computed by using a
plane-wave basis for the operator in the square brackets while the matrix elements of D(π)

are evaluated employing the eigenfunctions Ψα of the Dirac Hamiltonian (32):

Tµν(q) = −MN NC
∫ dω

2π ∑α

∫
d4ξ1

∫
d3ξ2

∫ d4k
(2π)4 eiξ0

1(q
0+k0) e−i(~ξ1−~ξ2)·(~q+~k) 1

k2+iε

× ω+εα

ω2−ε2
α+iε

〈
N
∣∣∣{Ψα(~ξ1)Q2

Aγµk/γνΨα(~ξ2) eiξ0
1ω

−Ψα(~ξ2)Q2
Aγνk/γνΨα(~ξ1) e−iξ0

1ω

}∣∣∣N〉+O( 1
NC

)
.

(58)

The dependence on the collective coordinates is contained in QA = A†QA. We clearly
recognize the two propagators, one in the massless plane wave basis and the other in
the soliton background. Cutkosky’s rule produces respective δ-functions −2πiδ(k2) and
−2πiδ(ω2 − ε2

α). We perform the frequency integral, write t = ξ0
1 and employ the prescrip-

tion from Equation (53) so that the hadron tensor becomes

Wµν = MN NC ∑α sign(εα)
∫

dt
∫

d3ξ1
∫

d3ξ2
∫ d4k

(2π)4 eit(q0+k0) e−i(~ξ1−~ξ2)·(~q+~k) δ
(
k2)kρ

×
〈

N
∣∣∣Sµρνσ

{
Ψα(~ξ1)Q2

AγσΨα(~ξ2) eiεαt −Ψα(~ξ2)Q2
AγσΨα(~ξ1) e−iεαt

}

−iεµρνσ

{
Ψα(~ξ1)Q2

Aγσγ5Ψα(~ξ2) eiεαt + Ψα(~ξ2)Q2
Aγσγ5Ψα(~ξ1) e−iεαt

}∣∣∣N〉
+O

(
1

NC

)
.

(59)

In the above we have four contributions, two for each the unpolarized (Sµρνσ) and polarized
(εµρνσ) components. One of the two components propagates from ξ1 to ξ2 and the other in
the opposite direction. Typically they are denoted particle and antiparticle distributions.
Note, however, that in the present case εα may have either sign so that both particle and
antiparticles spinors contribute in all terms.

In deriving Equation (59) only the pole from ω = +εα contributed. That will be
different when regularization is accounted for. We display the result without further
derivation as the calculation for the fully regularized scenario goes along the same lines
as above

Tµν(q) = −MN
NC
2

∫ dω
2π ∑α

∫
dt
∫

d3ξ1
∫

d3ξ2
∫ d4k

(2π)4 ei(q0+k0)t e−i(~q+~k)·(~ξ1−~ξ2) 1
k2+iε

×
〈

N
∣∣∣{[eiωtΨ†

α(~ξ1)βQ2
Aγµk/γνΨα(~ξ2)− e−iωtΨ†

α(~ξ2)βQ2
Aγνk/γµΨα(~ξ1)

]
f+α (ω)

+
[
eiωtΨ†

α(~ξ1)Q2
A(γµk/γν)5βΨα(~ξ2)− e−iωtΨ†

α(~ξ2)Q2
A(γνk/γµ)5βΨα(~ξ1)

]
f−α (ω)

}∣∣∣N〉
+O

(
1

NC

)
,

(60)

with the spectral functions

f±α (ω) =
2

∑
i=0

ci
ω± εα

ω2 − ε2
α −Λ2

i + iε
± ω± εα

ω2 − ε2
α + iε

. (61)
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The first term in these spectral functions arises from the regularized real part, and the
second from the unregularized imaginary part. Without regularization f+α (ω) ∼ 2(ω+εα)

ω2−ε2
α+iε

and f−α (ω) ∼ 0 so that Equation (58) would be recovered.
Before applying Cutkosky’s rule we integrate over the time variable which is distinct

from the spatial coordinates because the soliton is static. This integral yields 2πδ(q0 +
k0 ±ω) which we subsequently use to integrate k0. Then the δ-function for the absorptive
part of the Compton amplitude is δ((q0 ± ω)2 − |~k|2). To perform the spatial integrals
we define the Fourier transform of the single particle wave-functions (The single particle
wave-functions are parity eigenfunctions so that spatial reflections can be compensated by
factors of β.) as

Ψ̃α(~p) =
∫ d3ξ

4π
Ψα(~ξ) ei~ξ·~p (62)

and get

Wµν(q) = iMN
NC
π

∫ dω
2π ∑α

∫
d3k

×
〈

N
∣∣∣{[Ψ̃†

α(~q +~k)Q2
Aβγµk/γνΨ̃α(~q +~k)δ(|~k|2 − (q0 + ω)2)

− Ψ̃†
α(~q +~k)Q2

Aγνk/γµβΨ̃α(~q +~k)δ(|~k|2 − (q0 −ω)2)
]

f+α (ω)
∣∣∣
p

+
[
Ψ̃†

α(~q +~k)Q2
A(γµk/γν)5βΨ̃α(~q +~k)δ(|~k|2 − (q0 + ω)2)

− Ψ̃†
α(~q +~k)Q2

Aβ(γνk/γµ)5Ψ̃α(~q +~k)δ(|~k|2 − (q0 −ω)2)
]

f−α (ω)
∣∣∣
p

}∣∣∣N〉 ,

(63)

where, again, we only wrote the leading 1
NC

term. An example for the pole extraction is(
2

∑
i=0

ci
1

ω2 − ε2
α −Λ2

i + iε

)
p

=
2

∑
i=0

ci
−iπ
ωα

[δ(ω + ωα) + δ(ω−ωα)] , (64)

with ωα =
√

ε2
α + Λ2

i . To get an expression that looks like a bilocal and bilinear distribution

function we shift the integration variable ~p = ~q +~k and recognize that the single particle
wave-functions will have support only for small ~p, as compared to the large momenta in~q.
This allows us to replace k/ by −q/ in the Bjorken limit (recall that k0 = −q0 ∓ω from the t
integral) for the Dirac matrices sandwiched between the spinors. Furthermore

|~k|2 − (q0 ±ω)2 = |~p−~q|2 − (q0 ±ω)2 = ~p2 − 2~p · n̂|~q|+ |~q|2 − (q0 ±ω)2

Bj−→ − 2|~q|[~p · n̂− (MN x∓ω)] .

Here n̂ is the unit vector in the direction of the spatial photon momentum~q. Then

Wµν(q) = iMN
NC
2π

∫ dω
2π ∑α

∫
d3 p

×
〈

N
∣∣∣{[Ψ̃†

α(~p)Q2
Aβγµn/γνΨ̃α(~p)δ(~p · n̂− (MN x−ω))

− Ψ̃†
α(~p)Q2

Aγνn/γµβΨ̃α(~p)δ(~p · n̂− (MN x + ω))
]

f+α (ω)
∣∣∣
p

+
[
Ψ̃†

α(~p)Q2
A(γµn/γν)5βΨ̃α(~p)δ(~p · n̂− (MN x−ω))

− Ψ̃†
α(~p)Q2

Aβ(γνn/γµ)5Ψ̃α(~p)δ(~p · n̂− (MN x + ω))
]

f−α (ω)
∣∣∣
p

}∣∣∣N〉 ,

(65)

where nµ = (1, n̂)µ is a light-like vector. Equation (65) is well suited for our numerical
simulations in Section 6, in particular when treating the δ-functions by averaging the
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directions of n̂ [28]. However, the similarity with distribution functions is more apparent
when returning to coordinate space and writing the δ-functions as integrals of exponen-
tial functions

W(s)
µν (q) = iMN

NC
4

∫ dω
2π ∑α

∫
d3ξ
∫ dλ

2π eiMnxλ

×
〈

N
∣∣∣{[Ψα(~ξ)Q2

Aγµn/γνΨα(~ξ + λn̂)e−iλω

−Ψα(~ξ)Q2
Aγνn/γµΨα(~ξ − λn̂)eiλω

]
f+α (ω)

∣∣∣
p

+
[
Ψα(~ξ)Q2

A(γµn/γν)5Ψα(~ξ − λn̂)e−iλω

−Ψα(~ξ)Q2
A(γνn/γµ)5Ψα(~ξ + λn̂)eiλω

]
f−α (ω)

∣∣∣
p

}∣∣∣N〉 ,

(66)

where we have added the superscript on W(s)
µν (q) to clarify that Equation (66) represents

the vacuum (Dirac sea) component only. The valence component is most conveniently
obtained by restricting the sum to α = v and omitting regularization

W(v)
µν (q) = i[1 + sign(εv)]MN

NC
4

∫
d3ξ
∫ dλ

2π eiMnxλ
〈

N
∣∣∣

×
{[

Ψv(~ξ)Q2
Aγνn/γµΨv(~ξ − λn̂)eiλεv −Ψv(~ξ)Q2

Aγµn/γνΨv(~ξ + λn̂)e−iλεv
]}∣∣∣N〉 .

(67)

Equations (66) and (67) indeed have the form of bilocal and bilinear quark distributions.
However, these are the distributions for the quarks in the chiral model interacting self-
consistently with the soliton. So far, no connection to distributions in QCD has been
incorporated; our calculation is solely based on the electromagnetic interaction within the
chiral model. Several features needed consideration to arrive at an expression of the form
of distributions. Most importantly and, of course, not surprisingly the Bjorken limit was
implemented. In addition, one of the two propagators that occur in the Compton amplitude
is taken to be that of a free massless fermion, while the other contains all information about
the soliton that resembles the nucleon. Again, this separation is an indirect consequence of
the Bjorken limit. Furthermore, we made use of the fact that the (momentum space) quark
wave-functions only have support at momenta that are tiny compared to the momentum of
the exchanged virtual photon. Finally, we stress that the appearance of single distribution
functions in Equation (66) is kind of deceptive as the spectral functions f (±)α (ω) pick up
more than a single pole.

In Section 4 we have computed that axial charge, ga, of the nucleon. It is the prime
example to see how sum rules work in the presence of regularization. The Bjorken sum
rule [65,66] relates that charge to the x-integral of the isovector combination of longitudinal
polarized nucleon structure functions g1(x) for proton and neutron. These functions are
obtained from the antisymmetric component of the hadron tensor

W(s,A)
µν = −MN

NC
2 εµρνσnρ

∫ dω
2π ∑α

∫
d3ξ
∫ dλ

2π eiMN xλ

(
∑2

i=0 ci
ω+εα

ω2−ε2
α−Λ2

i +iε

)
p

×
〈

N
∣∣∣Ψα(~ξ)Q2

Aγσγ5Ψα(~ξ+λn̂)e−iωλ + Ψα(~ξ)Q2
Aγσγ5Ψα(~ξ−λn̂)eiωλ

∣∣∣N〉 .
(68)

The spectral function is fully regularized because it originates from

f+α (ω)− f−α (−ω) =
2

∑
i=0

ci
ω + εα − (−ω− εα)

ω2 − ε2
α −Λ2

i + iε
+

ω + εα + (−ω− εα)

ω2 − ε2
α + iε

= 2
2

∑
i=0

ci
ω + εα

ω2 − ε2
α −Λ2

i + iε
.

Here the prescription from Equation (53) has had a major impact. Without this specification
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the relative sign between the spectral functions would have been positive resulting in the
spectral function (ω + εα)/(ω2 − ε2

α + iε). In that case W(s,A)
µν would have to be associated

with unregularized imaginary part of the action in Euclidian space which is not compatible
with the sum rules. The reason is that the leading order

(
in 1

NC

)
contribution to the axial

charges stems from the regularized real part of the action.
Taking n̂ = ê3 and the projection operator given in Table 1 we find for the Dirac sea

component of the longitudinal polarized structure function

g(s)1 (x) = −i MN NC
36

〈
N
∣∣∣I3

∣∣∣N〉 ∫ dω
2π ∑α

∫
d3ξ
∫ dλ

2π eiMN xλ

(
∑2

i=0 ci
ω+εα

ω2−ε2
α−Λ2

i +iε

)
p

×
[
Ψ†

α(~ξ)τ3(1− α3)γ5Ψα(ξ + λê3)e−iωλ + Ψ†
α(~ξ)τ3(1− α3)γ5Ψα(ξ − λê3)eiωλ

]
,

(69)

where we have substituted the matrix element (40) of the collective coordinates, A, sand-
wiched between nucleon states. To establish a sum rule we first note that 0 ≤ x < ∞.
The upper bound is not unity because the soliton breaks translational invariance. Eventu-
ally that will be accounted for by boosting the soliton to the infinite momentum frame [78],
as will be discussed in Section 6.3. Furthermore, the two terms in Equation (69) are related
by λ ↔ −λ which allows us to integrate only one of them but over −∞ < x < ∞ thereby
producing 2π

MN
δ(λ). From parity conservation we have

∫
d3ξ Ψ†

α(~ξ)τ3γ5Ψα(ξ) = 0 and the
poles are straightforwardly extracted as(

ω+εα

ω2−ε2
α−Λ2+iε

)
p

= − iπεα√
ε2

α+Λ2

[
δ
(

ω +
√

ε2
α + Λ2

)
+ δ
(

ω−
√

ε2
α + Λ2

)]
−iπ

[
δ
(

ω +
√

ε2
α + Λ2

)
− δ
(

ω−
√

ε2
α + Λ2

)]
.

(70)

Because of δ(λ) there is no other dependence on ω in Equation (69) and thus the second
square bracket in Equation (70) vanishes when integrating

∫ ∞
−∞ dx g(s)1 (x). Therefore, the

vacuum contribution to the Bjorken sum rule (p and n are proton and neutron, respectively)∫ ∞

0
dx
(

g(s,p)
1 (x)− g(s,n)

1 (x)
)
=

1
6

g(s)A (71)

is immediately verified from Equation (44) after taking care of the isospin matrix elements of
the nucleon. Adding the valence level component to this sum rule is a trivial simplification
of the calculation leading to Equation (71).

The above example for the verification of a sum rule is (almost) general. The symme-
tries under λ ↔ −λ extend the x integral over whole real axis rather than only the positive
half-line. That integral then produces δ(λ) which turns the bilocal matrix elements into the
expectation values that occur in the expressions for the static properties that occur in the
particular sum rule. Then the sum rule is verified level by level, i.e., separately for each
term in ∑α. The one exception is the momentum sum rule which involves the isoscalar
component of the unpolarized structure function f1(x). When adapting the calculation of
the Bjorken sum rule to the unpolarized structure function f1(x), the integral

∫
dx x f1(x)

produces the fermion part of the classical soliton energy in Equation (33). However, there
is an additional contribution proportional to (The factor x under the integral is written as a
derivative with respect to λ. Integrating by parts and averaging over angles turns this into
the expectation value of~α ·~∂.)

[1 + sign(εv)]
∫

d3ξ Ψ†
v(~ξ)~α ·~∂Ψv(~ξ)−

2

∑
i=0

ci ∑
α

εα√
ε2

α + Λ2
i

∫
d3ξ Ψ†

α(~ξ)~α ·~∂Ψα(~ξ)



Symmetry 2021, 13, 108 21 of 39

and the sum rule is only verified when this piece vanishes. One shows that this is indeed
the case by recognizing that

~α ·~∂ ∝
[
~ξ ·~∂, h

]
−m

(
~ξ ·~∂U5(ξ)

)
so that the matrix elements in that unwanted contribution are those of the dilatation
operator acting on the soliton. In turn the above sum is the change in energy obtained
when squeezing or stretching the soliton infinitesimally. As the soliton minimizes the
energy, this change must indeed be zero [24,27,28]. We must thus keep in mind that
the momentum sum rule only works when summing all levels. There is a (numerically
negligible) complication due to chiral symmetry breaking: for mπ 6= 0 the dilatation term
in the sum over the quark levels is not exactly zero but compensates for the local integral in
Equation (33). Numerically more concerning is the fact that the nucleon mass has O

(
1

NC

)
corrections, Equation (39), which are not contained in this structure function. We also
note that the sum rule actually yields Etot

MN
− 1, which does not vanish as we have defined

the hadron tensor to contain the physical mass parameter. Nevertheless, this sum rule is
perfectly suited to test the numerical simulation.

For completeness (and an attempt to frighten the reader) we display the Bjorken limit
of the hadron tensor including the next to leading order term for the expansion in 1

NC
,

W(s)
µν

Bj−→ iMN
NC
4

∫ dω
2π ∑α

∫
d3ξ
∫ dλ

2π eiMN xλ

×
〈

N
∣∣∣{[Ψα(~ξ)Q2

Aγµn/γνΨα(~ξ+λn̂)e−iλω −Ψα(~ξ)Q2
Aγνn/γµΨα(~ξ−λn̂)eiλω

]
f+α (ω)

∣∣∣
p

+
[
Ψα(~ξ)Q2

A(γµn/γν)5Ψα(~ξ−λn̂)e−iλω −Ψα(~ξ)Q2
A(γνn/γµ)5Ψα(~ξ+λn̂)eiλω

]
f−α (ω)

∣∣∣
p

+ iλ
4

[
Ψα(~ξ)~τ ·~ΩQ2

Aγµn/γνΨα(~ξ+λn̂)e−iλω

+Ψα(~ξ)Q2
A~τ ·~Ωγνn/γµΨα(~ξ−λn̂)eiλω

]
f+α (ω)

∣∣∣
p

+ iλ
4

[
Ψα(~ξ)~τ ·~ΩQ2

A(γµn/γν)5Ψα(~ξ−λn̂)e−iλω

+Ψα(~ξ)Q2
A~τ ·~Ω(γνn/γµ)5Ψα(~ξ+λn̂)eiλω

]
f−α (ω)

∣∣∣
p

+∑β〈α|~τ ·~Ω|β〉
([

Ψβ(~ξ)Q2
Aγµn/γνΨα(~ξ+λn̂)e−iλω

−Ψβ(~ξ)Q2
Aγνn/γµΨα(~ξ−λn̂)eiλω

]
g+αβ(ω)

∣∣∣
p

+
[
Ψβ(~ξ)Q2

A(γµn/γν)5Ψα(~ξ−λn̂)e−iλω

−Ψβ(~ξ)Q2
A(γνn/γµ)5Ψα(~ξ+λn̂)eiλω

]
g−αβ(ω)

∣∣∣
p

)}∣∣∣N〉 ,

(72)

with the spectral functions

g±αβ(ω) = ∑2
i=0 ci

(ω±εα)(ω±εβ)+Λ2
i

(ω2−ε2
α−Λ2

i +iε)(ω2−ε2
β−Λ2

i +iε)

± (ω±εα)(ω±εβ)

(ω2−ε2
α+iε)(ω2−ε2

β+iε)
.

(73)

The subleading 1
NC

terms contain the angular velocity, Equation (36). These terms arise
from the expansions (after transforming |ω, β〉 → A|ω, β〉)

〈ω, α|
(

D(π)
)−1
|ω, β〉 =

δαβ

ω− εα
+

1
ω− εα

〈α|1
2
~τ ·~Ω|β〉 1

ω− εβ
+O

(
~Ω 2
)

(74)

and

〈t,~ξ|A(t̂)|ω, α〉 = A(t) e−iωtΨα(~ξ) = A(0)
[

1 +
it
2
~τ ·~Ω

]
e−iωtΨα(~ξ) +O

(
~Ω 2
)

. (75)
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The explicit appearance of the time variable is treated in the context of the Fourier transform

teiq0t = −i ∂
∂q0

eiq0t while (in the nucleon rest frame) x =
−q2

0+~q
2MN q0

allows us to write ∂
∂q0

=
∂x
∂q0

∂
∂x with

∂x
∂q0

= − 1
MN
− q0x

q2
0

Bj−→ − 1
MN

.

This clarifies that the factors of iλ in Equation (72) originated from the explicit appearance
of the time variable via the derivative with respect to the Bjorken variable x.

Again, Equation (72) is the vacuum contribution. The valence part is most easily
obtained by substituting the cranked valence level wave-function

Ψ(rot)
v (~r, t) =

{
Ψv(~r) +

1
2 ∑

α 6=v
Ψα(~r)

〈α|~τ · ~Ω|v〉
εv − εα

}
(76)

into Equation (67) and taking care of the bilocal dependence on time as in Equation (75).
In this chapter we have reviewed the formal derivation of the hadron tensor for a

chiral quark soliton model starting from the electromagnetic coupling before bosonization
and making ample use of the Bjorken limit. We have detailed the case of the longitudinal
polarized structure function to illuminate the calculational principle and verified the rele-
vant sum rule. Detailed formulas for other structure functions are derived and presented
in Refs. [24–26].

6. Numerical Results

The results discussed in this section are mostly taken from Refs. [25,26]. There are
several steps until we can perform a sensible comparison with experimental data. First
we numerically simulate the analytic results from the previous section. This produces
structure functions that we call rest frame (RF) structure functions. We will present the
results for the RF structure functions in the following two subsections. These structure
functions have the unwanted feature that they do not vanish for |x| > 1. We will therefore
briefly describe a formalism [78] to boost the soliton to the infinite momentum frame (IMF).
In the IMF the structure functions indeed vanish for |x| > 1. That formalism is essentially
adapted from a similar study [79] of the MIT bag model in D = 1 + 1. This adoption is
made possible as in the Bjorken limit it suffices to restore Lorentz invariance in direction of
the (large) photon momentum only. Once support of the structure functions is confined to
|x| < 1 we can apply the DGLAP evolution formalism and compare with available data in
the last subsection. We will only apply a first order evolution as a proof of concept; after
all, the model is not constructed for high precision predictions.

We obtain the RF structure functions from the momentum space representation of
Equation (65) and the momentum space analog of Equation (72). This momentum space
computation is the most costly part of the simulation because we explicitly perform the
Fourier transformation, Equation (62), for the eigen-spinors of the self-consistent soliton.
Large momenta on a dense grid are needed to maintain the normalization of the spinors
(and thus the sum rules). A typical simulation takes several CPU days/weeks on a standard
desktop PC. In related work [27,28,30] the expansion coefficients defined after Equation (31)
were directly used. Since they are discrete, some smoothing procedure was needed in that
treatment of the momentum space wave-functions.

We will refrain from presenting lengthy formulas as, e.g., the extremely bulky expres-
sions involving the Fourier transforms of the radial functions in Ψα [25,26]. Rather we
focus on explaining the treatment of the pole terms without going into too much details.
This treatment is nontrivial and interferes with regularization, the central topic of this
review and therefore deserves closer consideration. Below we therefore describe some key
ingredients that are relevant for all our calculations.

As in Ref. [28] we treat the Dirac δ-functions in Equation (65) by averaging over n̂,
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that is, we replace these δ-functions by

1
4π

∫
dΩn̂δ(E + ~p ·~n) = 1

2|~p| θ(|~p| − |E|) (77)

and generalizations thereof that contain additional factors of n̂ under the solid angle
integral. We then need to evaluate expressions like (in sums over single particle levels α
but omitting that index)

∫ dω

2π

∫ dλ

2π

2

∑
i=0

ci

(
ω + ε

ω2 − ε2 −Λ2
i + iε

)
p

∫
d3 p Ψ̃†(~p)Ψ̃(~p)ei(MN x−n̂·~p)λeiωλ . (78)

Defining ωi =
√

ε2 + Λ2
i we have (see also Equation (64))

∫ dω
2π ∑2

i=0 ci

(
ω+ε

ω2−ε2−Λ2
i +iε

)
p

eiωλ = − i
2 ∑2

i=0
ci
|ωi |
[
(ε + ωi)eiωiλ + (ε−ωi)e−iωiλ

]
(79)

and therefore∫ dλ
2π ei(MN x−n̂·~p)λ ∫ dω

2π ∑2
i=0 ci

(
ω+ε

ω2−ε2−Λ2
i +iε

)
p

eiωλ

= − i
2 ∑2

i=0
ci
|ωi |

[(ε + ωi)δ(MN x− n̂ · ~p + ωi) + (ε + ωi)δ(MN x− n̂ · ~p−ωi)]

−→ − i
4|~p| ∑2

i=0
ci
|ωi |

[(ε + ωi)θ(|~p| − |MN x + ωi|) + (ε−ωi)θ(|~p| − |MN x−ωi|)] ,

(80)

where the arrow denotes the averaging procedure from Equation (77). Note that, due to the
step function, the cut-off also appears as the lower boundary of the momentum integral
and we treat these boundaries according to the single cut-off prescription, Equation (15)

∑2
i=0 ci

∫ ∞
|MN x+ωi | pdp f (p, ωi) =

∫ ∞
|MN x+ε| pdp f (p, ε)−

∫ ∞
|MN x+

√
ε2+Λ2| pdp f (p,

√
ε2 + Λ2)

+Λ2
∫ ∞
|MN x+

√
ε2+Λ2| pdp ∂

∂Λ2 f (p,
√

ε2 + Λ2)

− Λ2

2
√

ε2+Λ2

[
p f (p,

√
ε2 + Λ2)

]
p=|MN x+

√
ε2+Λ2|

.
(81)

Here f (p, ωi) contains angular matrix elements like
∫

dΩ~pΨ̃†(~p)Ψ̃(~p) or
∫

dΩ~pΨ̃†(~p)~α ·
~p Ψ̃(~p) multiplied by powers of ωi.

6.1. Unpolarized Structure Functions

We will not present detailed formulas, except for some leading terms of the 1
NC

expansion. We refer the reader to Refs. [25,26] for more details (even though some factors
of π were not written there). As an example we present the expression for the isoscalar
component of the unpolarized RF structure function

[
f s
1(x)

]∓
I=0 = 5MN Nc

72π ∑α ∑2
i=0 ci

∫ ∞
|MN x±α | p dp

∫
dΩp

{
±Ψ̃†

α(~p)Ψ̃α(~p)

− εα√
ε2

α+Λ2
i

MN x±α
p Ψ̃†

α(~p) p̂ ·~αΨ̃α(~p)

}
,

(82)

where
MN x±α = MN x±

√
ε2

α + Λ2
i . (83)

The superscripts ∓ denote the positive (negative) frequency components which are typ-
ically referred to as quark and antiquark distribution. They arise from the two poles
(for a particular ωα) of the δ-function in Equation (64) and materialize in the ±ω terms
in Equation (65). The total Dirac sea contribution to the isoscalar unpolarized structure
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function is the sum
[ f s

1(x)]I=0 = [ f s
1(x)]−I=0 + [ f s

1(x)]+I=0 . (84)

On first sight it seems as if the first term under the integral in Equation (82) would not
be subject to regularization. This is not the case, as the momentum integral is computed
according to Equation (81). Since the isoscalar unpolarized structure functions are related
to the classical energy of the soliton by the momentum sum rule, we must still subtract
the analog of this calculation that is obtained by substituting spinor wave-functions for
Θ = 0. We have numerically checked the sum rule and achieved agreement better than
1%. In view of the many elaborate elements of the simulation, this is more than satisfactory.
We get the valence contribution from substituting Equation (76) into the unregularized
expression. This then adds[

f v
1 (x)

]∓
I=0 = − 5MN Nc

72π [1 + sign(εv)]
∫ ∞

MN |x±v | p dp
∫

dΩp

×
{
±Ψ̃†

v(~p)Ψ̃v(~p)− MN x±v
p Ψ̃†

v(~p) p̂ ·~αΨ̃v(~p)

}
,

(85)

to the positive and negative frequency components of the isoscalar unpolarized structure
function. In this case there is no need to subtract the Θ = 0 counterpart because this level
is not occupied in the baryon number zero sector.

In Figure 3 we present typical numerical results. While the valence contribution is
smooth, the vacuum part exhibits large peaks at small x. We consider this as an artifact of
the Θ = 0 subtraction, which actually has no dynamical justification other than setting the
zero energy scale. However, this is merely a consistency condition on the sum rule which
is only an integral over the structure function. This may actually be too strong a condition
and we will comment on that in the conclusion.
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Figure 3. Model prediction (with m = 400 MeV) for the isoscalar unpolarized structure function in
the nucleon rest frame. Dotted and dotted-dashed lines refer to the positive and negative frequency
contributions, respectively.

Figure 4 shows the isovector counterpart which is subleading in 1
NC

and does not have
any (artificial) Θ = 0 subtraction. Obviously this structure function is dominated by the
valence level contribution while the vacuum part is almost negligible.
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Figure 4. Same as Figure 3 for the isovector unpolarized structure function. Observe the logarithmic
scale for the Bjorken variable x.

In Figure 5 we display the numerical results for the unpolarized structure function
that enters the Gottfried sum rule, i.e., f p

2 (x)− f n
2 (x) = 2x

[
f p
1 (x)− f n

1 (x)
]
, as the Callan-

Gross relation holds in the rest frame, cf. Table 1. At large x the vacuum contribution
turns slightly negative. Though the valence contribution is generally dominant, the small
negative piece persists in the total contribution of this structure function. In Table 3, we
compare our model prediction for the Gottfried sum rule,

SG =
∫ ∞

0

dx
x

(
f p
2 − f n

2

)
, (86)

for various constituent quark masses to that of the value extracted from data by the
NM Collaboration [80]. The agreement is astonishingly good. The integral is almost
completely saturated by the valence level contribution.

In contrast to the isoscalar unpolarized structure function, the isovector part does not
undergo regularization. Such an alternating behavior between (un)regularized quantities
is well-known for static properties [22,23] but it is interesting to see that it also holds for
structure functions. Of course, that is a prediction of the formalism.

6.2. Polarized Structure Functions

For the polarized structure functions we will only list explicit formulas for the isovector
longitudinal piece which is leading in 1

NC
. Essentially this is the Fourier transform of

Equation (69). The vacuum contribution reads
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Figure 5. Model prediction of the unpolarized structure function f p
2 (x)− f n

2 (x) for the constituent
quark mass of m = 400 MeV.
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[
gs

1(x)
]∓

I=1 = −MN Nc
36π 〈N|I3|N〉∑α ∑2

i=0 ci

{
∓
∫ ∞
|MN x±α | dp MN x±α

∫
dΩpΨ̃†

α(~p) p̂ ·~τγ5Ψ̃α(~p)

− εα√
ε2

α+Λ2
i

∫ ∞
|MN x±α | dp p2

[
A±
∫

dΩpΨ̃†
α(~p)~τ ·~σΨ̃α(~p)

+B±
∫

dΩpΨ̃†
α(~p) p̂ ·~τ p̂ ·~σΨ̃α(~p)

]}
,

(87)

where we have introduced the abbreviations, see also Equation (83),

A± =
1

2p

(
1− (MN x±α )2

p2

)
, B± =

1
2p

(
3
(MN x±α )2

p2 − 1
)

. (88)

As before, the superscripts denote the positive and negative frequency components. The to-
tal Dirac sea contribution to g1(x) again is the sum of the positive (+) and negative (−)
frequency components. The valence quark contribution to the isovector longitudinal
polarized structure function reads[

gv
1 (x)

]∓
I=1 = MN Nc

36π [1 + sign(εv)]〈N|I3|N〉{
∓
∫ ∞
|MN x± | dp MN x±v

∫
dΩpΨ̃†

v(~p) p̂ ·~τγ5Ψ̃v(~p)

−
∫ ∞
|MN x±v | dp p2

[
A±
∫

dΩpΨ̃†
v(~p)~τ ·~σΨ̃v(~p)

+B±
∫

dΩpΨ̃†
v(~p) p̂ ·~τ p̂ ·~σΨ̃v(~p)

]}
.

(89)

The numerical results are shown in Figure 6.
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Figure 6. Model prediction (m = 400 MeV) for the isovector longitudinal polarized structure
functions. For the valence and vacuum contributions we separately display the positive (dotted) and
negative (dotted-dashed) frequency contributions.

Table 3. The Gottfried sum rule for various values of m. The subscripts “v” and “s” denote the
valence and vacuum contributions, respectively. The fourth column contains their sums.

m [MeV] [SG]v [SG]s SG Emp. Value

400 0.214 0.000156 0.214
450 0.225 0.000248 0.225 0.235± 0.026 [80]
500 0.236 0.000356 0.237
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The isoscalar counterpart is subleading in 1
NC

and we display a typical model predic-
tion in Figure 7.
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Figure 7. Same as Figure 6 for the isoscalar longitudinal polarized structure functions.

We have already discussed the Bjorken sum rule for the isovector piece. Its verification
serves as a test for the accuracy of the numerical simulation. The isoscalar combination
also has a sum rule which gives the matrix element of the isoscalar axial current Ψγµγ5Ψ.
As mentioned, its empirical determination has triggered much of the research on structure
functions. Our results for both sum rules are shown in Table 4. We note that the isoscalar
axial charge is significantly less than one in agreement with phenomenology of the proton
spin puzzle [40].

Table 4. Axial isovector and isoscalar charges for various values of the constituent quark mass m from integrating the
longitudinal structure functions. Subscripts are as in Table 3. Data in parenthesis give the numerical results as obtained
from the coordinate space representation, cf. Equation (47) and Table 2.

m [MeV] [gA]v [gA]s gA emp. Value [g0
A]v [g0

A]s g0
A emp. Value

400 0.734 0.065 0.799 (0.800) 1.2601 0.344 0.0016 0.345 (0.350)
450 0.715 0.051 0.766 (0.765) ±0.0025 0.327 0.0021 0.329 (0.332) 0.33± 0.06
500 0.704 0.029 0.733 (0.733) [62] 0.316 0.0028 0.318 (0.323) [81]

According to the projectors listed in Table 1 the transverse polarized structure func-
tion gT(x) has matrix elements similar to those above. From its computation we subse-
quently identify

g2(x) = g1(x)− gT(x) (90)

for both the isoscalar and isoscalar combinations. Typical results are shown in Figures 8
and 9. Here it occurs that the vacuum piece dominates. However, that is mainly a
consequence of cancellations for the valence contribution via Equation (90).
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Figure 8. Model prediction of the isoscalar structure function, g2, for the constituent quark mass of
m = 400 MeV.
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Figure 9. Model prediction of the isovector polarized structure functions, g2, frame for the constituent
quark mass of m = 400 MeV.

6.3. Boosting to the Infinite Momentum Frame

It is customary to introduce light-cone coordinates x± =
(

x0 ± n̂ ·~x
)
/
√

2 to discuss
structure functions in the context of the parton model. Using these coordinates the Bjorken
limit is particularly transparent

q− → ∞ and x = − q+

p+
.

As discussed before, the fermion propagator is free and massless in the Bjorken limit.
Massless fermions have the singular function

{
Ψ(ξ), Ψ(0)

}
= 1

2π ∂/δ(ξ2)ε(ξ0). This can be
used to turn the current-current correlator in the hadron tensor into a matrix element of
bilocal bilinear fermion operators [82] (These are fundamental fermion operators, not the
eigenfunctions of h in Equation (32).)

f1(x) =
x

4π

∫
dξ− e−ip+ξ−〈N|Ψ(ξ)γ+Q2Ψ(0)−Ψ(0)γ+Q2Ψ(ξ)|N〉ξ+=0,ξ⊥=0 .

This singles out the coordinate along the photon momentum as the most relevant variable.
We will see shortly that this is indeed realized in the IMF, which also has ξ+ = 0.

Assuming translational invariance and inserting a complete set of states with momenta
pn, the matrix elements of bilocal bilinear quark operators can be shown to be nonzero
only when

p+n − (1− x)p+ = 0 .
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In the vicinity of x = 1 this can only be fulfilled when the masses of both the partons n
and the nucleon are negligible small and/or p+ becomes very large. The limit of large p+

defines the IMF. It is therefore suggestive to consider the soliton model structure functions
in the IMF as well. To boost the system to the IMF, the collective coordinate method of
Equation (56) for any local object Γ must be extended to

Γ(~ξ, ξ0) −→ S(Λ)Γ(~ξ ′ − ~R′, ξ ′0)S−1(Λ) where ξ ′µ =
(

Λ−1
)µ

ν
ξν . (91)

Here Λ parameterizes a Lorentz transformation and S(Λ) is the corresponding generator
for Γ. Subsequently, the collective coordinates ~R are averaged as in Equation (56).

A Lorentz boost with rapidity Ω along the light cone transforms the RF coordinates as

p+ −→ MN√
2

eΩ and p− −→ MN√
2

e−Ω (92)

while the transverse components are left unchanged. The transformation to the IMF
is thus characterized by Ω → ∞ which also implies that Λ−1 singles out ξ ′− so that
ξ ′+ → 0. In Ref. [78] this transformation was applied together with the collective coordinate
average for bilocal bilinear quark composites like those in Equation (59). Essentially that
study adapted a two-dimensional MIT bag model calculation [79] to the soliton model by
ignoring effects on the transverse coordinates as Lorentz covariance is only restored along
n̂. The result is a simple transformation prescription for the structure functions:

fIMF(x) =
Θ(1− x)

1− x
fRF(− ln(1− x)) , (93)

where fRF is any of the structure functions like that in Equation (69) which are obtained
from the hadron tensor in the RF according to the calculations in the previous section.
Obviously this prescription ensures that the transformed structure functions have support
only in the kinematically allowed interval 0 ≤ x ≤ 1. Thus the structure function fIMF(x)
is a suitable input for the DGLAP evolution program. In what follows we will omit the
label IMF for the boosted structure functions.

6.4. DGLAP Evolution

Of course, we wish to compare our model predictions with data. In this section we
describe the remaining step with focus on the polarized structure functions. All model
results presented in this subsection have been obtained for the constitutent quark mass
m = 400 MeV.

So far, we have computed the structure functions within the NJL soliton model, which
(at best) approximates QCD at a low mass scale, µ2 = Q2

0 which is thus an adjustable
hidden parameter in the approach and can be thought of as the identification scale with
QCD. This low mass scale is different from the high energy scales, Q2 at which DIS data
are available. To compare with the DIS data, we adopt the leading order Altarelli-Parisi
(DGLAP) equations [4–6] for parton distributions to evolve the model structure functions.
To apply this formalism we, unfortunately, have to identify the model structure functions
with QCD distribution functions of quarks since the chiral model is not renormalizable and
does not have a renormalization group equation to sum the leading logs.

Let h(I=1)(x, t) be the isovector combination of any twist-2 distribution with t =

ln
(

Q2

Λ2
QCD

)
. The change in momentum scale is governed by the differential equation

dh(I=1)(x,t)
dt = αs(t)

2π CR(F)
∫ 1

x
dy
y Pqq(y)h(I=1)

(
x
y , t
)

=: αs(t)
2π CR(F)Pqq ⊗ h(I=1)(x, t) .

(94)
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Here αs(t) = 4π
β0t , is the running coupling constant of QCD, in which β0 = 11

3 NC − 2
3 N f and

CR(F) =
N2

f−1
2N f

are combinatoric factors in the QCD renormalization group equation for N f

flavors. Most importantly Pqq(y) is the splitting function that describes the probability of
a quark emitting a gluon and a quark with momentum fraction y. This splitting function
and those for the isoscalar combination to be discussed below are given in Refs. [4–6].
The right-hand-side of Equation (94) serves as the definition of the evolution product “⊗”.
As initial condition, h(I=1)(x, t(µ2)), to integrate this differential equation, we take the
distributions identified from the boosted structure functions in the IMF. The endpoint of
integration is the scale Q2 at which data from experiment are available. We attempt to tune
µ2 to optimize the agreement with these data and take the very same identification scale
for all evolution calculations.

The isoscalar combinations, h(I=0)(x, t) are more complicated. By the pure nature
of the quantum numbers h(I=0)(x, t) mixes with the gluon distribution g(x, t) and the
evolution equations are coupled differential equations

dh(I=0)(x,t)
dt = αs(t)

2π CR(F)
[

Pqq ⊗ h(I=0)(x, t) + Pqg ⊗ g(x, t)
]

dg(x,t)
dt = αs(t)

2π CR(F)
[

Pgq ⊗ h(I=0)(x, t) + Pgg ⊗ g(x, t)
]
.

(95)

The only sensible identification of the gluon distribution g(x, t) is to have it vanish at µ2,
otherwise sum rules would be violated. This is again an unavoidable (and undesirable)
identification of QCD degrees of freedom.

We are now in the position to confront the model prediction with data from experiment.
For the longitudinal polarized structure function of the proton, this is done in the left panel
of Figure 10.
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Figure 10. Model prediction for the longitudinal polarized proton structure functions.
Left panel: gp

1 (x) ; right panel: g
3He
1 (x). These functions are “DGLAP” evolved from

µ2 = 0.4 GeV2 to Q2 = 3 GeV2 after being projected to the IMF. Data are from Refs. [83,84]
for the proton and from Ref. [85] for helium. In the latter case E refers to the electron
energy.

We chose µ2 = 0.4 GeV2 and get a reasonable (though not perfect) match with the data
after evolving the boosted structure function to the scale of the experiment, Q2 = 3 GeV2.
Any further fine-tuning of µ2 has only marginal effects. The predictions are obviously
in the right ballpark, but deviations clearly emerge in detail. Surprisingly, the RF result
appears to match data best. This is an indication that the boost formalism overemphasizes
the low x regime. For the neutron, data are available in terms of the helium structure
function [85] (In Ref. [85] direct neutron data are only given as the ratio gn

1 (x)/F1(x).)

g
3He
1 (x) ≈ Png

n
1 (x) + Ppg

p
1 (x)− 0.014

[
g

p
1 (x)− 4gn

1 (x)
]

, (96)

with Pn ≈ 0.86 and Pp ≈ −0.028 arising from the nuclear model. In addition, from Figure 10
we see that in this case the DGLAP evolution indeed brings the model prediction closer to
data. At large x we find the structure function to be small and positive while for moderate
x the observed negative trough is present but somewhat too strong.
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The evolution of the transverse polarized structure functions is even more complicated
because g2(x, t) is the sum of two terms. One has twist-2 [86]

gWW
2 (x, t) = −g1(x, t) +

∫ 1

0
dy

1
y

g1(y, t) (97)

and the remainder, g2(x, t) = g2(x, t)− gWW
2 (x, t) is associated with twist-3. The twist-2

part undergoes the DGLAP evolution described above. For the twist-3 piece we extract
Mellin moments

Mj(Q2) =
∫ 1

0
dx xj−1g2(x, t) (98)

that scale as
Mj(Q2)

Mj(µ2)
=

[
ln(µ2)

ln(Q2)

] γj−1
β0

. (99)

So far, only the leading large NC terms of γj−1 are known [87–89]. At the initial scale µ2

we disentangle the twist components, evolve them separately to Q2, invert the Mellin
transformation, and put the two components back together to build g2(x, t). The result
of this procedure for the proton channel is compared to available data in Figure 11. Our
estimate produces the main structure seen experimentally: gp

2 (x, t) is negative and small in
magnitude at large x and increases substantially as x decreases.
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Figure 11. Model prediction for the polarized proton structure functions gp
2 (x). This function is

“DGLAP” evolved from µ2 = 0.4 GeV2 to Q2 = 5 GeV2 after being projected to the IMF. Data are
from Ref [90].

Twist-3 by itself is interesting as data have been recently reported [85] for the sec-
ond moment

d(n)2 (Q2) = 3
∫ 1

0
dx x2 g(n)2 (x, t) (100)

in the neutron channel at two different transferred momenta: d(n)2 (3.21GeV2) = (−4.21±
1.14) × 10−3 and d(n)2 (4.32GeV2) = (−0.35 ± 1.04) × 10−3 (we added the reported er-
rors in quadrature). Our model calculations for m = 400 MeV yield −4.26 × 10−3

and −4.09× 10−3, respectively. While the lower Q2 result matches the observed value,
the higher one differs by about three standard deviations. The results indicate that the
large NC approximation to evolve g2 requires improvement.

Finally, we comment on the isovector unpolarized structure function that is compared
to data in Figure 12, see also Figures 4 and 5. Though the negative contribution to f1 from
the Dirac vacuum, cf. Figure 4, around x = 1 is tiny in the RF, it becomes relatively large
when (i) multiplied by x to obtain f2 and (ii) when transformed to the IMF because of the
Jacobian factor 1/(1− x) thereby worsening the agreement with the experimental data
from NMC [80].
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Figure 12. Model prediction (m = 400 MeV) for the unpolarized structure function that enters
the Gottfried sum rule, Equation (86). This function is “DGLAP” evolved from µ2 = 0.4 GeV2 to
Q2 = 4 GeV2 after transformation to the IMF. Data are from Ref. [80].

To some extent, this dilutes the perfect agreement between the model prediction and
data for the Gottfried sum rule, Equation (86), discussed earlier. Under that integral the
model result arises from cancellations not seen in the empirical structure function [80].

7. Related Approaches

One of the major obstacles when computing structure functions within chiral quark
soliton models is the consistent implementation of the regularization prescription. Various
approaches have been undertaken. The numerical results do not differ significantly as the
dominant contribution to the structure functions arises from the explicitly occupied valence
level (in particular when m . 400 MeV) and this contribution is not subject to regularization.
Even though the discrepancies among the various approaches to structure functions in
chiral soliton models are presumably smaller than their systematic uncertainties, we will
nevertheless comment on alternative approaches in this section.

A simple-minded but not too unrealistic procedure to avoid that problem is to simply
ignore the vacuum contribution and compute structure functions in the so-called valence
level only approximation. This is guided by the observation that the most important
role of the vacuum contribution in chiral quark soliton models is to stabilize the soliton
but it is of lesser importance for the predictions of static nucleon properties [22,23]. For
example, for m = 400 MeV the valence level contributes almost 80% to the moment of
inertia in Equation (38). This avenue for the structure functions was taken in the early
works reported in Refs. [67,68]. It also allows for a sensitive estimate of 1

NC
effects and

the separation of isoscalar and -vector components without encountering complicated
expressions like those in Equations (72) and (73). The results from Section 6 show that this
is indeed a reasonable approximation for the polarized structure functions; maybe to a
lesser extent for the unpolarized structure functions.

From Equation (66) we see that the regularized hadron tensor at leading order in 1
NC

is
a sum of four terms, while the unregularized version only has two. Similarly, when acting
with the projection operators from Table 1 to extract a certain structure function, the spectral
functions f (±)α (ω) combine to reduce the number of terms that contribute to the hadron
tensor to two as well. We have seen that explicitly for the longitudinal polarized structure
function g1(x) in Equation (69). These two terms are formally distribution functions
that take the fermions forward and backward in space time along the direction of the
virtual photon momentum. The (formal) appearance of such distributions is general to
all fermion models in the Bjorken limit. It is therefore suggestive to consider distribution
functions in such models regardless of whether or not other peculiarities in the model,
like regularization, require more detailed consideration. In this context the authors of
Refs. [27,28] derived two equivalent expressions for unregularized quark distribution
functions (coefficients adjusted to comply with Equation (62))

D(1)(x) = 2
π NC MN ∑α,occ.

∫
d3 p Ψ̃α(~p)n/ΓΨ̃α(~p)δ(p3 + εα −MN x)

D(2)(x) = − 2
π NC MN ∑α,non−occ.

∫
d3 p Ψ̃α(~p)n/ΓΨ̃α(~p)δ(p3 + εα −MN x) ,

(101)
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in the large NC limit. Obviously these expression combine to

D(x) = 1
2

[
D(1)(x) + D(2)(x)

]
= − 1

π NC MN ∑α sign(εα)
∫

d3 p Ψ̃α(~p)n/ΓΨ̃α(~p)δ(p3 + εα −MN x) ,
(102)

for the Dirac sea contribution which, by definition, has the negative energy levels occupied
(occ) and the positive energy levels empty (non-occ). (Equivalent expressions arise from
trace identities. E.g., ∑α εα = 0 allows to write (for εv > 0): εv + 1

2 ∑α |εα| = ∑α,occ. εα.
Whether or not such identities hold depends on the particular regularization prescription.)
Similarly antiquark distribution functions are obtained with D(x) = −D(−x). Using D(x),
D(x) and suitable linear combinations of the spin flavor matrices Γ the authors would then
compute the structure functions. Considering, for example, the unregularized version of
the first term within the square brackets in Equation (69) and noticing that

[ω + εα]δ(ω
2 − ε2

α) = sign(εα)δ(ω− εα) (103)

we observe the very same structure as in D(x). In the notation of Refs. [27,28] the second
term in Equation (69) represents the antiquark distribution D(x) that must be added to
complete the structure function. Not unexpectedly, without regularization these approaches
are thus equivalent. Refs. [27,28] perform a two step regularization for the distributions,
first a smoothing function is multiplied in the level sum in Equation (102) with a scale
Emax. Then the calculation is repeated with a second, larger constituent quark mass
and the difference is extrapolated to Emax → ∞. That second constituent quark mass
conceptually is a Pauli–Villars mass, MPV. Its numerical value is determined from the
pion decay constant fπ as follows: compute the unregularized polarization functions,
Equation (19), that enter fπ for both m and MPV, multiply both polarization functions by m
and MPV, respectively and tune MPV such that the difference is fπ/4NC, with fπ = 93MeV.
Though the procedure seems plausible, it is not rigorous (The caption to Figure 1 in
Ref. [28] suggests that the valence level contribution would also undergo this Pauli-Villars
type subtraction. If correctly interpreted, that seems in contradiction to unit baryon
number.). Among other questions one might ask why should the second calculation have
the same smoothing scale Emax; and if different, what is the effect? We also note that a
single subtraction does not produce a finite gap equation (In Refs. [27,28] this problem is
bypassed by postulating a nonzero constituent quark mass in D(π) and define the model
by that operator.), Equation (16), and further obstacles may occur away from the chiral
limit when quadratic divergences may occur. In the onset we have distinguished between
regularized and nonregularized parts in the action, Equation (13). Any kind of a posteriori
regularization faces the dilemma that such a distinction is difficult to implement. There are
combinations of distributions that are ultraviolet finite even without regularization. Must
they nevertheless undergo regularization? In this context refer to the discussion on the
Gottfried sum rule in Section 6. We also note that the restriction to the leading 1

NC
terms

does not distinguish between isoscalar and -vector components.
Most of those early distribution function calculations did not attempt the DGLAP evo-

lution but rather compared the results with empirical distributions at a low renormalization
point; this results from applying the inverse of the DGLAP evolution to data [9].

In Refs. [29,30] similar calculations for the 1
NC

corrections to the unpolarized distri-
butions have been performed while Ref. [31] discusses the polarized distributions with
subleading 1

NC
terms included and also implements the DGLAP evolution program. Similar

to our calculations those authors observe that the Dirac sea contribution to the polarized
structure functions is almost negligibly small.

The extension to three light flavors has also been addressed. These studies were
first performed in the valence level only approximation for the hadron tensor [91] and
soon after by formulating distributions incorporating the a posteriori regularization [37–39]
with a Pauli–Villars mass as described above. Technically the main difference is that the
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collective coordinates are from SU(3) and that there are eight instead of three angular
velocities. Furthermore flavor symmetry breaking must be included because the strange
quark mass (represented by the mass of the pseudoscalar kaon) is much larger than that
of the up and down quarks. Of course, that extension allows a closer look at strangeness
in the nucleon. In this regard the numerical results of that model calculation agree with
data [92,93], at least qualitatively.

Once the identification of distribution functions is accepted, other processes than
DIS, that in QCD are described by various bilocal bilinear quark operators, can also be
explored within chiral quark soliton models. Let us mention two examples. Transversity
distributions complete the description of the nucleon spin [94,95] and are relevant for
the Drell–Yan process [96]. There are two of them which are similar to the two polar-
ized structure functions: the transverse hT(x) and longitudinal hL(x). In the language
of distributions the relevant bilocal bilinear quark operators are similar to those for the
polarized ones, except for different Dirac matrices. Again, transverse and longitudinal
refers to the alignment of spin and external momentum. In the soliton model these distribu-
tions were first estimated in the large NC limit and valence level only approximation [32].
Subsequently 1

NC
corrections were included [33] and finally Dirac sea contributions were

considered in Refs. [31,34]. Transversity distributions have sum rules with tensor charges,
〈N|Σ3(τ3)|N〉. These charges can be directly computed in the chiral soliton model without
any ambiguity from regularizing the Dirac sea component. That component was found
to be very small [33] suggesting that the valence level only approximation is reliable for
these distributions. This was later confirmed by the computation with the a posteriori
regularization prescription [31]. The twist-3 distribution e(x), which has a sum rule with
the πN − σ-term, has been considered in Refs. [35,36]. Again, this distribution is not a
structure function accessible in DIS but can be extracted from pion photoproduction [97–99].
Even though the relevant bilocal bilinear quark operator is as simple as Ψ(0)(τ3)Ψ(λn),
the actual computation is quite intricate because of a potential δ-function behavior of
the isoscalar combination at x = 0. The sum rule is only satisfied with the inclusion
of such a behavior [100]. The model calculation of Refs. [35,36] indeed confirms that
singular structure.

Let us also briefly comment on the historical development. Refs. [27,28] mentions
that some preliminary results on structure functions had been “announced” in Ref. [101].
However, that reference only states that these calculations are in progress pointing to [27,28].
So it seems fair to state that the first results for structure functions in a soliton model were
presented in Ref. [67] according to the journal received dates though there was some delay
of the actual publication.

We have seen that, modulo regularization, the matrix elements to be computed are
formally the same as if the bilocal bilinear quark operators were directly transferred from
QCD to the model. That is, rather than merely taking the NJL model as one for some of the
QCD symmetries, it is considered a model for QCD degrees of freedom. This is a frequently
adopted point of view, not only for the NJL model but also e.g., the MIT bag model [69–71],
in particular in the context of structure functions [72–75]. Furthermore, it opens the door to
explore quark distributions other than those parameterizing (electromagnetic) DIS.

8. Conclusions

The standard model for elementary particles is a gauge theory for leptons, quarks,
and gauge bosons. To make contact with the world of mesons and baryons, knowledge
about their composition in terms of quarks (and gluons) is inevitable. The binding of the
fundamental constituents to mesons and baryons, known as color-confinement in QCD,
is a nonperturbative effect. Distribution functions that combine to structure functions
parameterize this nonperturbative composition of mesons and baryons. These structure
functions cannot be computed from first principles in QCD but are either extracted from
empirical data, computed in lattice simulations, or obtained from some model estimates.
The chiral soliton model is one of the many popular and successful models for baryons.
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Here meson fields are the model degrees of freedom and solitons, which represent baryons,
are (static) solutions to the respective, nonlinear fields equations.

The calculation of nucleon structure functions in chiral soliton models has been
a long issue. Traditional soliton models like the Skyrme model and its extensions by
incorporating vector mesons in addition to the pions face the problem of only representing
local quark bilinear combinations. On the other hand, models that carry through the
bosonization, that transforms the quark into a meson theory, are plagued by the need
for regularization. Here we have reviewed a method that takes regularization seriously
from the initial formulation of the action for the quark model rather than empirically
implementing regularization for distribution functions that linearly combine to structure
functions. The formal relation between structure functions and quark distributions is
no longer obvious when regularization is required. We stress that this formulation only
identifies chiral symmetries of QCD with no statement on how the model and QCD quarks
relate. Yet all the sum rules that relate integrals of the structure functions to observables
like hadron masses, isospin etc. and that are commonly derived from the probability
interpretation of distribution functions are also valid in this approach. The project should
thus be considered more like a proof of concept rather than attempting precise predictions
for the structure functions.

The point of departure is a self-interacting chirally symmetric quark model. It is
particularly formulated to make feasible the full process of bosonization. At each step
of this calculation regularization is carefully traced resulting in consistently regularized
structure functions. The model is defined such that only one part of the bosonized action is
regularized in order to maintain the chiral anomaly. Hence it is suggestive that only some
of the structure functions will be subject to regularization. The treatment reviewed here is
constructive in the sense that it dictates for which structure function regularization must be
implemented and for which this is not the case. This goes beyond analyzing whether or not
the particular structure function is ultraviolet convergent. The method is also predictive in
case the structure function does not have a sum rule that is related to a static property with
an established regularization prescription.

Regularization, of course, only concerns the vacuum (Dirac sea) contribution to any
observable. In addition, there is always the contribution from the valence level (strongly)
bound by the self-consistent soliton. This level contribution must be included to deal
with a unit baryon number object. We have actually seen that this level contribution is
dominant for almost all structure functions except the isoscalar unpolarized combination.
For this combination we see a strong enhancement at small Bjorken x. This was also seen
in the numerical simulation of Refs. [27,28], though not quite as drastic as in our case.
We recall that the unpolarized isoscalar structure function has a sum rule with the energy,
which in soliton models is the classical soliton energy. The standard definition of this
energy subtracts the zero soliton vacuum counterpart to get a finite result for the soliton
energy and therefore this structure function should undergo an analog subtraction. It is
important to note that this energy subtraction has no dynamic effect, i.e., it does not enter
the field equation for the soliton. Any additional (finite) subtraction would be possible
in a renormalizable theory. Hence this piece is not without ambiguity. Of course, it is
very suggestive to subtract the zero soliton energy to determine the binding of the soliton.
However, that is only a (regularization) condition for the integrated structure function.
Formally, however, the subtraction is obtained from a different action functional. The result
that the zero soliton vacuum structure function is not a constant is kind of surprising as
it suggests that the trivial vacuum has structure. One may also speculate whether this
unexpected result is related to the numerical treatment of discretizing wave-functions
with box boundary conditions. In close proximity to the boundary, completeness of the
wave-functions is not guaranteed [102]. We are currently exploring this speculation.

The biggest conceptual problem unsolved so far is the fact that the computed structure
functions have support for |x| > 1 resulting from the soliton not being translationally
invariant and that the collective coordinate approach to restore this symmetry is merely an
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approximation. The computed structure functions are small (or even tiny) for x > 1 but
not exactly zero. In order to apply the DGLAP evolution formalism, the support must be
restricted to |x| ≤ 1. We have adopted a procedure from the D = 1 + 1 MIT bag model
boosting the rest frame structure functions to the infinite momentum frame. This may
overemphasize the small x regime and also interfere with the rotational 1

NC
corrections but

it maintains the sum rules. Other approaches, that merely omit the |x| > 1 piece, multiply a
differentiable function that models a function with a step at x = 1 [31,37–39]. Though that
may better reproduce the data in the small x regime, this ad hoc approach violates the sum
rules, at least formally.

A possible extension of the approach reviewed here would be the consideration of
inelastic scattering with neutrino induced interactions. That would bring in a generalization
of the Compton tensor that would also include couplings to the axial current as governed by
the weak component of the standard model and thus form factors and structure functions
that are not disallowed by parity conservation.
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