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Abstract: Unlike scalar and gauge field theories in four dimensions, gravity is not perturbatively
renormalizable and as a result perturbation theory is badly divergent. Often the method of choice for
investigating nonperturbative effects has been the lattice formulation, and in the case of gravity the
Regge–Wheeler lattice path integral lends itself well for that purpose. Nevertheless, lattice methods
ultimately rely on extensive numerical calculations, leaving a desire for alternate methods that can be
pursued analytically. In this work, we outline the Hartree–Fock approximation to quantum gravity,
along lines which are analogous to what is done for scalar fields and gauge theories. The starting
point is Dyson’s equations, a closed set of integral equations which relate various physical amplitudes
involving graviton propagators, vertex functions, and proper self-energies. Such equations are in
general difficult to solve, and as a result they are not very useful in practice, but nevertheless provide
a basis for subsequent approximations. This is where the Hartree–Fock approximation comes in,
whereby lowest order diagrams get partially dressed by the use of fully interacting Green’s function
and self-energies, which then lead to a set of self-consistent integral equations. The resulting nonlinear
equations for the graviton self-energy show some remarkable features that clearly distinguish it from
the scalar and gauge theory cases. Specifically, for quantum gravity one finds a nontrivial ultraviolet
fixed point in Newton’s constant G for spacetime dimensions greater than two, and nontrivial scaling
dimensions between d = 2 and d = 4, above which one obtains Gaussian exponents. In addition,
the Hartree–Fock approximation gives an explicit analytic expression for the renormalization group
running of Newton’s constant, suggesting gravitational antiscreening with Newton’s constant slowly
increasing on cosmological scales.

Keywords: quantum gravity; quantum cosmology; quantum field theory

1. Introduction

The traditional approach to quantum field theory is generally based on Feynman
diagrams, which involve a perturbative expansion in some suitable small coupling constant.
In cases like QED this procedure works rather well, as the vacuum about which one is
expanding is rather close, in its physical features, to the physical vacuum (weakly coupled
electrons and photons). In other cases, such as QCD, subtleties arise because of effects
which are non-analytic in the coupling constant and cannot therefore be seen to any order
in perturbation theory. Indeed, in QCD it is well known that the perturbative ground state
describes free quarks and gluons, and as result the fundamental property of asymptotic
freedom is easily derived in perturbation theory. Nevertheless, important features such as
gluon condensation, quark confinement, and chiral symmetry breaking remain invisible
to any order in perturbation theory. However, the fact remains that the formulation of
quantum field theory based on the Feynman path integral is generally not linked in any way
to a perturbative expansion in terms of diagrams. As a result, the path integral generally
makes sense even in a genuinely nonperturbative context, provided that it is properly
defined and regulated, say via a spacetime lattice and a suitable Wick rotation.

Already at the level of nonrelativistic quantum mechanics, examples abound of physi-
cal system for which perturbation theory entirely fails to capture the essential properties of
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the model. Leading to the reason why well-established nonperturbative methods such as
the variational trial wave function method, numerical methods, or the Hartree–Fock (HF)
self-consistent method were developed early on in the history of quantum mechanics, mo-
tivated by the need to go beyond the—often uncertain—predictions of naive perturbation
theory. In addition, many of these genuinely nonperturbative methods are relatively easy
to implement, and in many cases lead to significantly improved physical predictions in
atomic, molecular, and nuclear physics. Going one step further, examples abound also in
relativistic quantum field theory and many-body theory, where naive perturbation theory
clearly fails to give the correct answer. Interesting, and physically very relevant, cases of
the latter include the theory of superconductivity, superfluidity, screening in a Coulomb
gas, turbulent fluid flow, and generally many important aspects of critical (or cooperative)
phenomena in statistical physics. A common thread within many of these widely different
systems is the emergence of coherent quantum mechanical behavior, which is not easily
revealed by the use of perturbation theory about some non-interacting ground state. How-
ever, some of the approximate methods mentioned above seem, at first, to be intimately
tied to the existence of a Hamiltonian formulation (as in the case of the variational method),
and are thus not readily available if one focuses on the Feynman path integral approach to
quantum field theory.

Nevertheless, it is possible, in some cases, to cleverly modify perturbation theory in
such a way as to make the diagrammatic perturbative approach still viable and useful.
One such method was pioneered by Wilson, who suggested that in some theories a double
expansion in both the coupling constant and the dimensionality (the so-called ε-expansion)
could be performed [1–3]. These expansion methods turn out to be quite powerful, but
they also generally lead to series that are known to be asymptotic, and in some cases (such
as the nonlinear sigma model) can have rather poor convergence properties, mainly due
to the existence of renormalon singularities along the positive real Borel transform axis.
Nevertheless, these investigations lead eventually to the deep insight that perturbatively
non-renormalizable theories might be renormalizable after all, if one is willing to go beyond
the narrow context perturbation theory [4–6]. In addition, lately direct numerical methods
have acquired a more prominent position, largely because of the increasing availability of
very fast computers, allowing many of the foregoing ideas to be rigorously tested. A small
subset of the vast literature on the subject of field theory methods combined with modern
renormalization group ideas, as applied mostly to Euclidean quantum field theory and
statistical physics, can be found in [7–11].

Turning to the gravity context, it is not difficult to see that the case perhaps closest to
quantum gravity is non-Abelian gauge theories, and specifically QCD. In the latter case one
finds that, besides the established Feynman diagram perturbative approach in the gauge
coupling g, there are very few additional approximate methods available, mostly due to
the crucial need of preserving exact local gauge invariance. It is not surprising therefore
that in recent years, for these theories, the method of choice has become the spacetime
lattice formulation, which attempts to evaluate the Feynman path integral directly and
exactly by numerical methods. The above procedure then leads to answers which, at
least in principle, can be improved arbitrarily given a fine enough lattice subdivision
and sufficient amounts of computer time. More recently, lattice methods have also been
applied to the case of quantum gravity, in the framework of the simplicial Regge–Wheeler
discretization [12–14], where they have opened the door to accurate determinations of
critical points and nontrivial scaling dimensions.

It would seem nevertheless desirable to be able to derive certain basic results in quan-
tum gravity using perhaps approximate, but largely analytical methods. Unfortunately, in
the case of gravity perturbation theory, Newton’s G is even less useful than for non-Abelian
gauge theories and QCD, as the theory is unequivocally not perturbatively renormalizable
in four spacetime dimensions [15–29]. To some extent it is possible to partially surmount
this rather serious issue, by developing Wilson’s 2 + ε diagrammatic expansion [3] for
gravity, with ε = d− 2. Such an expansion is constructed around the two-dimensional
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theory, which, apart from being largely topological in nature, also leads in the end to the
need to set ε = 2 (clearly not a small value) in order to finally reach the physical theory
in d = 4 [30–32]. Consequently, one finds significant quantitative uncertainties regarding
the interpretation of the results in four spacetime dimensions, especially given the yet un-
known convergence properties of the asymptotic series in ε. Lately, approximate truncated
renormalization group (RG) methods have been applied directly in four dimensions, which
thus bypass the need for Wilson’s dimensional expansion. These nevertheless can lead
to some significant uncertainties in trying to pin down the resulting truncation errors, in
part due to what are often rather drastic renormalization group truncation procedures,
which in turn generally severely limit the space of operators used in constructing the
renormalization group flows.

In this work, we will focus instead on the development of the Hartree–Fock ap-
proximation for quantum gravity. The Hartree–Fock method is of course well known in
non-relativistic quantum mechanics and quantum chemistry, where it has been used for
decades as a very successful tool for describing correctly (qualitatively, and often even
quantitatively to a high degree) properties of atoms and molecules, including, among other
things, the origin of the periodic table [33]. In the Hartree–Fock approach, the direct inter-
action of one particle (say an electron in an atom) with all the other particles is represented
by some sort of average field, where the average field itself is determined self-consistently
via the solution of a nonlinear, but single-particle Schroedinger-like equation. The latter
in turn then determines, via the single-particle wave functions, the average field exerted
on the original single particle introduced at the very start of the procedure. As such, it
is often referred to as a self-consistent method, where an explicit solution to the effec-
tive nonlinear coupled wave equations is obtained by successive (and generally rapidly
convergent) iterations.

It has been known for a while that the Hartree–Fock method has a clear extension to a
quantum field theory (QFT) context. In quantum field theory (and more generally in many-
body theory), it is possible to derive the leading order Hartree–Fock approximation [33–44]
as a truncation of the Dyson–Schwinger (DS) equations [45–47]. For the latter, a detailed,
modern exposition can be found in the classic quantum field theory book [48], as well as
(for non-relativistic applications) in [38]. The Hartree–Fock method is in fact quite popular
to this day in many-body theory, where it is used, for example, as a way of deriving the
gap equation for a superconductor in the Bardeen–Cooper–Schrieffer (BCS) theory [34–36].
There the Hartree–Fock method was originally used to show that the opening of a gap
∆ at the Fermi surface is directly related to the existence of a Cooper pair condensate.
Many more applications of the Hartree–Fock method in statistical physics can be found
in [37,38]. Later on, the successful use of the Hartree–Fock approach in many-body theory
spawned many useful applications to relativistic quantum field theory [39–44], including
one of the earliest investigations of dynamical chiral symmetry breaking. There is also a
general understanding that the Hartree–Fock method, as it is usually based on the notion
of a (self-consistently determined) average field, cannot properly account for the regime
where large fluctuations and correlations are important. The precursor to these kind of
reasonings is the general validity of mean field theory for spin systems and ferromagnet
above four dimensions (as described by the Landau theory), but not in low dimensions
where fluctuations become increasingly important.

In statistical field theory, the Hartree–Fock approximation is seen to be closely related
to the large-N expansion, as described for example in detail in [44]. There one introduces
N copies for the fields in question (the simplest case is for a scalar field, but it can be
applied to Fermions as well), and then expands the resulting Green’s functions in powers
of 1/N. The expansion thus generally starts out from some sort of extended symmetry
group theory, which is taken to be O(N)- or SU(N)-invariant. Then, it is easy to see that
the leading order in the 1/N expansion reproduces what one obtains to lowest order in
the Hartree–Fock approximation for the same theory. Furthermore, the next orders in the
1/N expansion generally correspond to higher order corrections within the Hartree–Fock
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approximation. The large N expansion can be developed for SU(N) gauge theories as well,
and to leading order it gives rise to the ’tHooft planar diagram expansion. In view of the
previous discussion, it would seem therefore rather natural to consider the analog of the
Hartree–Fock approximation for QCD as well [49,50]. Nevertheless, this avenue of inquiry
has not been very popular lately, due mainly to its rather crude nature, and because of the
increasing power (and much greater reliability) of ab initio numerical lattice approaches
to QCD.

Unfortunately, in the case of quantum gravity there is no obvious large N expansion
framework. This can be seen from the fact that one starts out with clearly only one spacetime
metric, and introducing multiple N copies of the same metric seems rather unnatural. Such
multiple metric formulation would cause some rather serious confusion on which of the
N metrics should be used to determine the spacetime interval between events, and thus
provide the needed spacetime arguments for gravitational n-point functions. In addition,
and unlike QCD, there is no natural global (or local) symmetry group that would relate
these different copies of the metric to each other. As will be shown below, it is nevertheless
possible (and quite natural) to develop the Hartree–Fock approximation for quantum
gravity, in a way that is rather similar to the procedure followed in the case of the nonlinear
sigma model, gauge theories and general many-body theories. In the gravitational case
one starts out, in close analogy to what is done for these other theories, from the Dyson–
Schwinger equations, and then truncates them to the lowest order terms, replacing the bare
propagators by dressed ones, the bare vertices by dressed ones etc. Thus, the Hartree–Fock
approximation for quantum gravity can be written out without any reference to a 1/N
expansion, which as discussed above is often the underlying justification for other non-
gravity theories. In addition, the leading Hartree–Fock result represents just the lowest
order term in a modified diagrammatic expansion, which in principle can be carried out
systematically to higher order.

As a reference, for the scalar λφ4 theory the Hartree–Fock approximation was already
outlined some time ago in [44], where its relationship to the 1/N expansion was laid out
in detail. One important aspect of both the Hartree–Fock approximation and the 1/N
expansion discussed in the references given above is the fact that it can usually be applied
in any dimensions, and is therefore not restricted in any way to the spacetime (or space)
dimension in which the theory is found to be perturbatively renormalizable. It therefore
represents a genuinely nonperturbative method, of potentially widespread application.
In the scalar field case, one can furthermore clearly establish, based on the comparison
with other methods, to what extent the Hartree–Fock approximation is able to capture
the key physical properties of the underlying theory, such as correlation functions and
universal scaling exponents. These investigations in turn provide a partial insight into what
physical aspects the Hartree–Fock approximation can correctly reproduce, and where it fails.
Generally, the conclusion appears to be that, while quantitatively not exceedingly accurate,
the Hartree–Fock approximation and the 1/N expansion tend to reproduce correctly at
least the qualitative features of the theory in various dimensions, including, for example,
the existence of an upper and a lower critical dimension, the appearance of nontrivial
fixed points of the renormalization group, as well as the dependence of nontrivial scaling
exponents on the dimension of spacetime.

In this work, we first review the properties of the Hartree–Fock approximation, as it ap-
plies initially to some of the simpler field theories. In the case of the scalar field theory, with
the scalar field having N components, one can see that the Hartree–Fock approximation is
easily obtained from the large N saddle point [44]. The resulting gap equation is generally
valid in any dimension, and once solved provides an explicit expression for the mass gap
(the inverse correlation length) as a function of the bare coupling constant. Solutions to the
gap equation show some significant sensitivity to the number of dimensions. For the scalar
field a clear transition is seen between the lower critical dimension d = 2 (for N > 2) and
the upper critical dimension d = 4, above which the critical exponents attain the Landau
theory values. Indeed, the Hartree–Fock approximation reproduces correctly the fact that
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for d ≤ 2 the O(N) symmetric nonlinear sigma model for N > 2 exhibits a non-vanishing
gap for bare coupling g > 0, and that for d ≥ 4 it reduces to a non-interacting (Gaussian)
theory in the long-distance limit (also known as the triviality of λ φ4 in d ≥ 4). Then, as a
warm-up to the gravity case, it will pay here to discuss briefly the SU(N) gauge theory case.
Here again one can see that the Hartree–Fock result correctly reproduces the asymptotic
freedom running of the gauge coupling g, and furthermore shows that d = 4 is the lower
critical dimension for SU(N) gauge theories. This last statement is meant to refer to the
fact that above four dimensions non-Abelian gauge theories are known to have a nontrivial
ultraviolet fixed point at some gc, separating a weak coupling Coulomb-like phase from a
strong coupling confining phase.

Finally, in the gravitational case, one starts out by following a procedure which closely
parallels the gauge theory case. Nevertheless, at the same time one is faced with the fact that
the gravitational case is considerably more difficult, for a number of (mostly well known)
reasons which we proceed to enumerate here. Unlike the scalar field and gauge theory case
in four dimensions, gravity is not perturbatively renormalizable in four dimensions, and
as a result perturbation theory is badly divergent, and thus not very useful. Furthermore,
as mentioned previously, there is no sensible way of formulating a large N expansion for
gravity. That leaves as the method of choice, at least for investigating nonperturbative
properties of the theory, the lattice formulation, and specifically the elegant simplicial lattice
formulation due to Regge and Wheeler [12,13] and its Euclidean Feynman path integral
extension. One disadvantage is that the lattice methods nevertheless ultimately rely on
extensive numerical calculations, leaving a desire for alternate methods that can be pursued
analytically. As mentioned previously, it is also possible to develop for quantum gravity
the 2 + ε dimensional expansion [30–32], in close analogy to Wilson’s 4 − ε and 2 + ε
dimensional expansion for scalar field theories [3]; the ability to perform such an expansion
for gravity hinges on the fact that Einstein’s theory becomes formally perturbatively
renormalizable in two dimensions. However, there are significant problems associated
with this expansion, notably the fact that ε = d− 2 has to be set equal to two at the end of
the calculation. One more possible approach is via the Wheeler–DeWitt equations, which
provide a useful Hamiltonian formulation for gravity, both in the continuum and on the
lattice, see in [51] and references therein. Nevertheless, while it has been possible to obtain
some exact results on the lattice in 2 + 1 dimensions, the 3 + 1 case still appears rather
difficult. As a result, generally the number of reasonably well-tested nonperturbative
methods available to investigate the vacuum structure of quantum gravity seem rather
limited. It is therefore quite remarkable that it is possible to develop a Hartree–Fock
approximation to quantum gravity, in a way that in the end is completely analogous to
what is done in scalar field theories and gauge theories. In the following we briefly outline
the features of the Hartree–Fock method as applied to gravity.

For any field theory it is possible to write down a closed set of integral equations,
which relate various physical amplitudes involving particle propagators, vertex functions,
proper self-energies, etc. These equations follow in a rather direct way from their respective
definitions in terms of the Feynman path integral, and the closely connected generating
function Z[J]. One particularly elegant and economic way to obtain these expressions is to
apply suitable functional derivatives to the generating function in the presence of external
classical sources. The resulting exact relationship between n-point functions, known as
the set of Dyson–Schwinger equations, are, by virtue of their derivation, not reliant in
any way on perturbation theory, and thus genuinely nonperturbative. Nevertheless, the
set of coupled Dyson–Schwinger equations for the propagators, self-energies, and vertex
functions are in general very difficult to solve, and as a result not very useful in practice.
This is where the Hartree–Fock approximation comes in, whereby lowest order diagrams
get partially dressed by the use of fully interacting Green’s function and self-energies. As
the resulting coupled equations involve fully dressed propagators and full proper self-
energies to some extent, they are referred to as a set of self-consistent equations. In principle
the Hartree–Fock approximation to the Dyson–Schwinger equations can be carried out to
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arbitrarily high order, by examining the contribution of increasingly complicated diagrams
involving dressed propagators, dressed self-energies, etc. Of particular interest here will
be therefore the lowest order Hartree–Fock approximation for quantum gravity. As in
the scalar and gauge theory case, it will be necessary, in order to derive the Hartree–Fock
equations, to write out the lowest order contributions to the graviton propagator, to the
gravitational self-energy, and to the gravitational vertex function, and for which the lowest
order perturbation theory expressions are known as well. Indeed, one remarkable aspect
of most Hartree–Fock approximations lies in the fact that ultimately the calculations can
be shown to reduce to the evaluation of a single one-loop integral, involving a self-energy
contribution, which is then determined self-consistently.

Nevertheless, quite generally the resulting diagrammatic expressions are still ul-
traviolet divergent, and the procedure thus requires the introduction of an ultraviolet
regularization, such as the one provided by dimensional regularization, an explicit mo-
mentum cutoff, or a lattice as in the Regge–Wheeler lattice formulation of gravity [12,13].
Once this is done, one then finds a number of significant similarities of the Hartree–Fock
result with the (equally perturbatively non-renormalizable in d > 2) nonlinear sigma
model. Specifically, in the quantum gravity case one finds that the ultraviolet fixed point in
Newton’s constant G is at G = 0 in two spacetime dimensions, and moves to a non-zero
value above d = 2. Nontrivial scaling dimensions are found between d = 2 and d = 4,
above which one obtains Gaussian (free field) exponents, thus suggesting that, at least in
the Hartree–Fock approximation, the upper critical dimension for gravity is d = 4. One
useful and interesting aspect of the above calculations is that the Hartree–Fock results
are not too far off from what one obtains by either numerical investigations within the
Regge–Wheeler lattice formulation, or via the 2+ ε dimensional expansion, or by truncated
renormalization group methods. Furthermore, as will be shown below, the Hartree–Fock
approximation provides an explicit expression for the renormalization group (RG) running
of Newton’s constant, just like the Hartree–Fock leads to similar results for the nonlinear
sigma model. As in the lattice case, the Hartree–Fock results suggest a two-phase structure,
with gravitational screening for G < Gc, and gravitational antiscreening for G > Gc in four
dimensions. Due to the known nonperturbative instability of the weak coupling phase
of G < Gc, only the G > Gc phase will need to be considered further, which then leads
to a gravitational coupling G(k) that slowly increases with distance, with a momentum
dependence that can be obtained explicitly within the Hartree–Fock approximation.

The paper is organized as follows. In Section 2, we recall the main features of Dyson’s
equations and how they lead to the Hartree–Fock approximation. We point out the im-
portant and general result that Dyson’s equations can be easily derived using the elegant
machinery of the Feynman path integral combined with functional methods. The Hartree–
Fock approximation then follows from considering a specific set of sub-diagrams with
suitably dressed propagators, all to be determined later via the solution of a set of self-
consistent equations. In Section 3, we discuss in detail, as a first application and as preamble
to the quantum gravity case, the case of the O(N)-symmetric nonlinear sigma model, ini-
tially here from the perturbative perspective of Wilson’s 2 + ε expansion. A summary
of the basic results will turn out to be useful when comparing later to the Hartree–Fock
approximation. In Section 4, we briefly recall the main features of the nonlinear sigma
model in the large-N expansion, which can be carried out in any dimension. Again, the
discussion here is with an eye towards the later, more complex discussion for gravity. In
Section 5, we discuss the main features of the Hartree–Fock result for the O(N) nonlinear
sigma model in general dimensions 2 ≤ d ≤ 4, and point out its close relationship to
the large-N results described earlier. The section ends with a comparison of the three
approximations, and how they favorably relate to each other and to other results, such as
the lattice formulation and actual experiments. In Section 6 we proceed to a more difficult
case, namely, the discussion of some basic results for the Hartree–Fock approximation for
non-Abelian gauge theories in general spacetime dimensions 4 ≤ d ≤ 6. The basic starting
point is again a general gap equation for a nonperturbative, dynamically generated mass
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scale. Here, again we will note that the Hartree–Fock results capture many of the basic
ingredients of nonperturbative physics, while still missing out on some (such as confine-
ment). In Section 7, we move on to the gravitational case, and discuss in detail the results
of the Hartree–Fock approximation in general spacetime dimensions 2 ≤ d ≤ 4. For the
gravity case, the basic starting point will be again a gap equation for the nonperturbatively
generated mass scale, whose solution will lead to a number of explicit results, including
an explicit expression for the renormalization group running of Newton’s constant G.
In Section 8, we then present a sample application of the Hartree–Fock results to cosmology,
where the running of G is compared to current cosmological data, specifically here the
Planck-18 Cosmic Background Radiation (CMB) data. Finally, Section 9 summarizes the
key points of our study and concludes the paper.

2. Dyson’s Equations and the Hartree–Fock Approximation

One of the earliest applications of the Hartree–Fock approximation to solving Dyson’s
equations for propagators and vertex functions was in the context of the BCS theory for
superconductors [34–36]. A few years later it was applied to the (perturbatively non-
renormalizable) relativistic theory of a self-coupled Fermion, where it provided the first
convincing evidence for a dynamical breaking of chiral symmetry and the emergence of
Nambu–Goldstone bosons [39,40]. A necessary preliminary step involved in deriving
the Hartee–Fock approximation to a given theory is writing down Dyson’s equations
(often referred to as the Schwinger–Dyson equations) for the field, or fields, in question.
Dyson’s equations have a nice, almost self-explanatory, form when written in terms of
Feynman diagrams for various propagators, self-energies, and vertex functions associated
with the particles appearing in the theory, such as for example electrons and photons in
QED. These generally describe a set of coupled integral equations for the various dressed,
fully interacting, n-point functions, but whose solution is generally rather difficult, if not
impossible. As a result, they are usually only discussed as a method for deriving exact
Ward identities that follow from local gauge invariance, with their practical application
then usually restricted in most cases to perturbation theory only. Nevertheless, as will be
shown below, they play a key role in deriving the Hartree–Fock approximations for the
fields in question, thus providing a method that is essentially nonperturbative, involving a
partial re-summation of an infinite class of diagrams.

In non-relativistic many body theory, Dyson’s equation takes on a simple form when
describing the static electromagnetic interaction between electrons [38] (It is often cus-
tomary in many body theory to describe the interaction of electrons close to the Fermi
surface in terms of electrons and holes situated around the conduction band, in analogy
to the treatment of relativistic electrons in the framework of the Dirac equation, with the
positively charged holes playing the role of positrons in the Dirac theory). In terms of the
electron propagator G(p), one has at first the decomposition

G(p) = G0(p) + G0(p)Σ(p) G0(p) , (1)

where G0(p) is the bare (tree level) propagator, G(p) the dressed one, and Σ(p) the electron
self-energy. The above should really be regarded as a matrix equation, with indices
appropriate for the particle being exchanged intended, and not written out in this case.
If one regards the self-energy Σ as being constructed out of repeated iterations of a proper
self-energy Σ∗(p), then Dyson’s equation takes on the form

G(p) = G0(p) + G0(p)Σ∗(p) G(p) (2)

with solution
G(p) =

1
G−1

0 (p) − Σ∗(p)
. (3)

As, generally, G(p) is regarded as a matrix with spin indices, the above should be inter-
preted as the matrix inverse. This then leads to the identification of Σ∗(0) as an effective
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mass correction for the electron, induced, perturbatively or nonperturbatively, by radiative
corrections.

Similarly, the boson (photon or phonon, depending of the interaction being considered)
exchange between electrons leads to the expansion for the interaction term

U(p) = U0(p) + U0(p)Π(p)U0(p) (4)

where U0(p) is the bare (tree level) contribution, U(p) the dressed one and Π(p) the self-
energy contribution. Again, the above should be regarded as a matrix equation, with
indices appropriate for the particle being exchanged. If one considers the above self-energy
Π(p) as being constructed out of repeated iterations of a proper self-energy Π∗(p), then
Dyson’s equation in this case takes on the form

U(p) = U0(p) + U0(p)Π∗(p)U(p) (5)

with solution
U(p) =

1
U−1

0 (p) − Π∗(p)
(6)

again intended as a proper matrix inverse. If the interaction is spin-independent, as in the
Coulomb case, then the above matrices can all be regarded as diagonal. This last result
then leads to the identification of Π∗(0) as the effective mass (or inverse range) associated
with the interaction described by U(p). The ratio κ(p) = U0(p)/U(p) is referred to, in the
electromagnetic case, as an effective generalized dielectric function [38].

Alternatively, it is possible to derive Dyson’s equations directly from the Feynman path
integral using the rather elegant machinery of functional differentiation of the generating
function Z[J] with respect to a suitable source terms J(x). It is this latter approach that
we follow here, as it generalizes rather straightforwardly to the case of quantum gravity.
For a scalar field one has the statement that the integral of a derivative is zero for suitable
boundary conditions, or ∫

[d φ]
δ

δφ(x)
ei
∫

dx(L+J φ) = 0 (7)

where L is the Lagrangian density for the scalar field in question. As a consequence

∫
[d φ]

[
∂L

∂ φ(x)
+ J(x)

]
ei
∫

dx(L+J φ) = 0 . (8)

If the scalar field potential is generally denoted by V(φ), then the previous expression can
be recast, defining

Z[J] =
∫
[d φ] ei

∫
dx(L+J φ) (9)

as [
(�x + m2)

δ

i δJ(x)
+ V′

(
δ

i δJ(x)

)
− J(x)

]
Z[J] = 0 (10)

The latter then plays the role of the quantum Heisenberg equations of motion. Successive
applications of functional derivatives with respect to J(x) then leads to a sequence of
simple identities at zero source

∫
[d φ]

[
(�x + m2) φ(x) + V′(φ(x))

]
ei
∫

dxL = 0 (11)

∫
[d φ]

[
(�x + m2) φ(x) · φ(x1) + V′(φ(x)) · φ(x1)

]
ei
∫

dxL = 0 (12)
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and so on. More generally, for n-point functions one obtains

∫
[d φ]

[
(�x + m2)φ(x) + V′(φ(x))

]
φ(x1) φ(x2) . . . φ(xn) ei

∫
dxL

+
∫
[d φ] δ(x− x1) φ(x2) . . . φ(xn) ei

∫
dxL

+ · · ·+
∫
[d φ] φ(x1) φ(x2) . . . δ(x− xn) ei

∫
dxL = 0 (13)

Within the current discussion of Dyson’s equations, a step up in difficulty is clearly
represented by the gauge theory case, with QED as the simplest example. As the resulting
equations share some similarity with quantum gravity, it will be useful here to recall briefly
the main aspects. Compared to scalar field theory, the first new ingredient is the presence of
multiple fields, for QED in the form of photon and matter fields. The generating function is

Z(J, η, η̄) = eG(J,η,η̄) =
∫
[dA][dψ][dψ̄] eiS (14)

with
S = I +

∫
dx(J · A + η̄ ψ + ψ̄ η) (15)

where I(A, ψ, ψ̄) is the QED action. Again, for suitable boundary conditions the integral of
a derivative is zero, which leads to the identity

∫
[dA][dψ][dψ̄]

δ

δAµ(x)
eiS = 0 , (16)

and consequently ∫
[dA][dψ][dψ̄]

(
δ I

δAµ(x)
+ Jµ

)
eiS = 0 . (17)

For the case of the QED action one has

δ I
δAµ(x)

=
[
�gµν − (1− λ)∂µ∂ν

]
Aν − e ψ̄γµ ψ , (18)

where λ is the gauge parameter for a gauge fixing term 1
2 λ(∂ · A)2, and gµν here the flat

Lorentz metric. The resulting equation

Jµ +
[
�gµν − (1− λ)∂µ∂ν

] δG
i δJν

− e
δ G
δ η

γµ
δ G
δ η̄
− e

δ

δ η

(
γµ

δ G
δ η̄

)
= 0 (19)

can then be regarded as the quantum version of Maxwell’s equations [48]. A graphical
illustration of Dyson’s equation for QED is given in Figure 1. In QED and gauge theories in
general it is often useful to introduce the generating function Γ of one-particle-irreducible
(1PI) Green’s functions, defined as the Legendre transform of G,

G(J, η, η̄) = i Γ(A, ψ, ψ̄) + i
∫

dx (J · A + η̄ ψ + ψ̄ η) . (20)

Then, the introduction of the classical fields Aµ, ψ, and ψ̄ via the definitions

δ G
iδ Jµ = Aµ − δ G

iδ η
= ψ̄

δ G
iδ η̄

= ψ (21)

and conversely, as a consequence of the definition of Γ,

δ Γ
δ Aµ = − Jµ

δ Γ
δ ψ

= η̄
δ Γ
δ ψ̄

= − η (22)
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which allows one to rewrite Equation (19) simply as

Jµ +
[
�gµν − (1− λ)∂µ∂ν

]
Aν − e ψ̄ γµ ψ − ie

δ

δ η

(
γµ ψ

)
= 0 . (23)

Equivalently, one has in terms of the generating function Γ exclusively

δΓ
δ Aµ =

[
�gµν − (1− λ)∂µ∂ν

]
Aν − e ψ̄ γµ ψ + ie Tr

[
γµ

(
δ2 Γ

δ ψ δψ̄

)−1]
. (24)

A very similar procedure can be carried out for non-Abelian gauge theories and
gravity; nevertheless, the complexity increases greatly due to the proliferation of Lorentz
indices, color indices, and a multitude of interaction vertices. We will skip here almost
entirely a detailed discussion of gauge theories, and only refer to the relevant diagrams
and corresponding expressions, where appropriate. Moreover, for ease of exposition, the
quantum gravity case will be postponed until the Hartree–Fock approximation for gravity
is developed.

= +

= +

Figure 1: Dyson’s equations in QED relating the dressed fermion propagator, the dressed photon
propagator and the dressed vertex function. Thin lines represent bare propagators, while thicker
lines represent the dressed ones.
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3. The Case of the Nonlinear Sigma Model

The question then arises, are there any field theories where the standard perturbative
treatment fails, yet for which one can find alternative methods and from them develop
consistent predictions? The answer seems unequivocally yes [4–6]. Indeed, outside the
quantum gravity framework, there are two notable examples of field theories: the nonlinear
sigma model and the self-coupled fermion model. Both are not perturbatively renormal-
izable for d > 2, and yet lead to consistent and, in some instances, precision-testable
predictions above d = 2. The key ingredient to all of these results is, as recognized orig-
inally by Wilson, the existence of a nontrivial ultraviolet fixed point (also known as a
phase transition in the statistical field theory context) with nontrivial universal scaling
dimensions [1–3,52]. Furthermore, several different calculational approaches are by now
available for comparing predictions: the 2 + ε expansion, the large-N limit, the functional
renormalization group, the conformal bootstrap, and a variety of lattice approaches. From
within the lattice approach, several additional techniques are available: the Wilson (block-
spin) renormalization group approach, the strong coupling expansion, the weak coupling
expansion, and the numerically exact evaluation of the lattice path integral.

The O(N)-symmetric nonlinear sigma model provides an instructive (and rich) ex-
ample of a theory which, above two dimensions, is not perturbatively renormalizable in
the traditional sense, and yet can be studied in a controlled way via Wilson’s 2 + ε expan-
sion [53–60]. Such a framework provides a consistent way to calculate nontrivial scaling
properties of the theory in those dimensions where it is not perturbatively renormalizable
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(e.g., d = 3 and d = 4), which can then be compared to nonperturbative results based on
the lattice theory. In addition, the model can be solved exactly in the large N limit for any
d, without any reliance on the 2 + ε expansion. In all three approaches, the model exhibits
a nontrivial ultraviolet fixed point at some coupling gc (a phase transition in statistical
mechanics language), separating a weak coupling massless ordered phase from a massive
strong coupling phase. Finally, the results can then be compared to experiments, since in
d = 3 the model describes either a ferromagnet or superfluid helium in the vicinity of its
critical point.

The nonlinear sigma model is described by an N-component scalar field φa satisfying
a unit constraint φ2(x) = 1, with functional integral given by

Z[J] =
∫
[ dφ ] ∏

x
δ[φ(x) · φ(x)− 1]

× exp

(
− Λd−2

g2 S(φ) +
∫

ddx J(x) · φ(x)

)
. (25)

The action is taken to be O(N)-invariant

S(φ) = 1
2

∫
ddx ∂µφ(x) · ∂µφ(x) . (26)

Here, Λ is an ultraviolet cut-off (as provided for example by a lattice), and g the bare
dimensionless coupling at the cut-off scale Λ; in a statistical field theory context the
coupling g2 plays the role of a temperature.

In perturbation theory one can eliminate one φ field by introducing a convenient
parametrization for the unit sphere, φ(x) = {σ(x), π(x)} where πa is an N− 1-component
field, and then solving locally for σ(x)

σ(x) = [ 1−π2(x) ]1/2 . (27)

In the framework of perturbation theory in g the constraint |π(x)| < 1 is not important as
one is restricting the fluctuations to be small. Accordingly the π integrations are extended
from −∞ to +∞, which reduces the development of the perturbative expansion to a
sequence of Gaussian integrals. Values of π(x) ∼ 1 give exponentially small contributions
of order exp(−const./g) which are considered negligible to any finite order in perturbation
theory. In term of the π field the original action S becomes

S(π) = 1
2

∫
ddx

[
(∂µπ)2 +

(π · ∂µπ)2

1−π2

]
. (28)

The change of variables from φ(x) to π(x) gives rise to a Jacobian

∏
x

[
1−π2

]−1/2
∼ exp

[
− 1

2 δd(0)
∫

ddx log(1−π2)

]
, (29)

which is necessary for the cancellation of spurious tadpole divergences. In the presence
of an explicit ultraviolet cut-off δ(0) ' (Λ/π)d. The combined functional integral for the
unconstrained π field is then given by

Z[J] =
∫
[ dπ ] exp

(
− Λd−2

g2 S0(π) +
∫

ddx J(x) ·π(x)

)
(30)

with

S0(π) = 1
2

∫
ddx

[
(∂µπ)2 +

(π · ∂µπ)2

1−π2

]
+ 1

2 δd(0)
∫

ddx log(1−π2) . (31)
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In perturbation theory, the above action is then expanded out in powers of π, and the
propagator for the π field can be read off from the quadratic part of the action,

∆ab(k2) =
δab
k2 . (32)

In the weak coupling limit, the π fields correspond to the Goldstone modes of the sponta-
neously broken O(N) symmetry, the latter broken spontaneously in the ordered phase by
a non-vanishing vacuum expectation value 〈π〉 6= 0. As the π field has mass dimension
1
2 (d− 2), and thus the interaction ∂2π2n consequently has dimension n(d− 2) + 2, one
finds that the theory is perturbatively renormalizable in d = 2, and perturbatively non-
renormalizable above d = 2. Potential infrared problems due to massless propagators are
handled by introducing an external h-field term for the original composite σ field, which
then can be seen to act as a regulating mass term for the π field.

One can write down the same field theory on a lattice, where it corresponds to the
O(N)-symmetric classical Heisenberg model at a finite temperature T ∼ g2. The simplest
procedure is to introduce a hypercubic lattice of spacing a, with sites labeled by integers
n = (n1 . . . nd), which introduces an ultraviolet cutoff Λ ∼ π/a. On the lattice, field
derivatives are replaced by finite differences

∂µφ(x) → ∆µφ(n) ≡ φ(n + µ)− φ(n)
a

(33)

and the discretized path integral then reads

Z[ J ] =
∫

∏
n

dφ(n) δ[φ2(n)− 1]

× exp

[
− a2−d

2g2 ∑
n,µ

(
∆µφ(n)

)2
+ ∑

n
J(n) · φ(n)

]
. (34)

The above expression is recognized as the partition function for a ferromagnetic O(N)-
symmetric lattice spin system at finite temperature. Besides ferromagnets, it can be used
to describe systems which are related to it by universality, such as superconductors and
superfluid helium transitions.

In two dimensions one can compute the renormalization of the coupling g from the
action of Equation (30) and one finds after a short calculation [55,56] for small g

1
g2(µ)

=
1
g2 +

N − 2
8π

log
µ2

Λ2 + . . . (35)

where µ is an arbitrary momentum scale. Physically, one can view the origin of the factor of
N− 2 in the fact that there are N− 2 directions in which the spin can experience rapid small
fluctuations perpendicular to its average slow motion on the unit sphere, and that only
these fluctuations contribute to leading order. In two dimensions, the quantum correction
(the second term on the r.h.s.) increases the value of the effective coupling at low momenta
(large distances), unless N = 2 in which case the correction vanishes. There the quantum
correction can be shown to vanish to all orders in this case; nevertheless, the vanishing of
the β-function in two dimensions for the O(2) model is true only in perturbation theory.
For sufficiently strong coupling a phase transition appears, driven by the unbinding of
vortex pairs [61]. For N > 2 as g(µ) flows toward increasingly strong coupling it eventually
leaves the regime where perturbation theory can be considered reliable.

Above two dimensions, d− 2 = ε > 0, one can redo the same type of perturbative
calculation to determine the coupling constant renormalization. There one finds [55,56] for
the Callan–Symanzik β-function for g
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µ
∂ g2

∂ µ
= β(g) = ε g2 − N − 2

2π
g4 + O

(
g6, εg4

)
. (36)

The latter determines the scale dependence of g for an arbitrary momentum scale µ, and

from the differential equation µ
∂g2

∂µ = β(g(µ)) one determines how g(µ) flows as a function
of momentum scale µ. The scale dependence of g(µ) is such that if the initial g is less than
the ultraviolet fixed point value gc, with

g2
c =

2πε

N − 2
+ . . . (37)

then the coupling will flow towards the Gaussian fixed point at g = 0. The new phase
that appears when ε > 0 and corresponds to a low temperature, spontaneously broken
phase with non-vanishing order parameter. On the other hand, if g > gc then the cou-
pling g(µ) flows towards increasingly strong coupling, and eventually out of reach of
perturbation theory.

The one-loop running of g as a function of a sliding momentum scale µ = k and ε > 0
are obtained by integrating Equation (36), and one finds

g2(µ) =
g2

c

1 ± a0 (m2/µ2)(d−2)/2
(38)

with a0 a positive constant and m a mass scale. The choice of + or − sign is determined
from whether one is to the left (+), or to right (−) of gc, in which case g(µ) decreases or,
respectively, increases as one flows away from the ultraviolet fixed point. The renormal-
ization group invariant mass scale ∼ m arises here as an arbitrary integration constant
of the renormalization group equations. One can integrate the β-function equation in
Equation (36) to obtain the renormalization group invariant quantity

ξ−1(g) = m(g) = const. Λ exp
(
−
∫ g dg′

β(g′)

)
(39)

which is identified with the correlation length appearing in n-point functions. The multi-
plicative constant in front of the expression on the right hand side arises as an integration
constant, and cannot be determined from perturbation theory in g. The quantity m = 1/ξ
is usually referred to as the mass gap of the theory, that is the energy difference between
the ground state (vacuum) and the first excited state.

In the vicinity of the fixed point at gc one can do the integral in Equation (39), using
the linearized expression for the β-function in the vicinity of the ultraviolet fixed point,

β(g) ∼
g→gc

β′(gc) (g− gc) + . . . (40)

and one has for the inverse correlation length

ξ−1(g) = m(g) ∝ Λ | g− gc |ν , (41)

with correlation length exponent ν = −1/β′(gc) ∼ 1/(d− 2) + . . . .

4. Nonlinear Sigma Model in the Large-N Limit

A rather fortunate circumstance is provided by the fact that in the large N limit
the nonlinear sigma model can be solved exactly [62–67]. This allows an independent
verification of the correctness of the general ideas developed in the previous section, as
well as a direct comparison of explicit results for universal quantities. The starting point is
the functional integral of Equation (25),
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Z =
∫
[ dφ(x) ] ∏

x
δ
[
φ2(x)− 1

]
exp(− S(φ)) (42)

with
S(φ) =

1
2T

∫
ddx ∂µφ(x) · ∂µφ(x) (43)

and T ≡ g2/Λd−2, with g dimensionless and Λ the ultraviolet cut-off. The constraint on
the φ field is implemented via an auxiliary Lagrange multiplier field α(x). One has

Z =
∫
[ dφ(x)] [dα(x)] exp(− S(φ, α)) (44)

with
S(φ, α) =

1
2T

∫
ddx

[
(∂µφ(x))2 + α(x)(φ2(x)− 1)

]
. (45)

As the action is now quadratic in φ(x) one can integrate over N − 1 φ-fields (denoted
previously by π). The resulting determinant is then re-exponentiated, and one is left with
a functional integral over the remaining first field φ1(x) ≡ σ(x), as well as the Lagrange
multiplier field α(x),

Z =
∫
[ dσ(x)] [ dα(x)] exp(− SN(φ, α)) (46)

with now

SN(φ, α) =
1

2T

∫
ddx

[
(∂µσ)2 + α(σ2 − 1)

]
+ 1

2 (N − 1) tr log[−∂2 + α ] . (47)

In the large N limit one neglects, to leading order, fluctuations in the α and σ fields. For a
constant α field, 〈α(x)〉 = m2, the last (trace) term can be written in momentum space as

1
2 (N − 1)

∫ Λ ddk
(2π)d log(k2 + m2) (48)

which makes the evaluation of the trace straightforward. As should be clear from
Equation (45), the parameter m can be interpreted as the mass of the φ field. The func-
tional integral in Equation (46) can be evaluated by the saddle point method, with saddle
point conditions

σ2 = 1− T (N − 1)Ωd(m)

m2σ = 0 (49)

and the function Ωd(m) given by the integral

Ωd(m) =
∫ Λ ddk

(2π)d
1

k2 + m2 . (50)

The above integral can be evaluated explicitly in terms of hypergeometric functions,

Ωd(m) =
1

2d−1πd/2Γ(d/2)
Λd

m2d 2F1

[
1,

d
2

; 1 +
d
2

; −Λ2

m2

]
. (51)

One only needs the large cut-off limit, m � Λ, in which case one finds the more useful
expression

Ωd(m)−Ωd(0) = m2 [ c1 md−4 + c2 Λd−4 + O(m2Λd−6)] (52)

with c1 and c2 some d-dependent coefficients, given below. From Equation (49) one notices
that at weak coupling and for d > 2 a non-vanishing σ-field expectation value implies that
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m, the mass of the π field, is zero. If one sets (N − 1)Ωd(0) = 1/Tc, one can then write the
first expression in Equation (49) as

σ(T) = ± [1− T/Tc]
1/2 (53)

which shows that Tc is the critical coupling at which the order parameter σ vanishes. Above
Tc the order parameter σ vanishes, and m(T) is obtained from Equation (49) by solving the
nonlinear gap equation

1
T

= (N − 1)
∫ Λ ddk

(2π)d
1

k2 + m2 . (54)

Using the definition of the critical coupling Tc, one can now write, in the interval 2 < d < 4,
for the common mass of the σ and π fields

m(T) ∼
m�Λ

(
1
Tc
− 1

T

)1/(d−2)
. (55)

This then gives for the correlation length exponent the non-gaussian value ν = 1/(d− 2),
with the gaussian (Wilson–Fischer) value ν = 1/2 being recovered as expected in d = 4.
Note that in the large N limit the constant of proportionality in Equation (55) is completely
determined by the explicit expression for Ωd(m). Perhaps one of the most striking aspects
of the nonlinear sigma model above two dimensions is that all particles are massless in
perturbation theory, yet they all become massive in the strong coupling phase T > Tc, with
masses proportional to the nonperturbative scale m.

Again, one can perform a renormalization group analysis, as was done in the previous
section within the context of the 2 + ε expansion. To this end one defines dimension-
less quantities g = Λd−2T and gc = Λd−2Tc as was done in Equation (25). Then the
nonperturbative result of Equation (55) becomes

m(g) ' cd ·Λ
(

1
gc
− 1

g

)1/(d−2)
(56)

with the numerical coefficient given by cd = [ 1
2 (d− 2)π| csc

(
dπ
2

)
|] 1

d−2 . Furthermore, one
finds for the O(N) β-function in the large N limit

β(g) = (d− 2) g2 (1− g2/g2
c ) . (57)

The latter is valid again in the vicinity of the fixed point at gc, due to the assumption, used
in Equation (55), that m� Λ. Then, Equation (57) gives the momentum dependence of the
coupling at fixed cut-off, and upon integration one finds

g2(µ)

g2
c

=
1

1− c (µ0/µ)d−2 ≈ 1 + c (µ0/µ)d−2 + . . . (58)

with c µd−2
0 a dimensionful integration constant. The sign of c then depends on whether

one is on the right (c > 0) or on the left (c < 0) of the ultraviolet fixed point at gc. At the
fixed point gc, the β-function vanishes and the theory becomes scale invariant. Moreover,
one can check again that ν = −1/β′(gc) where ν is the exponent in Equation (55).

5. Hartree–Fock Method for the Nonlinear Sigma Model

The large N saddle point equation of Equation (54) is in fact identical to the Hartree–
Fock approximation for the self-energy, where the bare propagator in the loop is replaced
by the dressed one, with a mass parameter m to be determined by the Hartree–Fock self-
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consistency conditions. Figure 2 shows the typical perturbative expansion for the proper
self-energy of a self-interacting scalar field.

= + + + ...

Figure 2: Perturbative expansion for the dressed propagator of a self-interacting scalar field.
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Figure 3: Dyson’s equation for the scalar field propagator.

for the gap equation which reflected, at low momenta, the original spherical symmetry of the

underlying cutoff. The latter is nevertheless not the only possibility. An alternative procedure

would be the introduction of an underlying hypercubic (or other) lattice, with lattice spacing

a and for which then the momentum cutoff is Λ = π/a. One more possibility would be the

use of dimensional regularization, where ultraviolet divergences re-appear as simple poles in the

dimension d. The detailed choice of ultraviolet cutoff would then affect the form of the Λ terms

in the gap equation. It is nevertheless well known, and expected on the basis of very general and

well-established renormalization group arguments (based mainly on the nature of what are referred

to as irrelevant operators) that the main effect would go into a shift of the non-universal critical

coupling Tc, leaving the universal exponents and their dependence on the dimension d and on the

N of O(N) unchanged. See for example [1-6], the comprehensive monographs [7-11], and the many

more references therein.

In view of the later discussion on quantum gravity, it will be useful here to next look explicitly

at a few individual cases, mainly as far as the dimension d is concerned. These follow from the

general expression for the loop integral given above

Sd

∫ Λ

0
dk kd−1 1

k2 +m2
(59)

with Sd = 1/2d−1 πd/2 Γ(d/2). One finds for the integral itself in general dimensions

I(Λ,m, d) ≡
∫ Λ

0
dk kd−1 1

k2 +m2
=

Λd

dm2 2F1(1,
d

2
,
2 + d

2
,−Λ2

m2
) (60)

with 2F1(a, b, c, z) the generalized hypergeometric function. The general nonlinear gap equation for

m in d dimensions then reads
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Figure 3. Dyson’s equation for the scalar field propagator.

One important aspect that needs to be brought up at this stage is the dependence
of the results on the specific choice of ultraviolet cut-off. In the foregoing discussion the
momentum integrals were cut off, in magnitude, at some large virtual momentum Λ, which
resulted in an explicit expression for the gap equation which reflected, at low momenta,
the original spherical symmetry of the underlying cutoff. The latter is nevertheless not
the only possibility. An alternative procedure would be the introduction of an underlying
hypercubic (or other) lattice, with lattice spacing a and for which then the momentum
cut-off is Λ = π/a. One more possibility would be the use of dimensional regulariza-
tion, where ultraviolet divergences reappear as simple poles in the dimension d. The
detailed choice of ultraviolet cutoff would then affect the form of the Λ terms in the gap
equation. It is nevertheless well known, and expected on the basis of very general and
well-established renormalization group arguments (based mainly on the nature of what
are referred to as irrelevant operators), that the main effect would go into a shift of the
non-universal critical coupling Tc, leaving the universal exponents and their dependence
on the dimension d and on the N of O(N) unchanged. See, for example, in [1–6], the
comprehensive monographs [7–11], and the many more references therein.

In view of the later discussion on quantum gravity, it will be useful here to next look
explicitly at a few individual cases, mainly as far as the dimension d is concerned. These
follow from the general expression for the loop integral given above

Sd

∫ Λ

0
dk kd−1 1

k2 + m2 (59)

with Sd = 1/2d−1 πd/2 Γ(d/2). One finds for the integral itself in general dimensions

I(Λ, m, d) ≡
∫ Λ

0
dk kd−1 1

k2 + m2 =
Λd

d m2 2F1(1,
d
2

,
2 + d

2
,−Λ2

m2 ) (60)
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with 2F1(a, b, c, z) the generalized hypergeometric function. The general nonlinear gap
equation for m in d dimensions then reads

(N − 1) T · Sd ·
Λd

d m2 2F1(1,
d
2

,
2 + d

2
,−Λ2

m2 ) − 1 = 0 . (61)

Here, one recognizes that the only remnant of the large N expansion is the overall coefficient
β0 = N − 1; perhaps a better, physically motivated choice would have been a factor of
N − 2, as N = 2 is known to be the special case for which the mass gap disappears in
the weak coupling, spin wave phase in d = 2. (The self-consistent Hartree–Fock gap
equation for m in the nonlinear sigma model shares some analogies with the gap equation
for a superconductor. There one finds, in the Hartree–Fock approximation, the following
nonlinear gap equation [37,38],

g N(0)
∫ h̄ωD

0

dξ

(ξ2 + ∆2)
1
2

tanh
(ξ2 + ∆2)

1
2

2kB T
= 1 (62)

where g is the electron-phonon coupling constant, ωD the upper phonon Debye (cut-off)
frequency, ∆ is the electron energy gap at the Fermi surface, T the temperature and ξ a
shifted energy variable defined as

ξ =
h̄2 k2

2 m
− µ . (63)

In the above expression, µ is the chemical potential, and the quantity N(0) = m kF/2π2h̄3

indicates the density of states for one spin projection near the Fermi surface, with kF the
Fermi wavevector. The above equation then leads, in close analogy to what is done in the
nonlinear sigma model, to an estimate for the critical temperature at which the electron
gap ∆ vanishes

kB Tc =
2eγ

π
h̄ ωD e−1/N(0)g . (64)

Note that the role of the ultraviolet cutoff here is played by ωD, and that the critical
temperature is non-analytic in the electron–phonon coupling g. Furthermore, the role of
the mass gap m in the nonlinear sigma model is played here by the energy gap at the Fermi
surface ∆. The condensed spin zero electron Cooper pairs then act as massless Goldstone
bosons, and later induce a dynamical Higgs mechanism in the presence of an external
electromagnetic field, commonly referred to as the Meissner effect.)
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∫ Λ

0
dk k

1

k2 +m2
= 1

2 log

[
m2 + Λ2

m2

]
(65)

leading to the d = 2 gap equation

(N − 1)
T

4π
log

(
m2 + Λ2

m2

)
= 1 . (66)

The solution is given by

m = Λ
[
e

4π
(N−1) T − 1

]−1
2

= Λ e
− 2π

(N−1) T

(
1 + 1

2 e
− 4π

(N−1) T + · · ·
)

(67)
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field, commonly referred to as the Meissner effect.

23

Figure 4. Self-consistent Hartree–Fock approximation for the self-energy of the scalar field.

It now pays to look at some specific dimensions individually, just as will be done later
in the case of quantum gravity. Then, specifically, for dimension d = 2, one has

∫ Λ

0
dk k

1
k2 + m2 = 1

2 log
[

m2 + Λ2

m2

]
(65)
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leading to the d = 2 gap equation

(N − 1)
T

4π
log
(

m2 + Λ2

m2

)
= 1 . (66)

The solution is given by

m = Λ
[

e
4π

(N−1) T − 1
]− 1

2
= Λ e−

2π
(N−1) T

(
1 + 1

2 e−
4π

(N−1) T + · · ·
)

(67)

so that here the constant of proportionality between the mass gap m and the scaling

parameter Λ e−
2π

(N−1)T is exactly one for weak coupling T = g2 � 1. Then the above result
corresponds to a correlation length exponent ν = ∞ in d = 2. On the other hand, in the
opposite strong coupling limit T = g2 � 1 one has

m ' g
√

N − 1
2
√

π
Λ (68)

so that, as expected, the correlation length ξ = 1/m approaches zero in this limit.
Moving up one dimension, in three dimensions, d = 3, one has for the basic integral

∫ Λ

0
dk k2 1

k2 + m2 = Λ−m arctan
(

Λ
m

)
(69)

leading to the d = 3 gap equation

(N − 1)
T

2π2

[
Λ−m arctan

(
Λ
m

)]
= 1 (70)

with critical point at

Tc =
2π2

(N − 1)Λ
(71)

for which the mass gap m = 0. In the vicinity of the critical point one can solve explicitly
for the mass gap m

m =
4π

(N − 1) T2
c
| T − Tc | +

4 (π2 − 4)
(N − 1)π T3

c
| T − Tc |2 + · · · (72)

so that in d = 3 the universal correlation length exponent is ν = 1. Equivalently, in
terms of the dimensionless coupling g, for which T = g2/Λ, one has gc =

√
2 π/
√

N − 1,
and therefore

m = Λ
8π

(N − 1) g3
c
|g− gc| + · · · . (73)

Again, moving up in dimensions, one finds that four dimensions (d = 4) represents a
marginal case and one obtains

∫ Λ

0
dk k3 1

k2 + m2 = 1
2

[
Λ2 + m2 log

(
m2

m2 + Λ2

)]
(74)

leading to the d = 4 gap equation

(N − 1)
T

16π2

[
Λ2 + m2 log

(
m2

m2 + Λ2

)]
= 1 (75)



Symmetry 2021, 13, 120 19 of 50

with critical point

Tc =
16π2

(N − 1)Λ2 , (76)

and therefore gc = 4π/
√

N − 1 where m = 0. The four-dimensional case is slightly more
complex, and here one has to determine the solution to the gap equation recursively. In the
vicinity of the critical point one finds for the mass gap m

m = Λ
4
√

2π

(N − 1)1/2 g3/2
c

|g− gc|1/2

(− log |g− gc|)1/2 + · · · , (77)

so that in d = 4 the universal correlation length exponent is given by the Landau theory
value ν = 1/2, up to logarithmic corrections. This last result is in agreement with triviality
arguments for scalar field theories in and above four dimensions [1–3]. Moreover, the
logarithmic correction has the right form with the correct power −1/2, in agreement
with the exact universal result for the Ising model (given here by the N=1 case) in four
dimensions [68].

Going up one more dimension, in five dimensions (d = 5) one has for the integral

∫ Λ

0
dk k4 1

k2 + m2 = 1
3

[
Λ3 − 3 m2 Λ + 3 m3 arctan

(
Λ
m

)]
(78)

leading to the d = 5 gap equation

(N − 1)
T

36π3

[
Λ3 − 3 m2 Λ + 3m3 arctan

(
Λ
m

)]
= 1 (79)

with critical point at

Tc =
36 π3

(N − 1)Λ3 , (80)

and therefore gc = 6 π3/2/
√

N − 1, at which point again m = 0. In the vicinity of the
critical point one finds for the mass gap m

m = Λ
2 61/6 π

(N − 1)2/3 g7/6
c
|g− gc|1/2 + · · · (81)

so that in d = 5 (and above) the universal correlation length exponent stays at ν = 1/2,
again in agreement with the Landau theory prediction for all scalar field theories above
d = 4 [1–3].

More generally, the last set of results agree with the general formula for the critical
point Tc, valid for both d < 4 and d ≥ 4,

Tc =
(d− 2) 2d−1 π

d
2 Γ
(

d
2

)

N − 1
Λ2−d (82)

and similarly for the dimensionless critical coupling gc =
√

Tc/Λ(2−d)/2. A dimensionless
critical amplitude Am can be defined by

m = ∼
g→gc

Am Λ |g− gc|1/(d−2) + · · · (83)

and is given for d < 4 explicitly by the expression

Am =




2d+1 π
d
2−1Γ( d

2 ) sin
(

πd
2

)

g3
c (N − 1)




1
d−2

. (84)
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For d > 4, the amplitude can be computed explicitly as well, and is given instead by

Am = 2
3d−4

2(d−2) (d− 2)
4−d

2(d−2) (d− 4)
1
2 g

d+2
2(2−d)
c n−

1
d−2 π

d
2(d−2) Γ(

d
2
)

1
d−2 (85)

which shows again that d = 4 is indeed a special case, and needs to be treated with
some care. One also notes that both the d < 4 and the d > 4 amplitudes vanish as one
approaches d = 4 due to the infrared divergence in this case, which leads to the log
correction described above.

The previous, rather detailed, discussion shows that the Hartee–Fock approximation
(and, in this case, the equivalent large-N limit), based on a single one loop tadpole diagram,
leads to a number of basically correct and nontrivial analytical results in various dimensions,
which we proceed to enumerate here. The first one is the fact that it correctly predicts
the absence of a phase transition, and thus asymptotic freedom in the coupling g, for any
N > 1 in two dimensions. This result is indeed known to be correct up to N = 2, the
latter representing the special case of the Kosterlitz–Thouless vortex unbinding transition
in the two dimensional planar model. The beta function in this case becomes then exactly
correct for weak coupling, if one replaces the saddle point value N − 1 by N − 2 in the
relevant expressions.

Second, in three dimensions the theory is known not to be perturbatively renormal-
izable. Nevertheless, the Hartree–Fock approximation correctly predicts the existence
of a critical point (a phase transition) at a finite Tc, and the correspondingly modified
scaling relations. In renormalization group language, a critical point corresponds to a
nontrivial fixed point associated with the renormalization group trajectories, here in the
dimensionless relevant coupling g. The critical exponent ν = 1 is somewhat higher than
the accepted value for the Heisenberg model N = 3 (ν = 0.710) [54], nevertheless not too
far off, given the crudeness of the approximation, based on a single loop diagram.

Furthermore, for dimension d between two (lower critical) and four (upper critical),
one has

ν =
1

d− 2
η = 0 γ =

2
d− 2

(86)

where η is the field (or propagator) anomalous dimension, G(p) ∼ 1/p2−η in the vicinity of
the nontrivial fixed point, and γ the zero-field magnetic susceptibility exponent, χ ∼ ξγ/ν,
again in the vicinity of the nontrivial fixed point at gc. In four dimensions the Hartree–Fock
approximation correctly reproduces the expectation of mean field exponents (ν = 1/2
here) up to a logarithmic correction. This is not surprising, as some sort of mean field
theory is incorporated into the very nature of the Hartree–Fock approximation. Above
four dimensions the results again reflect, correctly, the expectation that mean field theory
exponents, and in particular ν = 1/2, should apply to all d ≥ 4, and give an explicit
analytic expression for the mass gap m, the critical coupling Tc and the corresponding
amplitude Am as a function of d. Thus, the Hartree–Fock approximation as discussed here
gives correctly for the upper critical dimension of the O(N) nonlinear sigma model d = 4
independent of N, whereas the lower critical dimension here is correctly d = 2, at least for
N > 2.

To conclude this section, a few words should be spent on the physical interpretation
of the mass gap parameter m. It is possible to describe its properties either within the
context of Lorentzian quantum field theory with its generating functional and vacuum
expectation values, or alternatively in the context of statistical mechanics and Euclidean
quantum field theory, with its correlation functions and thermodynamic averages. The
two descriptions are of course expected to be equivalent and complemetary, related to
each other by a Wick rotation. Therefore, when one refers to the mass gap, it means
the gap in energy between the first excited stated and the ground state, m = E1 − E0
as derived from the quantum Hamiltonian or transfer matrix describing, in this case,
the nonlinear sigma model. Its relationship with the Euclidean correlation length ξ is
provided by the Lehman representation (i.e., completeness) for the two-point function, for
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example, which then gives m = 1/ξ. In addition, ξ and thus m are related by scaling to a
multitude of other observables, such as the order parameter or magnetization 〈σ〉 in the
low temperature phase. As an example, in the nonlinear sigma model 〈σ〉 ∼ 1/ξβ/ν by
renormalization group scaling, where β is the magnetic exponent (≈ 1/3 in d = 3) and ν
the correlation length exponent. This shows more generally that the mass gap is in some
way directly related to the vacuum expectation value of the field, at least in the ordered
phase. For Gaussian fields 〈σ〉 ∼ 1/ξ in four dimensions in the ordered phase, simply by
dimensional arguments.

6. Gauge Theories

Before tackling the most complex case of quantum gravity, it will be useful to first
explore the implications of these ideas to a new and slightly more complex, but still familiar
case—the SU(N) gauge theory. In the case of SU(N) Yang–Mills theories, one can follow a
similar line of analysis to develop the Hartree–Fock approximation. Overall, the strategy
is again to rely on well-known results for one-loop diagrams, suitably modified by the
insertion of an effective, dynamically generated mass parameter. The latter is then deter-
mined self-consistently by a suitable nonlinear gap equation. There are a number of aspects
which are quite similar to the nonlinear sigma model case, which will be helpful here in
vastly streamlining the discussion. In particular, in gauge theories the gluon propagator is
modified by the gauge and matter vacuum polarization contribution δabΠµν(p) with

Πµν(p) = (p2 ηµν − pµ pν)Π(p2) (87)

with pµΠµν(p) = 0. In the Fermi–Feynman gauge, the gluon propagator then becomes

Dab
µν(p) =

δab ηµν

p2 [1 + Π(p2)]
. (88)

In perturbation theory, and to all orders, the gluon stays massless as a consequence of
gauge invariance, with p2 Π(p2) ∼p→0 0 (here we will assume no spontaneous symmetry
breaking via the Higgs mechanism). In more detail, the relevant one loop integral has
the form ∫ ddk

(2π)d
V(p,−k− p, k) ·V(−p,−k, k + p)

k2 (k + p)2 (89)

where the dot here indicates a dot product over the relevant Lorentz indices associated
with the three-gluon, matter, or ghost vertices. Additional factors involve a symmetry
factor 1

2 for the diagram, the gauge coupling g2 weight, and an overall group theory
color factor. Figure 5 shows the lowest order Feynman diagrams contribution to the
vacuum polarization tensor in gauge theories, Figure 6 the equation relating the bare gluon
propagator to the dressed one via the proper vacuum polarization contribution.

+ ...= + + + +

Figure 5: Pure Yang-Mills vacuum polarization contributions to lowest order in perturbation theory.
The dashed line represents the ghost contribution.

parameter. The latter is then determined self-consistently by a suitable nonlinear gap equation.

There are a number of aspects which are quite similar to the nonlinear sigma model case, which

will be helpful here in vastly streamlining the discussion. In particular, in gauge theories the gluon

propagator is modified by the gauge and matter vacuum polarization contribution δabΠµν(p) with

Πµν(p) = (p2 ηµν − pµ pν)Π(p
2) (87)

with pµΠ
µν(p) = 0. In the Fermi-Feynman gauge the gluon propagator then becomes

Dab
µν(p) =

δab ηµν
p2 [1 + Π(p2)]

. (88)

In perturbation theory, and to all orders, the gluon stays massless as a consequence of gauge

invariance, with p2Π(p2) ∼p→0 0 (here we will assume no spontaneous symmetry breaking via the

Higgs mechanism). In more detail, the relevant one loop integral has the form

∫
ddk

(2π)d
V (p,−k − p, k) · V (−p,−k, k + p)

k2 (k + p)2
(89)

where the dot here indicates a dot product over the relevant Lorentz indices associated with the

three-gluon, matter or ghost vertices. Additional factors involve a symmetry factor 1
2 for the

diagram, the gauge coupling g2 weight, and an overall group theory color factor. Figure 5 shows the

lowest order Feynman diagrams contribution to the vacuum polarization tensor in gauge theories,

Figure 6 the equation relating the bare gluon propagator to the dressed one via the proper vacuum

polarization contribution.

Figure 7 then represents Dyson’s equation for the dressed gluon propagator (as written out

in terms of the bare propagator and bare and dressed vertices, while Figure 8 illustrates Dyson’s

equation for the proper gluon vacuum polarization term.

Finally, Figure 9 illustrates the Hartree-Fock equation for gauge theories. Consequently, in the

Hartree-Fock approximation (and in close analogy to the treatment of the nonlinear sigma model

described previously, specifically in Section 5) one is left with the evaluation of the following one

28

Figure 5. Pure Yang–Mills vacuum polarization contributions to lowest order in perturbation theory. The dashed line
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Figure 7 then represents Dyson’s equation for the dressed gluon propagator (as written
out in terms of the bare propagator and bare and dressed vertices), while Figure 8 illustrates
Dyson’s equation for the proper gluon vacuum polarization term.
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Figure 7: Dyson’s equations for the dressed Yang-Mills boson propagator. Ghost contributions
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Figure 8: Dyson’s equations for the Yang-Mills gauge boson vacuum polarization tensor.

Figure 9: Self-consistent Hartree-Fock approximation for the gauge boson proper self-energy.

loop integral,

Sd

∫ Λ

0
dk kd−1 k2σ

(k2 +m2)2
, (90)

with again Sd = 1/2d−1 πd/2 Γ(d/2) and σ = 0 in the gauge theory case. Here Λ is an ultraviolet

cutoff, such as the one implemented in Wilson’s lattice gauge theory formulation, for which Λ ∼ π/a

with a the lattice spacing. Note the insertion of a mass parameter m, to be determined later self-

consistently by the gap equation given below.

One finds for the integral itself in general dimensions the explicit result

∫ Λ

0
dk kd−1 1

(k2 +m2)2
=

Λd

2 dm2 (m2 + Λ2)
+

(
1

d
− 1

2

)
Λd

dm4 2F1(1,
d

2
, 1 +

d

2
,− Λ2

m2
) (91)

with 2F1(a, b, c, z) the generalized hypergeometric function. The general gap equation for the

dynamically generated mass scale m then reads

g2 β0 Sd

[
Λd

2 dm2 (m2 + Λ2)
+

(
1

d
− 1

2

)
Λd

dm4 2F1(1,
d

2
,
1 + d

2
,−Λ2

m2
)

]
= 1 , (92)

with g the gauge coupling and β0 an overall N -dependent numerical coefficient resulting from

combined group theory weights, Lorentz traces and diagram symmetry factors.

As in the case of the nonlinear sigma model discussed previously, it will be instructive to look

in detail at individual dimensions. In four dimensions (d = 4) the gap equation reduces to

1

2
g2 β0 S4

[
log

(
1 +

Λ2

m2

)
− Λ2

m2 + Λ2

]
= 1 . (93)
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Finally, Figure 9 illustrates the Hartree–Fock equation for gauge theories. Conse-
quently, in the Hartree–Fock approximation (and in close analogy to the treatment of the
nonlinear sigma model described previously, specifically in Section 5) one is left with the
evaluation of the following one-loop integral,

Sd

∫ Λ

0
dk kd−1 k2σ

(k2 + m2)2 , (90)

with again Sd = 1/2d−1 πd/2 Γ(d/2) and σ = 0 in the gauge theory case. Here, Λ is an ul-
traviolet cut-off, such as the one implemented in Wilson’s lattice gauge theory formulation,
for which Λ ∼ π/a with a the lattice spacing. Note the insertion of a mass parameter m, to
be determined later self-consistently by the gap equation given below.

One finds for the integral itself in general dimensions the explicit result

∫ Λ

0
dk kd−1 1

(k2 + m2)2 =
Λd

2 d m2 (m2 + Λ2)
+

(
1
d
− 1

2

)
Λd

d m4 2F1(1,
d
2

, 1 +
d
2

,−Λ2

m2 ) (91)
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with 2F1(a, b, c, z) the generalized hypergeometric function. The general gap equation for
the dynamically generated mass scale m then reads

g2 β0 Sd

[
Λd

2 d m2 (m2 + Λ2)
+

(
1
d
− 1

2

)
Λd

d m4 2F1(1,
d
2

,
1 + d

2
,−Λ2

m2 )

]
= 1 , (92)

with g the gauge coupling and β0 an overall N-dependent numerical coefficient resulting
from combined group theory weights, Lorentz traces and diagram symmetry factors.
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Figure 8: Dyson’s equations for the Yang-Mills gauge boson vacuum polarization tensor.
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2
g2 β0 S4

[
log

(
1 +

Λ2

m2

)
− Λ2

m2 + Λ2

]
= 1 . (93)
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Figure 9. Self-consistent Hartree–Fock approximation for the gauge boson proper self-energy.

As in the case of the nonlinear sigma model discussed previously, it will be instructive
to look in detail at individual dimensions. In four dimensions (d = 4) the gap equation
reduces to

1
2

g2 β0 S4

[
log
(

1 +
Λ2

m2

)
− Λ2

m2 + Λ2

]
= 1 . (93)

The solution to the above equation is

m = Λ e−
1
2 e
− 1

2 β0 g2 = Λ e−
1
2 e
− 24 π2

11 N g2 . (94)

Here, at the end the correct expression β0 = 11N/3 for SU(N) gauge theories was inserted,
as obtained from one loop perturbation theory. The above explicit results then implies,

within the current Hartree–Fock approximation, that the mass gap m is by a factor e−
1
2 =

0.6065 smaller than the scaling violation parameter Λ exp(−1/2 β0 g2), with the latter
appearing on the r.h.s. of Equation (94). Note that one could have obtained the overall
coefficient of the one loop contribution, as used here in the Hartree–Fock approximation,
from the Nielsen–Hughes formula [69–71]. There the one-loop β-function contribution
coefficient arising from a particle of spin s running around the loop is given generally by
β = −(−1)2s [(2s)2 − 1

3 ], with the two individual competing contributions arising from
a generalization of Pauli diamagnetism and Landau paramagnetism in four spacetime
dimensions. For spin s = 1 the above formula then gives indeed for the pure SU(N) gauge
theory in four dimensions the expected result, β0 = 11N/3 (with, in this case, an overall
negative sign for the beta function, correctly taken into account previously).

The renormalization group running of the gauge coupling g(µ) again follows from
the requirement that the mass gap m be scale-independent,

µ
d m
d µ

= 0 = µ
d

d µ

(
µ e−

1
2 e
− 1

2 β0 g(µ)2
)

, (95)

which then gives the expected asymptotic freedom running of g(µ) in the vicinity of the
ultraviolet fixed point at g = 0,

g2(µ) =
1

2 β0 [ log(µ/m)− 1 ]
. (96)

One observes that the quantity m here plays a role analogous to the ΛM̄S ≈ 330 MeV
parameter used, for example, to describe deep inelastic scattering in QCD. For short enough
distances the result of Equation (96) implies that the static potential between quarks behaves
as V(r) ∼ 1/r log(r), a Coulomb potential with a weak quantum logarithmic correction,
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of course a well-known result already from perturbation theory. It should be noted also
that so far the gauge theory result in d = 4 looks rather similar to the d = 2 result for the
nonlinear sigma model (for N > 2), in the sense that both models have a mass gap that
vanishes only at g = 0, and also exhibit asymptotic freedom in the relevant coupling. This
fact is of course already well known from the simple, direct application of perturbation
theory; nevertheless, it is encouraging that both of those features are correctly reproduced
by the lowest order Hartree–Fock approximation.

Gauge theories are mostly relevant in four spacetime dimensions. As a purely aca-
demic exercise one can nevertheless look at d = 5, where Yang–Mill theories—just like the
nonlinear sigma model for d > 2 - are not perturbatively renormalizable. In this case, one
needs the integral

∫ Λ

0
dk k5 1

(k2 + m2)2 = Λ +
m2 Λ

2 (m2 + Λ2)
− 3

2
m arctan

(
Λ
m

)
. (97)

For small mass gap parameter m, the gap equation in five dimensions then reads

g2 β0 S5

[
Λ − 3π

4
m
]

= 1 . (98)

The solution for g > gc is then given by

m = Λ · 8
3πgc

(g− gc) + O
(
(g− gc)

2
)

. (99)

There is a nontrivial fixed point at g2
c = 12π3/Λ, and the correlation length exponent is

ν = 1, just like for the d = 3 nonlinear sigma model discussed previously. For the gauge
theory case one expects that the critical point at gc separates a weak coupling Coulomb
phase from a confining strong coupling case. Then, as d approaches four from above, the
weak coupling massless gluon Coulomb phase disappears.

The renormalization group running of the gauge coupling g(µ) close to the nontrivial
ultraviolet fixed point then follows again from the requirement that the mass gap m be
scale independent, µ d m

d µ = 0. In the vicinity of the five-dimensional ultraviolet fixed
point, and within the strong coupling phase (g > gc) one obtains

g(µ) = gc

[
1 +

3π

8
·
(

m
µ

)
+ O

((
m
µ

)2
)]

. (100)

Note that, in this case, the power associated with the running in momentum space is
determined again by the exponent 1/ν = 1, and that the coefficient of the running term
here is in fact independent of β0. The result of Equation (100) in turn implies that in real
space the effective coupling constant initially grows linearly with distance in the strong
coupling phase, g(r) ∼ r/ξ. At this stage one would conclude that the gauge theory result
in d = 5 bears some similarity to the d = 3 result for the nonlinear sigma model, in the
sense that both models have a critical point located at some finite value of the bare coupling,
and have an exponent ν = 1, at least within the Hartee–Fock approximation.

In fact, it is possible to get a general yet simple analytical result from the Hartree–Fock
result for larger d as well, based on a general expression for the momentum integral. For a
large enough dimension, d > 6, one has

g2
c =

(d− 4) 2d−1 πd/2 Γ(d/2)
β0 Λd−4 . (101)
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The solution for m is then, for g > gc and d > 6,

m = Λ
(

d− 6
(d− 4) gc

)1/2
(g− gc)

1/2 + O
(
(g− gc)

3/2
)

, (102)

which implies ν = 1/2 for any d > 6, just like the case d > 4 for the nonlinear sigma model
discussed earlier. Note that six dimensions is the borderline case here, with logarithmic
corrections to a pure power law behavior, in analogy to the d = 4 case for the nonlinear
sigma model, as given in Equation (77).

Again, the renormalization group running of g(µ) follows from the requirement that
the mass gap m be scale independent, and in the vicinity of the ultraviolet fixed point, and
in the strong coupling phase g > gc, one finds here

g(µ) = gc

[
1 +

d− 4
d− 6

(
m
µ

)2
+ O

((
m
µ

)4
)]

. (103)

It follows that the power associated with the running in momentum space is always given
by the exponent 1/ν = 2 for d > 6. The result of Equation (103) in turn implies that in real
space the effective coupling constant initially grows with the square of the distance, above
d = 6 and in the strong coupling phase, g(r) ∼ (r/ξ)2. Note that, when written in this
form, the coefficient of the running term is in fact independent of the magnitude of β0.

Overall, the general conclusion here is that the gauge theory result in d > 6 looks
rather similar to the d > 4 result for the nonlinear sigma model, in the sense that both
models have a critical point at some value of the bare coupling, and have exponent ν = 1/2,
at least within the Hartee–Fock approximation used here. In other words, the Hartree–Fock
approximation gives for the upper critical dimension of gauge theories d = 6 independent
of N, whereas the lower critical dimension here is d = 4, again independent of N > 1.
As a comparison, we note that some time ago it was suggested that the upper critical
dimension for gauge theories is either d = 8 based on the theory of random surfaces [72],
or possibly d = ∞ [73] when considering the strong coupling expansion of lattice gauge
theories at large d. If one denotes by dH the fractal (Hausdorff) dimension of Wiener
paths contributing to the Feynman path integral, then in the Hartree–Fock approximation
discussed here an upper critical dimension of six would imply dH = 3, if the arguments
in [74–76] are followed here as well. On the other hand, for a Gaussian scalar field (a free
particle with no spin) it is known that dH = 2, as for regular Brownian motion [77–79].

A few words should be spent here on the physical interpretation of m in gauge
theories. When one refers to the mass gap, it means a gap in energy between the ground
state and the first excited stated, m = E1 − E0, as derived from the quantum Hamiltonian
(or transfer matrix) describing, in this case, the nonlinear sigma model. It’s relationship
with the Euclidean correlation length ξ is provided by the Lehman representation (i.e.,
completeness) for the two point function (as an example), which then gives m = 1/ξ.
In addition, ξ, and thus m, are related by scaling to a multitude of other observables, such
as the order parameter or magnetization 〈σ〉 in the low temperature phase for spin system,
and the gluon condensate 〈F2

µν〉 for gauge theories. In the gauge theory case one has a
fundamental relationship between the nonperturbative scale ξ = m−1 and a nonvanishing
vacuum expectation value for the gluon field [80,81].

〈 F2
µν 〉 '

1
ξ4 . (104)

In QCD, this last result is obtained from purely dimensional arguments, once the existence
of a fundamental correlation length ξ (inversely related to the mass gap) is established.
Actual physical values for the QCD condensates are well known; current lattice and
phenomenological estimates cluster around 〈 αS

π F2
µν 〉 ' (440 MeV)4 [82,83]. In gauge

theories an additional physically related quantity is provided by the quark field condensate
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〈 ψ̄ψ 〉 ' 1
ξ3 (105)

whose physical value is estimated at 〈 ψ̄ψ 〉 ' (280 MeV)3 [84]. Again, the power of ξ here
is fixed by the canonical dimension of the corresponding fermion field.

A possible physical explicit value for the mass gap parameter m in N=3 QCD is
provided by the JPC = 0++ spin zero 500 MeV σ or f0(500) glueball state, a very broad
resonance seen in ππ and γγ scattering [85]. If this particle is roughly considered as a
spin-zero bound state of two (effectively massive) spin-one gluons with antiparallel spins,
then that would give for the mass gap parameter m ≈ 250 MeV. For the scaling violation

parameter on the r.h.s. of Equation (94) one then obtains a value e
1
2 = 1.649 larger, or

around 410 MeV. The latter is not too far off from the experimentally well-established
value of ΛMS ≈ 330 MeV for QCD (with three light quark flavors). Conversely, if one uses

the current world average of Λ(3)
MS
≈ (332± 17)MeV [86] for three flavor QCD, then one

obtains for the mass of the σ / f0 meson mσ ≈ 403 MeV. These results seem to suggest
that quantitatively the lowest order Hartree–Fock result is not expected to be better than a
factor or two or so. Many of these considerations will be useful later when the gravity case
is discussed, due to the many deep analogies between gauge theories and quantum gravity.

7. The Quantum Gravity Case

Upon gaining confidence in this approach and technique, one can again perform a
similar type of analysis in the case of quantum gravity, as outlined in detail in the preceding
sections. In the end, one major result which makes the calculation feasible is the reliance on
well-known results for simple one loop diagrams. This important insight makes it possible
to avoid lengthy and complex one-loop gravity calculations, and rely instead, as in all
the previous cases, on suitably modified known diagrams via the insertion of an effective,
dynamically generated mass parameter m. The latter is then determined self-consistently
via the solution of the resulting nonlinear gap equation, as discussed in detail for the
nonlinear sigma model (in Section 5), and for gauge theories (in Section 6).

A number of new ingredients arise in the quantum gravity calculation, which we
proceed to enumerate here. The first component is the (gauge choice dependent) gravi-
ton propagator

Dαβ,µν(p) , (106)

with the above expression denoting in general the dressed propagator, and D0
αβ,µν(p) the

bare (tree-level) one. An explicit form for the tree-level graviton propagator in covariant
gauges, as well as the three-graviton and four-graviton vertex, can be found in the Feynman
rules section in [14] and the references therein, and for brevity will not be reproduced
here. Occasionally, in the following it will be convenient to suppress Lorentz indices
altogether in order to avoid unnecessary extensive cluttering. Via loop corrections, the
tree-level graviton propagator is then modified by gauge and matter vacuum polarization
contributions Πµν,ρσ(p), with the latter written as

Παβ,µν(p) = (p2 ηαβ − pα pβ) (p2 ηµν − pµ pν)Π(p2) (107)

in terms of the scalar quantity Π(p2). Here, η denotes the flat spacetime metric. The vacuum
polarization contribution in quantum gravity is shown pictorially in Figure 10. By virtue of
energy-momentum conservation, one then has the transversality condition pα Παβ,µν(p) =
pµ Παβ,µν(p) = 0, and the graviton propagator (in the harmonic gauge [14,21]) can be
written as

Dαβ,µν(p) =
Iαβ,µν

p2 [ 1 + Π(p2) ]
(108)
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with Iαβ,µν = ηαµηβν + ηανηβµ − ηµνηαβ. As a consequence of gauge invariance (here more
properly described as general coordinate, or diffeomorphism, invariance) in perturbation
theory, and to all orders, the graviton is expected to stay massless, p2 Π(p2) ∼p→0 0. Here,
we will find it quite useful that an explicit form for the vacuum polarization contribution
Παβ,µν(p) in the context of perturbative quantum gravity was given some time ago in [22],
and such an explicit form will be used below.

= +

Figure 10: Dressed graviton propagator Dαβ,µν(p), with a graviton proper vacuum polarization
insertion Παβ,µν(p). The thin wavy line denotes the tree-level graviton propagator D0

αβ,µν(p).
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used below.

In addition, one has the dressed three-graviton vertex (shown here in Figure 11)

V
(3)
αβ,µν,ρσ(p, q, r) (109)

and the dressed four-graviton vertex (shown here in Figure 12)

V
(4)
αβ,γδ,µν,ρσ(p, q, r, s) , (110)

and similarly for the O(hn) higher order graviton vertices, as they arise in the weak field expansion

of the Einstein-Hilbert action about flat space, gµν = ηµν+hµν . Recall that for the Einstein-Hilbert

action
∫ √

g R written in terms of the weak field metric field hµν one has

√
g = 1 + 1

2h− 1
4hµνh

µν + 1
8h

2 +O(h3) (111)

with trace h = hµµ, and consequently (up to total derivatives) one obtains schematically

IEH =
1

G

∫
ddx

√
1 + h ∂2 h ∼ 1

G

∫
ddx

[
1
2h�h − 1

8 h
2 �h + O(h4)

]
. (112)

The latter shows the origin of the trilinear (h3) vertex, with weight proportional to momenta

squared, ∼ k2 in Fourier space, as well as the appearance of the (infinitely many) higher order

momentum-dependent vertices O(hn).

Two additional steps are needed in order to systematically develop the Hartree-Fock approxi-
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Figure 10. Dressed graviton propagator Dαβ,µν(p), with a graviton proper vacuum polarization
insertion Παβ,µν(p). The thin wavy line denotes the tree-level graviton propagator D0

αβ,µν(p).

In addition, one has the dressed three-graviton vertex (shown here in Figure 11)

V(3)
αβ,µν,ρσ(p, q, r) (109)

and the dressed four-graviton vertex (shown here in Figure 12)

V(4)
αβ,γδ,µν,ρσ(p, q, r, s) , (110)

and similarly for the O(hn) higher order graviton vertices, as they arise in the weak field
expansion of the Einstein–Hilbert action about flat space, gµν = ηµν + hµν. Recall that
for the Einstein–Hilbert action

∫ √
g R written in terms of the weak field metric field hµν

one has √
g = 1 + 1

2 h− 1
4 hµνhµν + 1

8 h2 + O(h3) (111)

with trace h = hµ
µ, and consequently (up to total derivatives) one obtains schematically

IEH =
1
G

∫
ddx
√

1 + h ∂2 h ∼ 1
G

∫
ddx

[
1
2 h� h − 1

8 h2 � h + O(h4)
]

. (112)

The latter shows the origin of the trilinear (h3) vertex, with weight proportional to momenta
squared, ∼ k2 in Fourier space, as well as the appearance of the (infinitely many) higher
order momentum-dependent vertices O(hn).
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Figure 11: Graviton three-point vertex V
(3)
αβ,µν,ρσ(p, q, r).

=
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(4)
(p,q,r,s)

Figure 12: Graviton four-point vertex V
(4)
αβ,γδ,µν,ρσ(p, q, r, s).
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Figure 11. Graviton three-point vertex V(3)
αβ,µν,ρσ(p, q, r).



Symmetry 2021, 13, 120 28 of 50

=
(3)

(p,q,r)
p

q

r

Figure 11: Graviton three-point vertex V
(3)
αβ,µν,ρσ(p, q, r).
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Figure 12: Graviton four-point vertex V
(4)
αβ,γδ,µν,ρσ(p, q, r, s).

37

Figure 12. Graviton four-point vertex V(4)
αβ,γδ,µν,ρσ(p, q, r, s).

Two additional steps are needed in order to systematically develop the Hartree–
Fock approximation for quantum gravity. First, and in close analogy to the previous
discussion of the nonlinear sigma model and gauge theories, one needs to write down
Dyson’s coupled equations for the graviton propagator, vacuum polarization, and proper
vertices. The lowest order Feynman diagrams (in a systematic perturbative expansion
in Newton’s constant G) as they contribute to the gravitational vacuum polarization are
shown, as an illustration, in Figure 13. These generally contain contributions from graviton,
matter, and ghost loops. To derive the full set of Dyson’s equations one then follows the
same procedure as in QED and Yang–Mills theories, as outlined earlier in this paper in
Section 2. First, one writes down the full Feynman path integral (including gauge fixing
and ghost terms), including a classical source term gµν(x) Jµν(x) for the gravitational field,
as well as any additional fields present such as ghost and matter contributions. One then
applies suitable combinations of functional derivatives of the generating function Z[J]
(as in Equations (16)–(18)) to obtain the full set of coupled integro-differential equations
for the gravitational n-point functions, including the quantum version of Einstein’s field
equations (in close analogy to the QED result of Equations (19), (23) and (24)). As an
example, Figure 10 illustrates the relationship between the tree-level graviton propagator
to the dressed one via the proper gravity vacuum polarization contribution, while Figure 13
shows the lowest order Feynman diagram contributions to the vacuum polarization tensor
for gravity.

= + + + ...

Figure 13: Quantum gravity lowest order vacuum polarization Παβ,µν(p) diagrams. A thin wavy
lines denotes a bare graviton propagator, and small sized dots stand for bare graviton vertices. A
dashed line appears in the ghost loop. Dots indicate higher order corrections.

= +

+

+ ...+

Figure 14: Dyson’s equations for the dressed graviton propagator Dαβ,µν(p). Small dots denote
bare graviton vertices, while larger dots stand for dressed vertices. Thin wavy lines denote bare
graviton propagators, while thicker lines stand for dressed propagators.
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Figure 13. Quantum gravity lowest order vacuum polarization Παβ,µν(p) diagrams. A thin wavy lines denotes a bare
graviton propagator, and small sized dots stand for bare graviton vertices. A dashed line appears in the ghost loop. Dots
indicate higher order corrections.

Next, we come to the actual form of Dyson’s equations for quantum gravity. Figure 14
shows Dyson’s equation for the dressed graviton propagator (as written out in terms of the
bare propagator and bare, as well as dressed, vertices), while Figure 15 illustrates Dyson’s
equation for the proper gravity vacuum polarization term. Here we give explicitly Dyson’s
equation for the dressed graviton propagator D(p), in terms of the bare propagator D0(p)
and the trilinear bare V(3),0 and dressed V(3), as well as the quadrilinear V(4),0 and V(4)

vertices, with the dots indicating contributions from higher order vertices V(n),0 and V(n)

with n > 4. Written out explicitly, the equation reads
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D(p) = D0(p)

+
1
2

D0(p) ·
∫ ddq

(2π)d V(3),0(p, q,−p− q) · D(p + q) ·V(3)(p + q,−q, p) · D(q) · D(p)

+
1
3!

D0(p) ·
∫ ddq1ddq2

(2π)2d V(4),0(p,−q1, q2,−p− q2 − q1) · D(p + q2 − q1)

·V(3)(p + q2 − q1, q1 − q2,−p) · D(q1 − q2) ·V(3)(q1,−q2,−q1 + q2) · D(q2)

· D(q1) · D(p)

+
1
3!

D0(p) ·
∫ ddq1ddq2

(2π)2d V(4),0(p,−q2, q1,−p− q1 + q2) · D(p + q1 − q2)

·V(4)(−q1, q2,−p, p + q1 − q2) · D(q1) · D(q2) · D(p)

+ · · ·

(113)

The next step is the derivation of the Hartree–Fock approximation for quantum gravity.
As should be clear from the various cases discussed earlier, namely, the nonlinear sigma
model (discussed in Section 5) and gauge theories (discussed in Section 6), one needs to
focus on just the lowest order loop diagrams. Nevertheless, these will have bare graviton
propagators replaced by dressed ones, later to be determined self-consistently. Figure 16
illustrates the Hartree–Fock approximation for gravity, carried out to the lowest order by
just considering the lowest order graviton loop diagram, the subject of the current investi-
gation. On the other hand, Figure 17 illustrates the next order Hartree–Fock approximation
for gravity, which would include both the lowest order graviton loop diagram, as well as
the next order graviton two-loop diagrams. These will not be considered further here, but
could in the future provide an improved answer, as well as useful quantitative estimates
for the overall uncertainty.

= + + + ...

Figure 13: Quantum gravity lowest order vacuum polarization Παβ,µν(p) diagrams. A thin wavy
lines denotes a bare graviton propagator, and small sized dots stand for bare graviton vertices. A
dashed line appears in the ghost loop. Dots indicate higher order corrections.
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Figure 14: Dyson’s equations for the dressed graviton propagator Dαβ,µν(p). Small dots denote
bare graviton vertices, while larger dots stand for dressed vertices. Thin wavy lines denote bare
graviton propagators, while thicker lines stand for dressed propagators.
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Figure 14. Dyson’s equations for the dressed graviton propagator Dαβ,µν(p). Small dots denote bare
graviton vertices, while larger dots stand for dressed vertices. Thin wavy lines denote bare graviton
propagators, while thicker lines stand for dressed propagators.
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Figure 15: Dyson’s equations for the proper graviton vacuum polarization insertion Παβ,µν(p).
Small dots denote bare graviton vertices, while larger dots stand for dressed vertices. A thin wavy
lines denotes a bare graviton propagator, while thicker lines stand for dressed propagators.

Next, we come to the actual form of Dyson’s equations for quantum gravity. Figure 14 shows

Dyson’s equation for the dressed graviton propagator (as written out in terms of the bare propagator

and bare, as well as dressed, vertices), while Figure 15 illustrates Dyson’s equation for the proper

gravity vacuum polarization term. Here we give explicitly Dyson’s equation for the dressed graviton

propagator D(p), in terms of the bare propagator D0(p) and the trilinear bare V (3),0 and dressed

V (3), as well as the quadrilinear V (4),0 and V (4) vertices, with the dots indicating contributions

from higher order vertices V (n),0 and V (n) with n > 4. Written out explicitly, the equation reads

D(p) = D0(p)

+
1

2
D0(p) ·

∫
ddq

(2π)d
V (3),0(p, q,−p− q) ·D(p+ q) · V (3)(p + q,−q, p) ·D(q) ·D(p)

+
1

3!
D0(p) ·

∫
ddq1d

dq2
(2π)2d

V (4),0(p,−q1, q2,−p− q2 − q1) ·D(p+ q2 − q1)

· V (3)(p+ q2 − q1, q1 − q2,−p) ·D(q1 − q2) · V (3)(q1,−q2,−q1 + q2) ·D(q2)

·D(q1) ·D(p)

+
1

3!
D0(p) ·

∫
ddq1d

dq2
(2π)2d

V (4),0(p,−q2, q1,−p− q1 + q2) ·D(p+ q1 − q2)

· V (4)(−q1, q2,−p, p + q1 − q2) ·D(q1) ·D(q2) ·D(p)

+ · · ·
(113)
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Section 5) and gauge theories (discussed in Section 6), one needs to focus on just the lowest order

loop diagrams. Nevertheless, these will have bare graviton propagators replaced by dressed ones,

later to be determined self-consistently. Figure 16 illustrates the Hartree-Fock approximation for

gravity, carried out to the lowest order by just considering the lowest order graviton loop diagram,

the subject of the current investigation. On the other hand, figure 17 illustrates the next order

Hartree-Fock approximation for gravity, which would include both the lowest order graviton loop
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Figure 15. Dyson’s equations for the proper graviton vacuum polarization insertion Παβ,µν(p). Small
dots denote bare graviton vertices, while larger dots stand for dressed vertices. A thin wavy lines
denotes a bare graviton propagator, while thicker lines stand for dressed propagators.

Figure 16: Self-consistent Hartree-Fock approximation for the graviton proper vacuum polarization
tensor. Small dots denote bare graviton vertices, and the thick wavy line indicates a dressed graviton
propagator, to be determined self-consistently.

+ +

Figure 17: Next higher order terms in the Hartree-Fock approximation to the graviton proper
vacuum polarization tensor. Small dots denote bare graviton vertices, and the thick wavy line
indicates a dressed graviton propagator, to be determined later self-consistently.

diagram, as well as the next order graviton two-loop diagrams. These will not be considered further

here, but could in the future provide an improved answer, as well as useful quantitative estimates

for the overall uncertainty.

In practice, for quantum gravity the relevant one loop integral for the vacuum polarization has

the form ∫
ddk

(2π)d
V (p,−k − p, k) · V (−p,−k, k + p)

k2 (k + p)2
, (114)

where the dot here indicates a generalized dot product over the relevant multitude of Lorentz

indices associated with the three-graviton, matter and ghost vertices. Additional ingredients involve

a symmetry factor 1
2 for the diagram, and of course the gravitational coupling G. In spite of

the complexity of the one-loop expression for the graviton vacuum polarization contribution, the

actual integral that needs to be evaluated here has a rather simple form. In the Hartree-Fock

approximation, and in close analogy to the treatment of the nonlinear sigma model and gauge

theories described previously, one is generally left with an evaluation of the following integral,

Sd

∫ Λ

0
dk kd−1 k2σ

(k2 +m2)2
(115)

with a combined spacetime volume factor Sd = 1/2d−1 πd/2 Γ(d/2), but now with σ = 2, specific

to the gravitational case. The latter steep momentum dependence is of course at the root of the
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Figure 16. Self-consistent Hartree–Fock approximation for the graviton proper vacuum polarization
tensor. Small dots denote bare graviton vertices, and the thick wavy line indicates a dressed graviton
propagator, to be determined self-consistently.

Figure 16: Self-consistent Hartree-Fock approximation for the graviton proper vacuum polarization
tensor. Small dots denote bare graviton vertices, and the thick wavy line indicates a dressed graviton
propagator, to be determined self-consistently.

+ +

Figure 17: Next higher order terms in the Hartree-Fock approximation to the graviton proper
vacuum polarization tensor. Small dots denote bare graviton vertices, and the thick wavy line
indicates a dressed graviton propagator, to be determined later self-consistently.
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Figure 17. Next higher order terms in the Hartree–Fock approximation to the graviton proper vacuum polarization tensor.
Small dots denote bare graviton vertices, and the thick wavy line indicates a dressed graviton propagator, to be determined
later self-consistently.

In practice, for quantum gravity the relevant one loop integral for the vacuum polar-
ization has the form

∫ ddk
(2π)d

V(p,−k− p, k) ·V(−p,−k, k + p)
k2 (k + p)2 , (114)

where the dot here indicates a generalized dot product over the relevant multitude of
Lorentz indices associated with the three-graviton, matter, and ghost vertices. Additional
ingredients involve a symmetry factor 1

2 for the diagram, and of course the gravitational
coupling G. In spite of the complexity of the one-loop expression for the graviton vacuum
polarization contribution, the actual integral that needs to be evaluated here has a rather
simple form. In the Hartree–Fock approximation, and in close analogy to the treatment of
the nonlinear sigma model and gauge theories described previously, one is generally left
with an evaluation of the following integral,

Sd

∫ Λ

0
dk kd−1 k2σ

(k2 + m2)2 (115)

with a combined spacetime volume factor Sd = 1/2d−1 πd/2 Γ(d/2), but now with σ = 2,
specific to the gravitational case. The latter steep momentum dependence is of course
at the root of the perturbative non-renormalizability of quantum gravity in four dimen-
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sion [15–29]: the significant weight of the high momentum region in loop integrals renders
perturbation theory in Newton’s G badly divergent.

Going back to the required integral of Equation (115), one finds for the momentum
integral itself, in general dimension d,

∫ Λ

0
dk kd−1 k2 σ

(k2 + m2)2 =
Λd+2 σ

2 m2 (m2 + Λ2)
− d + 2 σ− 2

d + 2 σ

Λd+2 σ

2 m4 2F1(1,
d
2
+ σ, 1 +

d
2
+ σ,−Λ2

m2 ) , (116)

with 2F1(a, b, c, z) the generalized hypergeometric function. Here, again Λ is the ultravi-
olet cut-off, such as one implemented in the Regge–Wheeler lattice formulation of grav-
ity [12,13], for which Λ ∼ π/a, with a defined as an average lattice spacing a2 ≡ 〈l2〉.
Indeed, as in all the previous examples, an explicit ultraviolet cutoff is required in order to
be able to write down a meaningful form of the Hartree–Fock equation. Generally, for any
quantum mechanical system a lattice cut-off is required to make the Feynman path integral
well defined, as discussed already in great detail some time ago by the inventor himself [77],
and in some more recent monographs [78,79]. The root cause of this situation is that the
dominant quantum paths contributing to the path integral are in general nowhere differen-
tiable, a key realization that motivated Regge and Wheeler to develop a lattice formulation
for gravity[12,13]. For more details on the Regge–Wheeler lattice theory of gravity see the
work in [14], and further references therein. The use of an explicit momentum cutoff leads
to some subtle differences in the treatment of ultraviolet divergences, some of which are
ordinarily sanctioned to be zero by the formal rules of dimensional regularization, such as

∫ ddk
(2 π)d

1
kn = 0 . (117)

These nevertheless can be non-zero (and possibly highly divergent) when evaluated explic-
itly with both an infrared (µ) and an ultraviolet (Λ) cutoff [14,18].

In quantum gravity another subtlety arises from the fact that one can easily reabsorb
some troublesome ultraviolet divergences by a simple rescaling of the metric [14]. Consider
the metric field redefinition

gµν = ω g′µν (118)

with ω a constant. For pure gravity with a cosmological constant term proportional to λ,
one writes for the Lagrangean

L = − 1
16πG

√
g R + λ

√
g . (119)

Under a rescaling of the metric as in Equation (118), one obtains

L = − 1
16πG

ωd/2−1
√

g′ R′ + λ ωd/2
√

g′ , (120)

which just amounts to a rescaling of Newton’s constant and the cosmological constant

G → ω−d/2+1G , λ→ λ ωd/2 , (121)

leaving the dimensionless combination Gdλd−2 unchanged. As a consequence, it seems
physically meaningless to discuss separately the renormalization properties of G and λ, as
they are both individually gauge-dependent in the sense just illustrated. To some extent
these arguments should contribute to clarifying why in the following it will be sufficient
to focus on the renormalization properties of Newton’s constant G. In addition, one issue
we have not touched here at all is the role played by the gravitational functional measure
(normally taken to be the De Witt one, see [14] and references therein) in canceling spurious
divergences. The issue is a rather subtle one, whose importance was already emphasized
in the earlier discussion of the nonlinear sigma model, where the role of the functional
measure in canceling spurious tadpole divergences was pointed out in Equation (29). In the
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gravity case, the important role of the gravitational functional measure contribution in
canceling spurious ultraviolet divergences can be seen from the following simple argument
given in [14]. Consider the following covariant (DeWitt) gravitational measure,

∫ [
d gµν

]
≡
∫

∏
x
[g(x)]σ ∏

µ≥ν

d gµν(x) (122)

with σ a real (positive or negative) parameter. Then, one has

∏
x
[g(x)]σ ∏

µ≥ν

d gµν(x) =

(
∏

x
∏
µ≥ν

d gµν(x)

)
exp

{
σ δd(0)

∫
ddx log g(x)

}
. (123)

Given a proper lattice regularization (such as the Regge–Wheeler one), with ultraviolet
cut-off Λ, one has δd(0) = (Λ/π)d. The above argument then shows that a proper choice
of functional measure can play an essential role in canceling spurious Λd divergences in d
spacetime dimensions.

From the integral in Equation (116), one then obtains the general nonlinear gap
equation for the parameter m in d dimensions, which reads

G β0 Sd

[
d + 2

2 (d + 4)
Λd+4

m4 2F1(1,
d
2
+ 2,

d
2
+ 3,−Λ2

m2 ) −
Λd+2

m2 (m2 + Λ2)

]
= 1 . (124)

Here, G is Newton’s constant and β0 an overall numerical coefficient resulting from Lorentz
index traces, diagram multiplicities, and individual diagram symmetry factors. In the
above equation G is dimensionful, with mass dimension d− 2, G ∼ Λ2−d. The next step
is to discuss the solution to this nonlinear equation in various dimensions, both to draw
parallels to the nonlinear sigma model and gauge theory cases outlined earlier, and to
explore the sensitivity of the results to the dimension d.

It will be useful here to digress very briefly about the physics of quantum gravity in
d < 4. In general it is possible at least in principle to define quantum gravity in any d > 2.
There are d(d + 1)/2 independent components of the metric in d dimensions, and the same
number of algebraically independent components of the Ricci tensor appearing in the field
equations. The contracted Bianchi identities reduce the count by d, and so does general
coordinate invariance, leaving d(d− 3)/2 physical gravitational degrees of freedom in
d dimensions. At the same time, four spacetime dimensions is known to be the lowest
dimension for which Ricci flatness does not imply the vanishing of the gravitational field,
Rµνλσ = 0, and therefore the first dimension to allow for gravitational waves and their
quantum counterparts, gravitons. Note that in a general dimension d, the position space
tree-level graviton propagator obtained from the linearized theory, given earlier in k-space
in Equation (108), is obtained by Fourier transform. It is proportional to the integral

∫
ddk

1
k2 ei k·x =

Γ
(

d−2
2

)

4 πd/2 (x2)d/2−1 , (125)

while the static gravitational potential involves just the spatial Fourier transform

V(r) ∝
∫

dd−1k
eik·x

k2 ∼ 1
rd−3 . (126)

In two spacetime dimensions there are no genuine gravitational (transverse-traceless)
degrees of freedom, the Einstein–Hilbert action gives a topological invariant proportional
to the Euler characteristic of the manifold. The only surviving degree of freedom is
the conformal mode, which in two dimensions enters the gravitational action as a total
derivative. In the absence of matter, the only residual interaction is then generated by
the non-local Fadeev–Popov determinant associated with the choice of conformal gauge.
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Nevertheless, it is possible to consider, as was done some time ago in [30–32] and later
in [87–92], two dimensions as the ε ≡ d − 2 → 0 limit for gravity formulated in 2 + ε
dimensions, with ε considered a small quantity. This followed a similar procedure, the
dimensional expansion, pioneered earlier by Wilson for scalar fields [1–3]. It was also
realized early on that in the case of gravity this limit is rather subtle, due to confluent
kinematic singularities as d→ 2.

In two spacetime dimensions (d = 2), the gravitational Hartree–Fock gap equation of
Equation (124) reduces to

G β0

2π

[
2 log

(
Λ
m

)
− 1

2

]
= 1 . (127)

A spurious quadratic divergence in the integral given above needs to be subtracted, in
order to achieve consistency with the known, more recent perturbative result for gravity in
2 + ε dimensions given in [88–92], discussed in greater detail further below. The critical
point (or ultraviolet fixed point) in this case is located at the origin

Gc = 0 . (128)

The solution to the above d = 2 gap equation then has the form

m = Λ e−
1
4 e−

π
β0 G = Λ e−

1
4 e−

3π
25 G , (129)

where at the end the correct expression β0 = 25/3 for pure gravity in d = 2 derived
in [92] has been inserted. Here G ≡ G(Λ) is the bare coupling at the cutoff scale Λ. The
above results then implies, within the current approximation, that the dynamically induced

gravitational mass gap m is by a factor e−
1
4 = 0.7788 smaller than the gravitational scaling

parameter Λ exp(−π/β0 G).
The above result then leads to some rather immediate consequences, again very much

in line with the previous discussion for scalar fields in Section 5, and for gauge theories
in Section 6. Thus, the renormalization group running of the gravitational coupling G(µ)
follows again from the requirement that the mass gap parameter m be scale-independent,

µ
d m
d µ

= 0 = µ
d

d µ

(
µ e−

1
4 e
− π

β0 G(µ)

)
. (130)

This then gives the expected asymptotic freedom-like running of the gravitational coupling
G(µ) in the vicinity of the d = 2 ultraviolet fixed point located at G = 0, namely

G(µ) =
π

β0 [ log(µ/m)− 1
4 ]

. (131)

One notes here that the quantity m plays a role quite analogous to the ΛM̄S of QCD and,
more generally, SU(N) gauge theories, as discussed here earlier in Section 6. Indeed, the
quantum gravity result in d = 2 looks rather similar to the result for the two-dimensional
nonlinear sigma model (for N > 2) and to the gauge theory result in d = 4, in the sense that
all three models have a mass gap that vanishes exponentially at zero coupling. This last
fact is of course already well known from the simplest application of perturbation theory.
Nevertheless, the gravity result in two dimensions can be regarded as of very limited
physical interest, given that the Einstein–Hilbert action is just a topological invariant in
d = 2. It is also worthy of note here that, overall, the main results follow from the structure
of the one loop integral—and from the sign of β0—but are otherwise universal, in the sense
that a specific value for the magnitude of β0 does not play much of a role in the scaling
laws, i.e., quite generally the mass gap has an essential singularity at G = 0 in d = 2.
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Before proceeding to discuss the Hartree–Fock results in higher dimensions, it will
be useful here to recall the main results of the 2 + ε expansion for gravity [88–92]. To first
order in G one finds

µ
∂

∂µ
G ≡ β(G) = ε G − β0 G2 + O(G3, G2ε) (132)

with β0 = 2
3 · (25− c) where c is the central charge for the massless matter fields. Later the

original one-loop calculation was laboriously extended to two loops [92], with the result

µ
∂

∂µ
G ≡ β(G) = ε G − 2

3
(25− c) G2 − 20

3
(25− c) G3 + . . . , (133)

again for c massless real scalar fields minimally coupled to gravity. At the nontrivial
ultraviolet fixed point, for which β(Gc) = 0,

Gc =
3

2 (25− c)
ε − 45

2(25− c)2 ε2 + . . . (134)

the theory becomes scale invariant by definition. In statistical field theory language, the
fixed point corresponds to a phase transition where the correlation length ξ = 1/m diverges
in units of the cutoff. If one defines the correlation length exponent ν in the usual way by

β′(Gc) = −1/ν (135)

then one finds the expansion in ε

ν−1 = ε +
15

25− c
ε2 + . . . (136)

This then gives, for pure gravity without matter (c = 0) in four dimensions (d = 4), to
lowest order ν−1 = 2, and ν−1 ≈ 4.4 at the next order. One can integrate the β-function
equation in Equation (133) to obtain the renormalization group invariant quantity

m = ξ−1 = const. Λ exp
(
−
∫ G dG′

β(G′)

)
(137)

which is identified with the mass gap m, or equivalently the inverse correlation length ξ.
The multiplicative constant in front of the last expression on the right hand side arises as an
integration constant of the renormalization group equation, and thus cannot be determined
from perturbation theory in G alone. From Equation (133), in the 2 + ε expansion the
running of Newton’s G in the strong coupling (antiscreening) phase with ε > 0 and G > Gc
is given by

G(µ) ' Gc

[
1 + c0

(
m2

µ2

)(d−2)/2

+ . . .

]
(138)

where the dots indicate higher order radiative corrections. Again, it is noteworthy here
that the quantum amplitude c0 arises as an integration constant of the renormalization
group equations, and thus (unlike the Hartree–Fock result) remains undetermined in
perturbation theory.

Next, consider the case of quantum gravity in a spacetime dimension d = 3. Even in
three dimensions it is known that there are no genuine gravitational (transverse-traceless)
degrees of freedom, with the only dynamical surviving remnant being the conformal
mode [93]. In d = 3 the gravitational gap equation of Equation (124) for small m reduces to

G β0

2π2

[
2 Λ − 5 π

4
m − 3m2

Λ

]
= 1 . (139)
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Again, a spurious cubic divergence in the integral needs to be subtracted, as discussed
earlier, in order to achieve consistency with the known perturbative results for gravity in
2 + ε dimensions. The solution to the above equation then has the form

m = Λ
8

5 Gc
(G− Gc) + O

(
(G− Gc)

2
)

. (140)

What is new here is the appearance of a critical point in G, located at

Gc =
π2

β0 Λ
, (141)

with a mass gap exponent (the power on the r.h.s. of Equation (140)) ν = 1. This last result
is seen here to be universal, in the sense that it does not depend on the magnitude of β0, Λ
or Gc. One can roughly estimate the magnitude of β0 in d = 3 by interpolating between
the value in d = 2 and the value in d = 4 given later below. By this procedure one obtains
approximately β0 ' (25 + 47)/6 = 12 and thus Gc ' 0.822/Λ, not too far off from the
d = 3 lattice gravity value Gc ≈ 0.505/Λ given some time ago in [94].

The relationship between m and G(Λ) in Equation (140) can then be inverted, to
produce the general renormalization group running of G(µ). The latter follows, as before,
from the requirement that the mass gap m be scale-independent µ d m

d µ = 0. One then finds
for G(µ) in the vicinity of the d = 3 gravity nontrivial ultraviolet fixed point

G(µ) = Gc

[
1 +

5 π

8
m
µ

+ O
((

m
µ

)2
)]

. (142)

Note again that the coefficient β0 does not affect the scaling directly; it only enters indirectly
through the value of Gc, which in any case is affected by the choice of the ultraviolet cutoff
Λ. More importantly, the ultraviolet cut-off Λ has disappeared entirely from the expression
of Equation (142) for G(µ) (it is hidden in the physical parameter m, and in Gc). The main
result here follows again, quite generally, from the structure of the one loop integral—and
from the sign of β0—but is otherwise universal, in the sense that a specific value for the
magnitude of β0 does not play much of a role in the scaling laws: the mass gap in d = 3
vanishes linearly at Gc within the Hartree–Fock approximation. This last result, which
implies a mass gap exponent ν = 1, can be compared to the numerical lattice gravity
result in d = 3 of [94] which gave ν = 0.59(2), as well as to the exact solution of the lattice
Wheeler–DeWitt equation in 2 + 1 dimension, which gives ν = 2/3 [95–97]. Note again
here the similarity with the corresponding results for the d = 3 nonlinear sigma model,
and for gauge theories in d = 5 discussed earlier.

Next we come to the physical case of quantum gravity in four spacetime dimensions
(d = 4). The gravitational gap equation of Equation (124) for small m reduces to

G β0

8π2

[
Λ2 + 1

2 m2 − 3 m2 log
(

Λ
m

) ]
= 1 . (143)

Again, a spurious quartic divergence in the integral needs to be subtracted in order to
achieve consistency with the known perturbative results for gravity in 2 + ε dimensions; as
mentioned previously, in the 2 + ε expansion the latter is removed by a suitable rescaling
of the metric. Furthermore, one would need to consider here the role played by the
gravitational functional measure (normally taken to be the De Witt one, see the work in [14]
and references therein) in canceling spurious δ(0) ' (Λ/π)d tadpole divergences, as in
Equation (123). The measure’s effect was already emphasized earlier in the discussion of
the nonlinear sigma model, where its role in canceling spurious tadpole divergences was
pointed out in the discussion surrounding Equation (29).
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The solution to the above d = 4 gap equation then has the form

m = Λ
√

2
3 Gc
|G− Gc|

1
2

[
− log

∣∣∣∣
G− Gc

Gc

∣∣∣∣
]− 1

2
+ O(G− Gc) . (144)

Note the appearance of a new ingredient, a logarithmic correction similar to the nonlinear
sigma model result in d = 4, Equation (77). Here again G ≡ G(Λ) is the bare coupling at
the cut-off scale Λ. In four dimensions one finds that the critical point in Newton’s G is
located at

Gc =
8 π2

β0 Λ2 , (145)

and for the mass gap one now has an exponent ν = 1/2. This last result is again universal,
in the sense that it does not depend on the magnitude of β0, nor on the value of Gc.

The above d = 4 gravity results share some significant similarity with the correspond-
ing results for the d = 4 nonlinear sigma model, and for gauge theories in d = 6. Recall
that the main result here follows generally from the structure of the one loop integral—and
from the sign of β0—but is otherwise universal, in the sense that a specific value for the
magnitude of β0 does not play any role in the scaling laws: the mass gap in d = 4 goes
to zero with a square root singularity (up to log corrections) at Gc, at least within the
Hartree–Fock approximation.

For gravity one can use again the Nielsen–Hughes formula [69–71] to provide an
estimate for the numerical coefficient β0 in d = 4. The one-loop β-function contribution
coefficient arising from a particle of spin s running around the loop is

β = −(−1)2s [(2s)2 − 1
3 ] . (146)

For spin s = 2 the above formula then gives for pure gravity (no matter or radiation fields)
in four dimensions β0 = 47/3, quite a bit larger than the gauge theory case (and with an
overall negative sign in the beta function, correctly taken into account previously). This
then gives from Equation (146) Gc = 5.035/Λ2, compared to the lattice gravity value in
d = 4 Gc = 1.069/Λ2 given in [98]. A significant quantitative difference between the two
results is not surprising, given the entirely different nature of the ultraviolet cutoff in the
two cases (momentum cutoff vs. spacetime lattice cut-off).

The relationship between m and G(Λ) in Equation (144) can be inverted to give the
renormalization group running of Newton’s G(µ), as was done earlier, and it follows from
the requirement that the mass gap m be scale independent, µ d m

d µ = 0. One then finds for
G(µ) in the vicinity of the d = 4 gravity nontrivial renormalization group ultraviolet fixed
point the explicit result

G(µ) = Gc

[
1 − 3

2

(
m
µ

)2
log
(

3 m2

2 µ2

)
+ O

((
m
µ

)4
)]

. (147)

In principle, there are here two solutions for G > Gc and G < Gc, which differ by the sign of
the quantum correction. Here, we have chosen, in accordance with the results of the lattice
calculations of [98], the sign that corresponds to gravitational antiscreening, as the weak
coupling gravitational screening phase is nonperturbatively unstable. It is noteworthy here
that the coefficient β0 does not enter renormalization group running directly, it only enters
indirectly through the value of m and Gc, and the latter is in any case affected by the choice
of ultraviolet cutoff. Physically the result of Equation (147) implies that for d = 4 and in real
space the quantum correction to Newton’s constant initially grows quadratically (up to the
slowly varying log correction) with distance in the strong coupling phase, δG(r) ∼ (r/ξ)2,
with ξ = 1/m. Perhaps one of the most interesting aspects of the above result is the value
of the universal quantum amplitude c0 = 3/2 of the m2/µ2 correction, as well as the weak
log correction appearing in four dimensions. Note that the power of m/µ appearing in
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the formula for G(µ) is given generally (by definition) by 1/ν, so that here one has in the
Hartree–Fock approximation a power ν = 1/2. Note that the quantity Gc (the fixed point
value for Newton’s constant) can be entirely eliminated if one compares the strength of the
gravitational coupling on two different momentum scales µ1 and µ2,

G(µ1)

G(µ2)
=

1 − 3
2

(
m
µ1

)2
log
(

3 m2

2 µ2
2

)
+ · · ·

1 − 3
2

(
m
µ2

)2
log
(

3 m2

2 µ2
2

)
+ · · ·

, (148)

again in the vicinity of the ultraviolet fixed point, and thus up to higher order corrections
in m/µ.

Next, consider the universal scaling exponent ν, which is ν = 1
2 for the Hartree–

Fock approximation in four dimensions, as can be seen from Equation (144). As a direct
consequence, one finds a power of 1/ν = 2 in the momentum dependence of G(µ) in
Equation (147). The value of ν can then be compared to the lattice gravity estimate, where
one finds in four dimensions ν ' 1/3, which then implies a larger power of 3 for the
running of G(µ) (as given below). Indeed it is useful at this stage to compare the Hartree–
Fock result for G(µ) to the corresponding result in the Regge–Wheeler lattice theory of
gravity [98], where one finds for the running of Newton’s G

GLatt(µ) = Gc

[
1 + c0

(
m
µ

)3
+ O

((
m
µ

)6
)]

. (149)

One notes that the structure of the running is similar to the Hartree–Fock result, never-
theless the powers are different (two versus three) and there is some difference in the
numerical value of the amplitude as well. The amplitude in the lattice case, c0 ' 16.0 [98],
is thus somewhat larger (by a factor of five) than the Hartree–Fock value c0 = 3/2 given
above. A recent comparison of the running of G with current cosmological observations,
to be discussed later here, leads to useful observational constraints on the amplitude c0,
suggesting a value c0 ≈ 2.29 and thus smaller than the current lattice estimate, and more in
line with the above Hartree–Fock result.

It pays to look briefly at a few cases of dimension greater than four. In five spacetime
dimensions (d = 5) the gravitational gap equation of Equation (124) for small m reduces to

G β0

12π3

[
2
3

Λ3 − 3 m2 Λ
]

= 1 , (150)

again with the spurious leading Λ5 divergence subtracted in order to achieve consistency
with the known perturbative result for gravity in 2 + ε dimensions. The solution to the
above equation then has the form

m = Λ
√

2
3 Gc

√
G− Gc + O(G− Gc) . (151)

The critical point in Newton’s G is now located at

Gc =
18 π3

β0 Λ3 . (152)

For the mass gap exponent one has again the universal value ν = 1/2, independent of
β0 or Gc. As before, the above relation between m and bare G can be inverted to give the
renormalization group running of G(µ), from µ d m

d µ = 0. This then gives for G(µ) in the
vicinity of the d = 5 gravity ultraviolet fixed point
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G(µ) = Gc

[
1 +

9
2

(
m
µ

)2
+ O

((
m
µ

)4
)]

, (153)

with, in this case, no log correction. As expected the power in the running is 1/ν = 2.
In turn the result of Equation (153) implies that here in real space the quantum correction
to Newton’s constant initially grows quadratically with distance in the strong coupling
phase, δG(r) ∼ (r/ξ)2, with ξ = 1/m. Here, the quantum amplitude coefficient in d = 5 is
c0 = 9/2 = 4.5 in the Hartree–Fock approximation, which is about one-fourth the value
found on the lattice in d = 4, c0 ' 16.0, see in [98,99] and references therein. We will return
to this point later on.

Overall, the gravity results here share some similarity with the corresponding results
for the d > 4 nonlinear sigma model, and for gauge theories in d > 6. They also suggest
that the upper critical dimension for gravity is dc = 4, as in the case of scalar (spin zero)
field theories. Moreover, if one denotes by dH the fractal (Hausdorff) dimension of Wiener
paths contributing to the Feynman path integral, then in the Hartree–Fock approximation
an upper critical dimension of four would imply dH = 2 if the arguments in [74–76] are
followed here as well. In comparison, for a Gaussian scalar field (a free particle with no spin)
it has been known that dH = 2, as for regular Brownian motion [77–79]. Indeed, a large-d
dimensional expansion was pursued for lattice gravity in [100,101]. Nevertheless, one finds
that in this limit the lowest order results are not particularly illuminating regarding to what
might happen in four dimensions. We should mention that a similar large-d expansions
were pursued for scalar field theories in [102–104] and for gauge theories in [73], and in
both cases the theory was formulated on the lattice. Some additional papers that also
looked at quantum gravity in the continuum from the large d point of view can be found
in [105,106].

It is possible to derive a general analytical expression for the mass gap m in general
dimensions. In d dimensions, with d > 4, one finds from Equation (124) for the critical point

Gc =
(d− 2) 2d−2 π

d
2 Γ( d

2 )

β0
Λ2−d , (154)

and for the mass gap

m = Λ

√
2(d− 4)

3(d− 2) Gc

√
G− Gc + O(G− Gc) . (155)

This then leads in d > 4 to the renormalization group running of Newton’s constant

G(µ) = Gc

[
1 +

3(d− 2)
2(d− 4)

(
m
µ

)2
+ O

((
m
µ

)4
) ]

. (156)

The dimensionless quantum amplitude is given here in general by c0 = 3(d− 2)/2(d− 4)
for d > 4, and the pole in d = 4 is then seen as the cause of the log correction seen earlier
in Equation (144). Conversely, for d < 4 the general d result from Equation (124) is that
ν = 1/(d− 2). The running of Newton’s constant for this case is then given by

G(µ) = Gc

[
1 − (d2 − 4)π csc(πd/2)

8

(
m
µ

)d−2
+ O

((
m
µ

)2(d−2)
)]

. (157)

The previous result of Equation (156) then implies that for d > 4 in real space the
quantum correction to Newton’s constant always grows quadratically with distance as
δG(r) ∼ (r/ξ)2, with ξ = 1/m (in agreement with the results of Equations (147) and (153)),
while for d < 4 in real space the same quantum correction grows instead more slowly
as δG(r) ∼ (r/ξ)d−2 (in agreement with the earlier results of Equations (142) and (131)).
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Figure 18 gives a visual comparison of the Regge–Wheeler lattice gravity vs. Hartree–Fock
results for the universal exponent ν as a function of dimension. It is noteworthy that the
qualitative behavior is similar, although there are some notable differences, and perhaps,
more importantly, the value of ν in d = 4.
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Figure 18: Universal correlation length scaling exponent ν as a function of spacetime dimension d.
Shown are the 2+ǫ expansion result to one (lower curve) and two (upper curve) loops [95], the value
in 2 + 1 dimensions obtained from the exact solution of the Wheeler-DeWitt equation [98, 100],
the numerical lattice result in four spacetime dimensions [101], the large d result ν−1 ≃ d− 1 [103],
and the Hartree-Fock approximation results discussed in the text.
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Figure 18. Universal correlation length scaling exponent ν as a function of spacetime dimension d.
Shown are the 2+ ε expansion result to one (lower curve) and two (upper curve) loops [92], the value
in 2 + 1 dimensions obtained from the exact solution of the Wheeler–DeWitt equation [95,97], the
numerical lattice result in four spacetime dimensions [98], the large d result ν−1 ' d− 1 [100], and
the Hartree–Fock approximation results discussed in the text.

The previous discussion left largely open the question of what the physical interpreta-
tion of the (self-consistently determined) mass parameter m is. Recall that it describes a
quantity which is zero to all orders in perturbation theory, nevertheless it is nonzero when
an infinite number of diagrams are re-summed, as in the nonlinear gap equation of Equa-
tion (124). Define the correlation length ξ = 1/m, which on account of its definition as the
inverse of the mass gap and its relationship, via the Lehmann representation of invariant
two-point functions, describes the large distance exponential decay of n-point functions.
The discussion of the previous sections on the nonlinear sigma model in Section 5, and
on gauge theories in Section 6 shows that the correlation length ξ has a deep relationship
with the vacuum condensates of quantum fields. For a scalar field in the ordered phase in
four dimensions one has the non-vanishing vacuum condensate (or magnetization for a
spin system)

〈 φ 〉 ' 1
ξ

. (158)

On the other hand, for non-Abelian gauge theories in four dimensions one has the corre-
sponding result, describing a non-vanishing vacuum expectation value for the chromo-
electric and chromo-magnetic fields [80–83]:

〈 Fa
µν Fa µν 〉 ' 1

ξ4 . (159)

In QCD, this last result can be obtained from purely dimensional arguments, once the
existence of a fundamental correlation length ξ (which for QCD is given by the inverse mass
of the lowest spin zero glueball) is established. Note that the latter result is completely
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gauge invariant, in spite of the appearance of the quantity ξ, which, by virtue of the
Hartree–Fock gap equation and its dependence on the gauge-fixed gluon propagator, could
have inherited some gauge dependence. The power of ξ in the two cases above is thus
determined largely by the canonical dimension of the primary fields φ or Aa

µ. The close
analogy between non-Abelian gauge theories and gravity then suggests that a similar
identification should be true in gravity for the Ricci scalar,

〈 gµν Rµν 〉 ' 6
ξ2 , (160)

as argued in [99,107,108], and reference therein. Via the classical (or quantum Heisenberg)
vacuum field equations R = 4λ one can then relate the above quantities to the observed
(scaled) cosmological constant λobs (up to a numerical constant of proportionality, expected
to be of order unity). One obtains

1
3 λobs '

1
ξ2 . (161)

In this picture, the latter quantity is regarded as the quantum gravitational condensate, a
measure of the vacuum energy, and thus of the intrinsic curvature of the vacuum [107,108].
While it is zero to all orders in perturbation theory, it is eventually nonzero as a result of
nonperturbative graviton condensation, in close analogy to what happens in non-Abelian
gauge theories.

The above considerations can help in providing a quantitative handle on the physical
magnitude of the new genuinely nonperturbative scale ξ. From the observed value of the
cosmological constant (see, for example, the recent 2018 Planck satellite data [109]) one
obtains a rough estimate for the absolute magnitude of the scale ξ,

ξ '
√

3/λobs ≈ 5320 Mpc . (162)

Irrespective of the specific value of ξ, this would indicate that generally the recovery of
classical General Relativity (GR) results takes place at distances much smaller than the
correlation length ξ so that coherent quantum gravity effects become negligible on distance
scales r � ξ (The actual value for λobs, and therefore ξ, relies on a multitude of current
cosmological observations, which nowadays is usually analyzed in the framework of the
standard ΛCDM model. Included in the usual assumptions is the fact that Newton’s G
does not run with scale. If such an assumption were to be relaxed, it could affect a number
of cosmological parameters, including λobs, whose value could then perhaps change
significantly. In the following, the estimate of Equation (162) is used as a sensible starting
point). In particular, the static Newtonian potential is expected to acquire a tiny quantum
correction from the running of G (see Equations (147) and (149)), V(r) ∼ −G(r)/r.

Figure 19 provides a direct comparison between the continuum analytical self-consistent
Hartee–Fock quantum gravity result for G(q) in Equation (147),

GHF(q) = Gc

[
1 − 3

2 q2 ξ2 log
(

3
2 q2 ξ2

)
+ · · ·

]
, (163)

and the Regge–Wheeler lattice gravity running of G(q) of Equation (149) as given in [98],

GLatt(q) = Gc

[
1 + c0

(
1

q ξ

)3
+ O

((
1

q ξ

)6
)]

. (164)

Figure 20 later provides a direct comparison between the two results, but in real space.
In generating this last graph, we have simply substituted µ→ 1/r. This was done in order
to avoid at this early stage the complexities of having to deal, in a general coordinate space,
with a renormalization group running Newton’s G(�) via the covariant substitution



Symmetry 2021, 13, 120 41 of 50

− q2 → � , G(q) → G(�) (165)

with � ≡ gµν∇µ∇ν, as discussed in detail elsewhere, see for example [110,111].

Figure 19: Comparison of Newton’s running G(q), as given in Eqs. (163) (the Hartree-Fock result)
and (164) (the Regge-Wheeler lattice result). The nonperturbative reference scale ξ is directly to
the gravitational vacuum condensate, as in Eqs. (160) and (161).

Figure 20: Comparison of the gravitational running coupling G(r) versus r, obtained from G(q)
in Eqs. (163) (the Hartree-Fock result) and (164) (the Regge-Wheeler lattice result) by setting
q ∼ 1/r. Note that the approximate Hartree-Fock analytical result of Eq. (163) (red line) initially
rises more rapidly for small r. The nonperturbative scale ξ used here is related to the gravitational
vacuum condensate via Eqs. (160) and (161).
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Figure 19. Comparison of Newton’s running G(q), as given in Equations (163) (the Hartree–Fock
result) and (164) (the Regge–Wheeler lattice result). The nonperturbative reference scale ξ is directly
to the gravitational vacuum condensate, as in Equations (160) and (161).

Figure 19: Comparison of Newton’s running G(q), as given in Eqs. (163) (the Hartree-Fock result)
and (164) (the Regge-Wheeler lattice result). The nonperturbative reference scale ξ is directly to
the gravitational vacuum condensate, as in Eqs. (160) and (161).

Figure 20: Comparison of the gravitational running coupling G(r) versus r, obtained from G(q)
in Eqs. (163) (the Hartree-Fock result) and (164) (the Regge-Wheeler lattice result) by setting
q ∼ 1/r. Note that the approximate Hartree-Fock analytical result of Eq. (163) (red line) initially
rises more rapidly for small r. The nonperturbative scale ξ used here is related to the gravitational
vacuum condensate via Eqs. (160) and (161).
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Figure 20. Comparison of the gravitational running coupling G(r) versus r, obtained from G(q) in
Equations (163) (the Hartree–Fock result) and (164) (the Regge–Wheeler lattice result) by setting
q ∼ 1/r. Note that the approximate Hartree–Fock analytical result of Equation (163) (red line) initially
rises more rapidly for small r. The nonperturbative scale ξ used here is related to the gravitational
vacuum condensate via Equations (160) and (161).
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To conclude this section, one can raise the legitimate concern of how these results
are changed by quantum fluctuations of various matter fields coupled to gravity (scalars,
fermions, vector bosons, spin-3/2 fields, etc.). These would enter in the vacuum polar-
ization loop diagrams containing these fields. Their contribution will appear through
many additional loops, and will therefore affect the value of the coefficient β0 appearing
in Equation (124). Nevertheless, one would expect that significant changes to the result
of Equations (147) will arise from matter fields which are light enough to compete with
gravity, and whose Compton wavelength is therefore comparable to the scale of the gravita-
tional vacuum condensate, or equivalently the observed cosmological constant, so that for
these fields m−1 ∼ 1/

√
λ/3. At present the number of candidate fields that could fall into

this category is rather limited, with the photon and a near-massless gravitino belonging
to this category. Note that in the 2 + ε perturbative expansion for quantum gravity, one
encounters factors of 25− c in the renormalization groups β function, where c is the central
charge associated with the (massless) matter fields [91,92]. In four dimensions, similar
factors involve 48− c [69,70], which would again lend support to the argument that such
effects should be rather small in four dimensions. This would suggest again that matter
loop and radiation corrections are indeed rather small, unless one has very many massless
matter fields. Nevertheless, at first one might worry that this would ultimately affect for
example the value of ν, and thus the power in the running of Newton’s constant G, as in
Equation (147). However, this is not possible, at least within the lowest-order Hartree–Fock
approximation discussed here. The reason here is the fact that, remarkably, both the power
and the amplitude of the quantum correction to G(µ) in Equations (147), (156), and (163)
do not depend on the amplitude β0. The latter only enters in the (non-universal) value of
Gc.

8. A Sample Application to Cosmology

The results presented so far show how the Hartree–Fock approximation applied to
quantum gravity implies a renormalization group running of Newton’s constant, given
explicitly in Equation (163). The reference scale ξ appearing in the above expression
is given in Equations (160) and (161), and is seen here as related to the current value
of the gravitational vacuum condensate, or equivalently to the observed cosmological
constant. In the previous section a comparison of the Hartree–Fock result was made to
the numerical Regge–Wheeler lattice result of Equation (164), which is rather similar in
form but nevertheless has both a larger power and slightly larger amplitude. In either case,
the corrections to a classical (scale-independent) Newton’s constant start to appear only at
very large, cosmological distance, on account of the phenomenologically huge value for ξ
in Equation (162).

On cosmological scales, a running of G leads to a multitude of physically observable
effects, ranging from modifications to early cosmological evolution, the primordial growth
of matter perturbations, and the cosmic background radiation (CMB). We chose here to
focus on the latter for two main reasons. The first one is the sensitivity of the CMB data
to extremely large scales, clearly comparable in magnitude to the value for ξ given in
Equation (162). The second rather obvious reason is the availability of very accurate recent
satellite data presented in the Planck15 and Planck18 surveys [109].

Here, we will focus almost exclusively on one well-studied physical observable, the
matter power spectrum Pm(k), for which detailed graphs have been produced by the afore-
mentioned Planck collaboration. The matter power spectrum relates to the cosmologically
observed matter density correlation

Gρ(r; t, t′) ≡
〈

δm(x, t) δm(y, t′)
〉
=

1
V

∫

V
d3z δm(x + z, t) δm(y + z, t) , (166)
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where r = |x− y|, and

δm(x, t) ≡ δρ(x, t)
ρ̄(t)

=
ρ(x, t)− ρ̄(t)

ρ̄(t)
. (167)

is the matter density contrast, which measures the fractional overdensity of matter density
ρ above an average background density ρ̄. In the literature, this correlation is more often
studied in wavenumber-space, Gρ(k; t, t′) ≡ 〈 δ(k, t) δ(−k, t′) 〉, via a Fourier transform.
It is also common to bring these measurements to the same time, say t0, so that one can
compare density fluctuations of different scales as they are measured and appear today.
The resultant object Pm(k) is referred to as the matter power spectrum,

Pm(k) ≡ (2π)3〈 |δ(k, t0)|2 〉 = (2π)3F(t0)
2〈 |∆(k, t0)|2 〉 , (168)

where δ(k, t) ≡ F(t)∆(k, t0). The factor F(t) then simply follows the standard General
Relativity evolution formulas, as governed by the Friedmann–Robertson–Walker (FRW)
metric. As a result, Pm(k) can be related to, and extracted from, the real-space measurements
via the inverse transform

Gρ(r; t, t′) =
∫ d3k

(2π)3 Gρ(k; t, t′) e−ik·(x−y) (169)

=
1

2π2
F(t)F(t′)

F(t0)2

∫ ∞

0
dk k2 Pm(k)

sin (kr)
kr

. (170)

It is common to parameterize these correlators by a so-called scale-invariant spectrum,
which includes an amplitude and a scaling index, conventionally written as

Gρ(r; t0, t0) =
( r0

r

)γ
, (171)

or equivalently

Pm(k) =
a0

ks , (172)

with the powers related by s = (d− 1)− γ = 3− γ via the Fourier transform. Nevertheless,
such simple parametrizations generally only apply to specific regions in wave-vector space
(specifically the galaxy regime at larger k, or the primordial CMB regime at smaller k), in
spite of the fact that different regimes are known to be related to each other by standard
classical cosmological evolution, via the so-called transfer function.

In the matter-dominated era, such as the one where galaxies and clusters are formed,
the energy momentum tensor follows a perfect pressureless fluid to first approximation.
Therefore, the trace equation reads

R− 4λ = −8πG T . (173)

(For any perfect fluid the trace gives T = 3p− ρ, and thus T ' −ρ for a non-relativistic
fluid.) As λ is a constant, the curvature and matter variations, and thus their correlations,
are directly related

〈 δR(x) δR(y) 〉 = (8πG)2 〈 δρ(x) δρ(y) 〉 . (174)

A number of subtleties arise here, such as the fact that to extend beyond the linear matter
dominated regime, the trace equation alone becomes insufficient (as the trace of the energy
momentum tensor for radiation vanishes), and the full tensor field equations have to be
used. Furthermore, in a real universe with multiple fluid components, interactions and
transient behaviors have to be taken into account, which are governed by coupled non-
linear Boltzmann equations. However, these classical procedures have been fully worked
out in standard cosmology texts [112,113], as well as in currently popular sophisticated
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computer codes, such as CAMB and MGCAMB [114–116], CLASS and MGCLASS [117,118],
ISiTGR [119–121] and COSMOMC [121] (for a detailed comparison of features in various
codes see in [122]).

Quite generally, the matter power spectrum can be decomposed as two parts—an
initial condition known as the primordial spectrum Ro

k, and an interpolating function
between the domains known as a transfer function T (k) [112]. As a result, the full matter
power spectrum Pm(k) beyond the galaxy (larger k) domain will take the form

Pm(k) = C0 (Ro
k)

2k4 [T (κ)]2 , (175)

where C0 ≡ 4(2π)2 C2(ΩΛ/ΩM)/25 Ω2
M H4

0 is a combined constant of cosmological param-
eters, and the k4 factor is purely for convenience. The transfer function is usually written in
terms of κ ≡

√
2k/keq, a scaled dimensionless wavenumber, with keq being the wavenum-

ber at matter–radiation equality. With this decomposition, the transfer function is a fully
classical solution of the set of Friedmann and Boltzmann equations, capturing the nonlinear
dynamics. This leaves the initial primordial function, which is usually parameterized as a
scale-invariant spectrum

(R0
k)

2 = N2 1
k3

(
k

kR

)ns−1
, (176)

involving an overall amplitude N2 and a spectral index ns. kR is commonly referred
to as the “pivot scale”, a reference scale conventionally taken to be kR = 0.05 Mpc−1 in
cosmology. While the transfer function T (κ)— the solution to the coupled and nonlin-
ear set of Friedmann, Boltzmann, and continuity differential equations—is difficult to
obtain as an explicit function, it is nevertheless in principle fully determined from classical
dynamics. Moreover, assuming standard ΛCDM cosmology dynamics and evolution,
a semi-analytical interpolating formula for T (κ) [112] is known. As a result, if the ini-
tial spectrum Ro

k, or more specifically the parameters N and ns, are fixed, then Pm(k) is
fully determined.

Here, in this section, the main concern will be the inclusion of the effects of a run-
ning of Newton’s G, as given in Equations (163), (164), and (161) in the matter power
spectrum, as measured for example in current CMB data. Modifications to the mat-
ter power spectrum Pm(k) at small k originating in a running G(k) can be done either
analytically using the transfer function [123,124] or by relying on more comprehensive
numerical programs [125]. Analytically, the effect of a running Newton’s constant (Equa-
tion (163)) can be included via dimensional analysis for the correct factors of G to include,
Pm(k) → (G0/G(k))2Pm(k) [124]. Here, we will focus instead on the more comprehensive,
and more accurate, results that can be obtained by consistently incorporating the running
of G in all relevant cosmological equations, and in many more cosmological observables,
such as temperature and polarization correlations [125].

The key resultant prediction for the matter power spectrum Pm(k) is found here in
Figure 21, showing (not surprisingly) still an almost perfect fit to all observational data
for k� m ' 2.8× 10−4 hMpc−1. Nevertheless, for scales of k comparable to m, additional
quantum effects become significant due to the G(k), enough to cause significant deviations
from the classical ΛCDM result for Pm(k). In Figure 21, the middle solid orange curve
shows the Hartree–Fock expression for the running of Newton’s constant G, while the
bottom dashed green curve and the top blue dotted curve show the lattice result of a
running Newton’s constant G (with the lattice coefficient c0 = 16.0), as well as the result
for no running respectively for reference. It seems that the Hartree–Fock running of G is in
reasonably good consistency with the lattice expression, except for the eventual unwieldly
upturn below k < 2 × 10−4 h Mpc−1. However, this upturn is most likely an artifact
from the Hartree–Fock expression being just a first-order analytical approximation after
all (as discussed earlier, the lowest order Hartree–Fock approximation can be extended
to higher order, by including increasingly complex higher loop diagrams, with dressed
propagators and vertices still determined self-consistently by a truncated version of the
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Schwinger–Dyson equations). Nevertheless, the Hartree–Fock approximation shows good
consistency with both the latest available observational data sets, as well as with the lattice
result. The fact that it exhibits a gentler dip at small k perhaps also provides support for
a potentially smaller lattice running coefficient of Equation (164) of approximate value
c0 ≈ 2.29. More details for the most recent constraints on this lattice parameter c0 are
discussed in [124,125].

Figure 21: Matter power spectrum P (k) with lattice versus Hartree-Fock running of Newton’s
constant G. The middle solid (orange) curve shows P (k) implemented with the Hartree-Fock
running of Newton’s constant G factor as given in Eq. (163). The lower dashed (green) curve
shows the original lattice RG running of Newton’s constant G (with the original lattice coefficient
of Eq. (164) equal to c0 = 16.0) for comparison. The original spectrum with no running is also
displayed by the top dotted (blue) curve for reference.
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Figure 21. Matter power spectrum P(k) with lattice versus Hartree–Fock running of Newton’s constant G. The middle
solid (orange) curve shows P(k) implemented with the Hartree–Fock running of Newton’s constant G factor as given in
Equation (163). The lower dashed (green) curve shows the original lattice RG running of Newton’s constant G (with the
original lattice coefficient of Equation (164) equal to c0 = 16.0) for comparison. The original spectrum with no running is
also displayed by the top dotted (blue) curve for reference.

Following similar analysis to determining Pm(k), other spectra such as the angular
temperature spectrum CTT

l , should be fully derivable from the primordial functionRo
k, or

specifically ns, which is set by the scaling of gravitational curvature fluctuations ν.

9. Conclusions

In this work, we have shown how the Hartree–Fock approximation to quantum gravity
can be carried out, by considering what ultimately reduces to a set of relatively easy to
evaluate one-loop integrals. The main feature of such an approach is that the complete
analytic expression for the one-loop integrals allows one to write down a gap equation for
the dynamically generated mass scale in the strongly coupled phase and, more importantly,
for any spacetime dimension. This result can be viewed as analogous to the situation in
the nonlinear sigma model, where a nonlinear gap equation is obtained explicitly, and can
then in principle be solved for any dimension. Due to the inherent approximation of a
mean-field type approach the calculation is expected to be rather crude, but nevertheless
provides interesting insights, and can furthermore provide a useful starting point for
improved, higher loop self-consistent calculations.

There are a number of interesting features that arise from the results presented earlier,
which will be summarized in the following paragraphs. The first notable aspect is the
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appearance of a nontrivial renormalization group fixed point (referred to as a critical point
in statistical field theory language) Gc in Newton’s constant, for any spacetime dimension
d greater than two. As a consequence, above two dimensions the theory exhibits two
phases, a Coulomb-like phase with gravitational screening for G < Gc, and a strongly
coupled phase with gravitational antiscreening for G > Gc. As the Hartree–Fock method
retains some vestiges of a perturbative diagrammatic calculation, the above results do
not allow one to determine whether both phases are indeed physical. On the other hand
current lattice calculations, which are genuinely nonperturbative, suggest that gravitational
screening is impossible (no stable ground state exists G < Gc) and that, as in Yang Mills
theories, only the gravitational antiscreening phase for G > Gc is physically realized in
this theory.

For the latter phase the Hartree–Fock calculation gives, once suitable renormalization
group arguments are applied, an explicit expression for the running of the gravitational
Newton’s constant as a function of scale. The latter can be expressed as a G(k) in wavevector
space, or, if one wishes, more generally as a covariantly formulated G(�), with covariant
d’Alembertian � ≡ gµν∇µ∇ν. Unlike perturbatively renormalizable theories such as QCD,
the RG running of G in the gravitational case is not logarithmic, but instead follows a power
law in the relevant scale. In addition, the Hartree–Fock results suggest that for quantum
gravity the lower critical dimension is two (as expected based on naive dimensional
arguments, and also on the basis of the lattice results, and initially from Wilson’s 2 + ε
gravity perturbative expansion as well), and furthermore that the upper critical dimension
is six. This would correlate with the fact that, within the Hartree–Fock approximation,
above six spacetime dimensions scaling dimensions and critical exponents flow into their
Gaussian, free field value. How that would explicitly reflect on the nature of various
(local and non-local) gravitational correlations is still not entirely clear at this point.

More importantly, in the physically relevant case of four spacetime dimensions one
finds that the gravitational coupling grows like a distance squared, up to logarithmic
corrections (between d = 2 and d = 4 the relevant power varies as 1/(d− 2), and stays
constant above that). This result is similar to, but nevertheless still quantitatively different
from, the Regge–Wheeler lattice result, which gives a renormalization group growth of the
gravitational coupling G with the cube of the distance, see in [98,99] and references therein.
Nevertheless, in either case the reference scale for the growth of Newton’s constant as a
function of distance is determined by a new, genuinely nonperturbative quantity ξ = 1/m.
The latter is non-analytic in the bare couplings, and arises naturally as an integration
constant of the renormalization group equations. It was argued elsewhere [99,107] that
this new nonperturbative scale, specific to quantum gravity, should be identified with the
gravitational vacuum condensate 〈R〉 = 2λ via λ = 3/ξ2, where λ is the observed (tiny)
scaled cosmological constant, in this picture more properly referred to as the gravitational
vacuum energy. The latter would then provide the needed reference scale for the RG
running of the gravitational coupling G. As ξ is very large (from current astrophysical
observations of λ [109]) one has ξ ∼ 5300 Mpc), which would then lead to a very slow rise
of G, observable only on very large, cosmological scales.

It is of some interest here to point out that the Hartree–Fock approximate calculation
does not just give values for exponents and scaling dimensions, it also provides an explicit
analytic expression for quantum amplitudes. Such as, for example, the overall amplitude
of the quantum correction to G(k) when referred to the new nonperturbative scale ξ. This
is quite different from ordinary perturbation theory say in the 2 + ε expansion, where no
information can ever be gained on the quantum amplitudes themselves (only on some
ratios of critical amplitudes, as is already the case in the nonlinear sigma model).

What is the physical interpretation of the self-consistent Hartree–Fock type calcula-
tion? For suggestions, one can look at the analogous results in condensed matter physics,
or from the nonlinear sigma model, to try to gain some insight into what type of physical
process is taken into account in the Hartree–Fock self-consistent, mean field-type approx-
imation. Perturbation theory initially only takes into account single graviton exchange
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(at the tree level), then to higher order two graviton exchanges in loop diagrams, then
three graviton exchanges, etc. On the other hand, in the Hartree–Fock approximation
all these multi-graviton effects are included into one single, self-consistently determined,
diagrammatic contribution. The latter sums up infinitely many perturbative diagrams, and
thus can lead to entirely novel features such as a dynamically generated nonperturbative
scale. The lowest order Hartree–Fock self-consistent approximation should therefore be
viewed as a (physically motivated) re-summation of a certain subset of infinitely many
diagrams. The next order Hartree–Fock correction then self-consistently re-sums a second
set of topologically distinct more complex diagrams, leading presumably to a further
improvement over the lowest order Hartree–Fock result. It is therefore noteworthy here
that the emergence of the new nonperturbative scale ξ can only arise if infinitely many
graviton loop diagrams are resummed. The various loop diagrams then all add up co-
herently, and give rise to the new phenomenon of a nonvanishing gravitational vacuum
condensate. Nevertheless, in the Hartree–Fock approximation the connection between
the nonperturbative mass scale m = 1/ξ and the gravitational field vacuum condensate
〈R〉 is not immediate. One way to justify such as result is to consider the fact that the
renormalized, effective cosmological λ constant (related to the vacuum expectation value of
the scalar curvature via the Heisenberg equations of motion) clearly appears as a mass-like
term in the weak field expansion of the gravitational action. Nevertheless, in the gravity
case one has the well-known subtlety that such a mass-like term remains fully consistent
with general covariance (and thus entirely independent of gauge choice), as the λ term in
the gravitational action retains that property.
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