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Abstract: We review the current status of the research on effective nonlocal NJL-like chiral quark
models with separable interactions, focusing on the application of this approach to the description
of the properties of hadronic and quark matter under extreme conditions. The analysis includes
the predictions for various hadron properties in vacuum, as well as the study of the features of
deconfinement and chiral restoration phase transitions for systems at finite temperature and/or
density. We also address other related subjects, such as the study of phase transitions for imaginary
chemical potentials, the possible existence of inhomogeneous phase regions, the presence of color
superconductivity, the effects produced by strong external magnetic fields and the application to the
description of compact stellar objects.

Keywords: Nonlocal Nambu-Jona-Lasinio model; finite temperature and/or density; chiral phase
transition; deconfinement transition

1. Introduction

The detailed understanding of the behavior of strong-interaction matter under extreme
conditions of temperature and/or density has attracted great attention in the past decades.
This is not only an issue of fundamental interest but has also important implications on
the description of the early evolution of the Universe [1] and on the study of the interior
of compact stellar objects [2,3]. It is widely believed that, as the temperature T and/or
the baryon chemical potential µB increase, one finds a transition from a hadronic phase,
in which chiral symmetry is broken and quarks are confined, to a phase in which chiral
symmetry is partially restored and/or quarks are deconfined. In fact, the problems of
how and when these transitions occur have been intensively investigated, both from
theoretical and experimental points of view. On the experimental side, the properties of
strong-interaction matter are being studied by large research programs at the Relativistic
Heavy Ion Collider (RHIC, Brookhaven), as well as at the Large Hadron Collider (LHC)
and the Super Proton Synchrotron (SPS) in CERN. Experiments at these facilities allow
for the exploration of the properties of hot and dense matter created in collisions of ultra-
relativistic heavy ions [4,5]. The quark–gluon plasma produced at high energies at RHIC
and LHC contains almost equal amounts of matter and antimatter and serves to probe
the region of high temperatures and low chemical potentials in the µB − T phase diagram.
In addition, the variation of collision energies at RHIC through the beam energy scan
(BES) program [6] has enabled the systematical exploration of the phase structure of strong-
interaction matter at nonzero chemical potential. These studies will be complemented in
the next future by experiments at the facilities FAIR in Darmstadt and NICA in Dubna,
reaching in this way experimental access to the bulk of the phase diagram. It should be
stressed that additional information about the behavior of dense quark matter systems can
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be provided by the wealth of data on the properties of compact stars, obtained through
neutron star and gravitational wave observations from, e.g., the Neutron Star Interior
Composition Explorer (NICER), gravitational-wave observatories such as LIGO, VIRGO,
etc. [7]. From the theoretical point of view, addressing this subject requires to deal with
quantum chromodynamics (QCD) in nonperturbative regimes. One way to cope with
this problem is through lattice QCD (LQCD) calculations [8,9]. However, despite the
significant improvements produced over the years, this ab initio approach is not yet able to
provide a full understanding of the QCD phase diagram, owing to the well known “sign
problem” [10] that affects LQCD calculations at finite chemical potential. Thus, our present
theoretical understanding of the strong-interaction matter phase diagram largely relies on
the use of effective models of low energy QCD that show consistency with LQCD results at
µB ' 0 and can be extrapolated into regions not accessible by lattice calculation techniques.

One of the most popular approaches to an effective description of QCD interactions is
the quark version of the Nambu–Jona–Lasinio (NJL) model [11,12], in which quark fields
interact through local four-point vertices that satisfy chiral symmetry constraints. This type
of model provides a mechanism for the spontaneous breakdown of chiral symmetry and
the formation of a quark condensate, and it has been widely used to describe the features
of chiral restoration at finite temperature and/or density [13–15]. Thermodynamic aspects
of confinement, while absent in the original NJL model, can be implemented by a synthesis
with Polyakov-loop (PL) dynamics [16,17]. The resulting Polyakov–Nambu–Jona–Lasinio
(PNJL) model [18–24] allows one to study the chiral and deconfinement transitions in a
common framework.

As an improvement over local models, chiral quark models that include nonlocal
separable interactions have also been considered [25–28]. Since these approaches can
be viewed as nonlocal extensions of the NJL model, here we denote them generically
as “nonlocal NJL” (nlNJL) models. In fact, nonlocal interactions arise naturally in the
context of several successful approaches to low-energy quark dynamics [29,30] and lead
to a momentum dependence in quark propagators that can be made consistent [31,32]
with lattice results [33,34]. Moreover, it can be seen that nonlocal extensions of the NJL
model do not show some of the known inconveniences that can be found in the local theory.
Well-behaved nonlocal form factors can regularize loop integrals in such a way that anoma-
lies are preserved [35] and charges are properly quantized. In addition, one can avoid
the introduction of various sharp cutoffs to deal with higher order loop integrals [36,37],
improving in this way the predictive power of the models. At the same time, the separable
character of the interactions makes possible to keep much of the simplicity of the standard
NJL model, in comparison with more rigorous analytical approaches to nonperturbative
QCD. Various applications of nlNJL models to the description of hadron properties at zero
temperature and density can be found, e.g., in Refs. [38–53]. In addition, this type of model
has been applied to the description of the chiral restoration transition at finite tempera-
ture and/or density [54–58]. The coupling of the quarks to the PL in the framework of
nlNJL models gives rise to the so-called nonlocal Polyakov–Nambu–Jona–Lasinio (nlPNJL)
models [59–61], in which quarks move in a background color field and interact through
covariant nonlocal chirally symmetric couplings. It has been found that, under certain
conditions, it is possible to derive the main features of nlPNJL models starting directly
from QCD [62].

The aim of this article is to present an overview of the existing results obtained within
nonlocal NJL-like models concerning the description of hadronic and quark matter at both
zero and finite temperature and/or density. The paper is organized as follows. In Section 2,
we introduce a two-flavor nlNJL model and discuss its main theoretical features. We
also study the extension of this approach to nonzero temperature and chemical potential,
including the coupling of fermions to the Polyakov loop. Then, after introducing some
possible model parameterizations, results for the thermodynamics of strong-interaction
matter, as well as for the corresponding phase diagram for both real and imaginary quark
chemical potentials, are presented and discussed. We finish this section by quoting some
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results for the thermal dependence of various scalar and pseudoscalar meson properties.
In Section 3, the inclusion of explicit vector and axial vector interactions in the context of
two-flavor nlNJL models is considered, analyzing their impact on the corresponding phe-
nomenological predictions. In Section 4, we analyze the extension of the above introduced
nlPNJL model to N f = 3 flavors, incorporating a dynamical strange quark. This requires
the inclusion of explicit flavor symmetry breaking terms to account for the relatively large
s-quark mass and also the addition of a flavor mixing term related to the U(1)A anomaly.
After describing the main features of this three-flavor nlPNJL model, results for the thermal
dependence of various quantities as well as predictions for the phase diagram are given.
In Section 5, we discuss some further developments and applications of nlPNJL models.
These include the description of superconducting phases, the application to the physics
of compact stars, the study of the existence of inhomogeneous phases and the analysis of
the effects of external strong magnetic fields on hadron properties and phase transitions.
Finally, in Section 6, we present our conclusions. We also add a brief appendix that includes
some conventions and basic formulae.

2. Two-Flavor Nonlocal NJL Models

In this section, we review the features of nlNJL models that include just the two lightest
quark flavors, u and d. We begin by addressing the analysis of model properties in vacuum.
Then, we consider systems at finite temperature and chemical potential, discussing the
predictions for thermodynamic properties and the characteristics of phase transitions.

2.1. Two-Flavor nlNJL Model at Vanishing Temperature and Chemical Potential
2.1.1. Effective Action

We start by studying the features of nlNJL models at zero temperature and chemical
potential. Let us consider the Euclidean action given by [32]

SE =
∫

d4x
{

ψ̄(x)(−i/∂ + mc)ψ(x)− GS
2

[
jS(x)jS(x) +~P(x) ·~P(x) + jR(x)jR(x)

]}
(1)

where ψ stands for the u, d quark field doublet and mc is the current quark mass. Through-
out this article, we work in the isospin limit, thus we assume the current mass to be the same
for u and d quarks. The nonlocal character of the model arises from the quark–antiquark
currents jS(x), jP(x) and jR(x), given by

jS(x) =
∫

d4z G(z) ψ̄
(

x +
z
2

)
ψ
(

x− z
2

)
~P(x) =

∫
d4z G(z) ψ̄

(
x +

z
2

)
i γ5~τ ψ

(
x− z

2

)
jR(x) =

∫
d4z F (z) ψ̄

(
x +

z
2

) i
←→
/∂

2 κp
ψ
(

x− z
2

)
(2)

where u(x′)
←→
∂ v(x) = u(x′)∂xv(x)− ∂x′u(x′)v(x). The functionsG(z) andF (z) in Equation (2)

are effective covariant form factors that encode the effects of the underlying low energy
QCD interactions. Chiral invariance requires that the quark currents jS(x) and jP a(x),
a = 1, 2, 3, carry the same form factor G(z), while the jR(x)jR(x) coupling is found to be
self-invariant under chiral transformations. The local version of the (quark-level) NJL
model is obtained by taking G(z) = δ(4)(z) and F (z) = 0, together with a proper regular-
ization prescription.

It can be shown that the presence of the nonlocal form factor in the scalar current
jS(x) leads to a momentum-dependent quark effective mass, as expected from lattice
QCD calculations [33]. On the other hand, the coupling involving the current jR(x) is
related to the quark wave function renormalization (WFR). Whereas in a local theory this
coupling would simply lead—at the mean field level—to a redefinition of fermion fields, in
the nonlocal scheme, it leads to a momentum-dependent WFR of the quark propagator,
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in consistency with LQCD analyses [33]. To simplify the notation, the same coupling
constant GS has been taken for all interaction terms. Note, however, that the relative
strength between the jR(x)jR(x) coupling and the other terms is controlled by the mass
parameter κp in Equation (2). The form factors G(z) and F (z) are dimensionless and can
be normalized to G(0) = F (0) = 1 without loss of generality.

It is worth stressing that the currents in Equation (2) are not to be directly identified
with the color octet quark currents entering the QCD Lagrangian. The former are color
singlet quantities that contain part of the effective gluon mediated interaction and are
introduced as a convenient way of expressing the interaction terms in a chiral quark
model. In addition, it is important to notice that the couplings in Equation (1) are not
intended to be the most general nonlocal current–current interactions compatible with
QCD symmetries. In fact, this is just the simplest model that, within the mean field
approximation, leads to an effective quark propagator including a momentum-dependent
wave function renormalization Z(p) and a momentum-dependent mass M(p). Clearly,
other quark–antiquark and/or quark–quark current interactions can be added in order to
properly account for the description of vector mesons physics, color superconductivity
effects, etc. Some possible extensions of the model are discussed in the next sections
of this article. In addition, it is worth taking into account that in Equation (2) we have
chosen a particular way of introducing nonlocal form factors in the quark currents. As
discussed in Refs. [25,26], this scheme is based on a separable approach to the effective one
gluon exchange (OGE) interactions. Alternatively, a scheme based on the features of the
instanton liquid model (ILM) is introduced in Ref. [27]. In that approach, a nonlocal form
factor is associated to each quark field, in such a way that, e.g., the scalar nonlocal current
jS(x) reads

jILM
S (x) =

∫
d4y d4z R(y− x)R(x− z) ψ̄(y)ψ(z) . (3)

whereas both OGE- and ILM-inspired schemes are equivalent at the mean- field level, the
treatment of fluctuations is somewhat different. A comparison of both approaches can
be found in Ref. [63]. In this review, we mostly concentrate on the OGE-based scheme,
which is the more widely used to study the behavior of quark and hadronic matter at finite
temperature and/or density. However, when possible, references to the results obtained
within the alternative ILM-based scheme are included.

To deal with meson degrees of freedom, it is convenient to perform a standard
bosonization of the theory given by the action in Equation (1). This can be done by
considering the corresponding partition function Z =

∫
Dψ̄ Dψ exp(−SE) and intro-

ducing auxiliary fields σ1(x), σ2(x) and πa(x), a = 1, 2, 3, which account for scalar and
pseudoscalar mesons. Integrating out the quark fields, one gets

Z =
∫

Dσ1 Dσ2 D~π exp
(
− Sbos

E
)

(4)

where the bosonized action is given by

Sbos
E = − ln detD +

1
2GS

∫ d4q
(2π)4

[
σ1(q) σ1(−q) + ~π(q) · ~π(−q) + σ2(q) σ2(−q)

]
. (5)

Here, the operator D reads, in momentum space,

D(p, p′) = (/p + mc) (2π)4 δ(4)(p− p′) + g
(

p + p′

2

) [
σ1(p− p′) + iγ5~τ · ~π(p− p′)

]
− f

(
p + p′

2

)
/p + /p′

2 κp
σ2(p− p′) (6)
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where g(p) and f (p) stand for Fourier transforms of the form factors G(z) and F (z),
namely

g(p) =
∫

d4z e−ip·z G(z) f (p) =
∫

d4z e−ip·z F (z) . (7)

Note that Lorentz invariance implies that they can only be functions of p2.
Now, it is assumed that the fields σ1 and σ2 have nontrivial translational invariant

mean field values σ̄1 and κp σ̄2, while the mean field values of the pseudoscalar fields πi
are taken to be zero. Thus, one can write

σ1(x) = σ̄1 + δσ1(x) σ2(x) = κp σ̄2 + δσ2(x) ~π(x) = δ~π(x) . (8)

A more general case, in which the bosonic fields are expanded around inhomogeneous
ground states, is considered in Section 5.3. Replacing in the bosonized effective action and
expanding in powers of the meson fluctuations δσ1, δσ2 and δ~π, one gets

Sbos
E = SMFA

E + Squad
E + . . . (9)

The mean field action per unit volume reads [32]

SMFA
E

V(4)
= − 2Nc

∫ d4 p
(2π)4 tr lnD0(p) +

σ̄2
1

2GS
+

κ2
p σ̄2

2

2GS
(10)

where Nc = 3 is the number of colors and the trace is taken on Dirac space. The mean field
quark propagator S0(p) is given by

S0(p) = D0(p)−1 =
Z(p)

/p + M(p)
(11)

with

Z(p) = (1− σ̄2 f (p))−1 M(p) = Z(p)(mc + σ̄1 g(p)) . (12)

The quadratic piece in Equation (9) can be written as

Squad
E =

1
2

∫ d4q
(2π)4

[
Gσ(q2) δσ(q) δσ(−q) + Gσ′ (q

2) δσ′(q) δσ′(−q) + Gπ(q2) δ~π(q) · δ~π(−q)
]

(13)

where δσ and δσ′ are related to δσ1 and δσ2 by

δσ = cos θ δσ1 − sin θ δσ2

δσ′ = sin θ δσ1 + cos θ δσ2 (14)

the mixing angle θ being defined in such a way that there is no σ− σ′ mixing at the level of
the quadratic action. The function Gπ(q2) introduced in Equation (13) is given by [32]

Gπ(q2) =
1

GS
− 8 Nc

∫ d4 p
(2π)4 g(p)2 Z(p+)Z(p−)

D(p+)D(p−)
[
p+ · p− + M(p+)M(p−)

]
(15)

with p± = p± q/2 and D(p) = p2 + M(p)2. For the σ− σ′ system, one has

G( σ
σ′)
(q2) =

Gσ1σ1(q
2) + Gσ2σ2(q

2)

2
∓

√
[Gσ1σ2(q2)]

2+

[
Gσ1σ1(q2)− Gσ2σ2(q2)

2

]2

(16)

where
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Gσ1σ1(q
2) =

1
GS
− 8 Nc

∫ d4 p
(2π)4 g(p)2 Z(p+)Z(p−)

D(p+)D(p−)
[
p+ · p− −M(p+)M(p−)

]
Gσ2σ2(q

2) =
1

GS
+

8 Nc

κ2
p

∫ d4 p
(2π)4 p2 f (p)2 Z(p+)Z(p−)

D(p+)D(p−)

×
[

p+ · p− −M(p+)M(p−) +
p+ 2 p− 2 − (p+ · p−)2

2 p2

]
Gσ1σ2(q

2) = −8 Nc

κp

∫ d4 p
(2π)4 g(p) f (p)

Z(p+)Z(p−)
D(p+)D(p−)

p ·
[
p−M(q+) + p+M(q−)

]
. (17)

2.1.2. Mean Field Approximation and Chiral Condensates

The mean field values σ̄1 and σ̄2 can be determined by minimizing the mean field
action SMFA

E . This leads to the coupled “gap equations”

σ̄1 − 8Nc GS

∫ d4 p
(2π)4 g(p)

Z(p)M(p)
D(p)

= 0 (18)

σ̄2 + 8Nc GS

∫ d4 p
(2π)4

p2

κ2
p

f (p)
Z(p)
D(p)

= 0 . (19)

It is worth noticing that the loop integrals in these equations will be convergent, as
long as the nonlocal form factors are well behaved in the ultraviolet limit. Thus, there is no
need to introduce sharp momentum cutoffs in this kind of model.

The chiral condensates, given by the vacuum expectation values 〈ūu〉 and 〈d̄d〉, can
be easily obtained by performing the variation of ZMFA = exp(−SMFA

E ) with respect to the
u and d current quark masses. Up and down quark condensates will be equal, owing to
isospin symmetry. The corresponding analytical expressions are finite in the chiral limit,
while they turn out to be ultraviolet divergent for nonzero values of current quark masses.
Such a divergence can be regularized through the subtraction of the perturbative vacuum
contribution. One has in this way

〈 q̄q 〉 = − 4Nc

∫ d4 p
(2π)4

(
Z(p)M(p)

D(p)
− mc

p2 + m2
c

)
q = u, d . (20)

2.1.3. Meson Properties

Taking into account the quadratic piece of the Euclidean action in Equation (13),
it is seen that the scalar and pseudoscalar meson masses can be obtained by solving
the equations

GM(−m2
M) = 0 (21)

where M = σ, σ′, π. The on-shell quark–meson coupling constants gMqq̄ and the associated
meson renormalization constants ZM are given by

Z−1
M = g−2

Mqq̄ =
dGM(q2)

dq2

∣∣∣∣
q2=−m2

M

. (22)

Let us consider the pion weak decay constant fπ , which is given by the matrix element
of the axial vector quark current between the vacuum and a one-pion state,

〈0|ψ̄(x) γµγ5
τa

2
ψ(x)|π̃b(q)〉 = − i fπ e iq·x δab qµ (23)
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at the pion pole q2 = −m2
π . Here, the pion field has been renormalized as π̃a = Z−1/2

π δπa .
To obtain an explicit expression for the above matrix element one has to “gauge” the
effective action SE by introducing a set of axial gauge fieldsWa µ(x). For a local theory this
gauging procedure is usually done by performing the replacement

∂µ → ∂µ −
i
2

γ5~τ · ~Wµ(x) . (24)

In the present case—owing to the nonlocality of the involved fields—one has to
perform additional replacements in the interaction terms [28,64], namely

ψ(x− z/2) → WA(x, x− z/2) ψ(x− z/2)

ψ†(x + z/2) → ψ†(x + z/2) WA(x + z/2, x) . (25)

Here, x and z are the variables appearing in the definitions of the nonlocal currents
given in Equation (2), and the function WA(x, y) is defined by

WA(x, y) = P exp
[
− i

2

∫ y

x
dsµ γ5 ~τ · ~Wµ(s)

]
(26)

where s runs over an arbitrary path connecting x with y and P denotes path ordering.
Once the gauged effective action is built, the matrix elements in Equation (23) can be

obtained by taking the derivative of this action with respect to the renormalized meson
fields and the axial gauge fields, evaluated at ~Wµ = 0, ~̃π = 0. After a rather lengthy
calculation, one gets [32]

fπ =
gπqq̄

m2
π

mc F0(−m2
π) (27)

where

F0(q2) = 8 Nc

∫ d4 p
(2π)4 g(p)

Z(p+)Z(p−)
D(p+)D(p−)

[
p+ · p− + M(p+)M(p−)

]
. (28)

It is important to notice that in this calculation the integration along the above men-
tioned arbitrary path turns out to be trivial; hence, the result becomes path-independent.
To leading order in the chiral expansion, it can be seen [31,63] that Equations (15), (18),
(20)–(22) and (27) lead to the quark-level Goldberger–Treiman and Gell–Mann–Oakes–
Renner relations

fπ gπqq̄ =
M(0)
Z(0)

(29)

and
f 2
π m2

π = −mc 〈ūu + d̄d〉 . (30)

It is worth mentioning that, besides the main properties discussed above, many other
features of mesons have been studied in the framework of both OGE- and ILM-based
nonlocal approaches (see [38–50]). In addition, the possible description of baryons is
considered in Refs. [51–53].

2.2. Extension to Finite Temperature and Chemical Potential. Inclusion of the Polyakov Loop

Having described the main features of the nlNJL approach in vacuum, we turn to
discuss how to extend the model in order to study the behavior of strong-interaction matter
at nonzero temperature T and/or quark chemical potential µ = µB/3. The temperature
can be introduced in a standard way by using the imaginary time Matsubara formalism.
This is done by performing the integration over Euclidean time appearing in the effective
action on a restricted finite interval 0 ≤ x4 ≤ 1/T, and imposing proper boundary
conditions on the fields [65,66]. Alternatively, the real-time formalism can be applied [67,68].
On the other hand, the chemical potential can be introduced through the replacement
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∂4 → ∂4 − µ in the effective action. In the case of the nonlocal models under consideration,
to obtain the appropriate conserved currents, this replacement has to be complemented
with a modification of the nonlocal currents in Equation (2) [57,69]. In practice, with
the conventions used in this article (see Appendix A), this implies that the momentum
dependence of the form factors g(p) and f (p) has to be modified by changing p4 → p4 + iµ.

The nonlocal NJL approach described so far is found to provide a basic understanding
for the mechanisms governing both the spontaneous breakdown of chiral symmetry and
the dynamical generation of massive quasiparticles from almost massless current quarks, in
close contact with QCD. However, it does not account for some important features expected
from the underlying QCD interactions. In particular, the model predicts the existence of
colored quasiparticles in regions of T and µ where they should be suppressed by confine-
ment. A quite successful way to deal with this problem, originally proposed in the context
of the local NJL model, is to include a coupling of the quark fields to the Polyakov loop
(PL) [18–24], which can be taken as an order parameter for the confinement/deconfinement
transition. Indeed, in pure gauge QCD, the traced Polyakov loop Φ can be associated with
the spontaneous breaking of the global Z3 center symmetry of color SU(3). The value Φ = 0
corresponds to the symmetric, confined phase, while one has Φ = 1 in the limit where
quark asymptotic freedom has been achieved [70]. Although the traced PL strictly serves
as an order parameter for the confinement–deconfinement phase transition only in pure
gauge QCD, it is still useful as an indicator for a rapid crossover transition even in the
presence of quarks. The incorporation of the couplings between dynamical quarks and the
PL promotes the nlNJL model to the nlPNJL model [59–61].

In the nlPNJL approach, the quarks are assumed to move in a constant background
field φ = g Ga

4λa/2, where λa (a = 1, . . . , 8) are the Gell–Mann matrices and Ga
µ denotes the

SU(3) color gauge fields. Then, the traced Polyakov loop is given by Φ = 1
3 Tr exp(iφ/T). It

is usual to work in the so-called Polyakov gauge, in which the matrix φ is given a diagonal
representation φ = diag(φr, φg, φb) = φ3λ3 + φ8λ8 (here, r, g and b refer to red, green and
blue colors). This leaves only two independent variables, φ3 and φ8, in terms of which
one has

Φ =
1
3

[
2 exp

(
i√
3

φ8

T

)
cos
(

φ3

T

)
+ exp

(
− 2i√

3
φ8

T

)]
. (31)

The effective gauge field self-interactions can be incorporated by introducing a mean
field Polyakov loop potential U(Φ, Φ∗, T). We consider for this potential two alternative
functional forms that are commonly used in the literature. The first one, based on a
Ginzburg–Landau ansatz, is a polynomial function given by [21,70]

Upoly(Φ, Φ∗, T) = T4
[
− b2(T)

2
Φ∗Φ − b3

6

(
Φ3 + Φ∗ 3

)
+

b4

4
(
Φ∗Φ

)2
]

(32)

where

b2(T) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2
+ a3

(
T0

T

)3
. (33)

The parameters in these expressions can be fitted to pure gauge lattice QCD data
so as to properly reproduce the corresponding equation of state and PL potential. This
yields [21]

a0 = 6.75 a1 = −1.95 a2 = 2.625

a3 = −7.44 b3 = 0.75 b4 = 7.5 . (34)

A second usual form is based on the logarithmic expression of the Haar measure
associated with the SU(3) color group path integral. The potential reads in this case [22]

Ulog(Φ, Φ∗, T) = T4
{
− 1

2
a(T)Φ∗Φ + b(T) ln

[
1− 6 Φ∗Φ + 4

(
Φ3 + Φ∗ 3

)
− 3

(
Φ∗Φ

)2
]}

(35)
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where the coefficients a(T) and b(T) are parameterized as

a(T) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2
b(T) = b3

(
T0

T

)3
. (36)

Once again, the values of the constants can be fitted to pure gauge lattice QCD results.
This leads to [22]

a0 = 3.51 a1 = −2.47 a2 = 15.2 b3 = −1.75 . (37)

The dimensionful parameter T0 in Equations (33) and (36) corresponds in principle to
the deconfinement transition temperature in the pure Yang–Mills theory, T0 = 270 MeV.
However, it has been argued [71,72] that in the presence of light dynamical quarks this
temperature scale has to be modified. Effects of this change are discussed below.

The coupling between the quarks and the background gauge field φ is implemented
through a standard gauge covariant derivative. In the nlPNJL model this has to be supple-
mented by the modification of the nonlocal currents, as discussed in Section 2.1.3 in relation
to weak gauge field interactions. Thus, at the mean field level, the quark contribution to the
grand canonical thermodynamic potential including the coupling to the PL can be obtained
from the mean field Euclidean action in Equation (10) by making the replacements

p2 → (ρc
n,~p)

2 = ~p 2 + [(2n + 1)πT + iµ− φc]
2 (38)

and

Nc

∫ d4 p
(2π)4 F(p) → T

∞

∑
n=−∞

∑
c=r,g,b

∫ d3 p
(2π)3 F(ρc

n,~p) (39)

where n labels the Matsubara frequencies (see Appendix A).
Before quoting the explicit form of the mean field thermodynamic potential, let us

discuss some restrictions concerning φ8. In the case of vanishing chemical potential, the
mean field traced Polyakov loop is expected to be a real quantity, owing to the charge
conjugation properties of the QCD Lagrangian. Since φ3 and φ8 are real valued, this
condition implies φ8 = 0. In principle, this does not need to be valid for a finite chemical
potential; hence, in that case the Polyakov loop could lead formally to a complex-valued
action. Now, even for a complex Euclidean action, one can search for the configuration
with the largest weight in the path integral, which can be referred to as the mean field
configuration [22]. One way to establish such a lowest order approximation is to use
the real part of the thermodynamic potential to obtain the mean field “gap equations”.
Demanding the thermal expectation values 〈Φ〉 and 〈Φ∗〉 to be real quantities [22,73], this
means Φ = Φ∗ for the mean field configurations. Thus, assuming φ3 and φ8 to be real
valued, one has once again φ8 = 0 and the mean field thermodynamic potential ΩMFA

becomes a real quantity even for nonzero µ. In general, this assumption is considered
in the analyses discussed in this work. However, it is worth noticing that the inclusion
of beyond mean field corrections for Im Ω induced by the temporal gauge fields could
cause in general a splitting between 〈Φ〉 and 〈Φ∗〉 [22,74,75]. On the other hand, by taking
Φ = Φ∗ within the mean field approximation, one avoids the sign problem (which is also
found, at finite density, in the local PNJL model [76,77]). Alternatively, other approaches,
such as the Lefschetz thimble method [78], would need to be implemented so as to correctly
perform the path integrals, even at the mean field level. Finally, it is important to notice that
for the theoretically interesting case of an imaginary chemical potential, to be discussed in
Section 2.6, the restriction to a real-valued Φ does not hold, and both φ3 and φ8 are allowed
to be nonzero.
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Taking into account the above discussion, the mean field thermodynamic potential for
the nlPNJL model is found to be given by [79,80]

ΩMFA = −4 T ∑
n, c

∫ d3 p
(2π)3 ln

[
(ρc

n,~p)
2 + M(ρc

n,~p)
2

Z(ρc
n,~p)

2

]
+

σ̄2
1 +κ2

p σ̄2
2

2 GS
+ U (Φ, Φ∗, T) . (40)

This expression turns out to be divergent and has to be regularized. Following the
prescription in Ref. [58], a finite thermodynamic potential ΩMFA

reg can be defined as

ΩMFA
reg = ΩMFA −Ωfree

q + Ωfree
q,reg + Ω0 (41)

where Ωfree
q is obtained from the quark contribution to ΩMFA by setting σ̄1 = σ̄2 = 0, and

Ωfree
q,reg is the regularized expression for the quark thermodynamical potential in the absence

of fermion interactions,

Ωfree
q,reg = −4 T

∫ d3 p
(2π)3 ∑

c=r,g,b
∑

s=±1
Re ln

[
1 + exp

(
−

εp + s (µ + iφc)

T

)]
(42)

where εp =
√
~p 2 + m2. Note that the r.h.s. of Equation (41) also includes a constant Ω0,

which is fixed by the condition that ΩMFA
reg vanishes for T = µ = 0.

In general, the mean field values σ̄1 and σ̄2, as well as the values of φ3 and φ8, can be
obtained from a set of four coupled “gap equations” that follow from the minimization of
the regularized thermodynamic potential, namely

∂ΩMFA
reg

∂σ̄1
= 0

∂ΩMFA
reg

∂σ̄2
= 0

∂ΩMFA
reg

∂φ3
= 0

∂ΩMFA
reg

∂φ8
= 0 . (43)

We recall that, in the framework of the nlPNJL model studied here, for either vanishing
or real µ, one has φ8 = 0. Thus, the last of Equation (43) will only be required in the case of
a nonzero imaginary chemical potential (see Section 2.6).

Once the mean field values have been determined, the behavior of other relevant
quantities as functions of the temperature and chemical potential can be obtained. In
particular, here, we concentrate on the chiral quark condensate 〈q̄q〉, which is given by

〈q̄q〉 =
∂ΩMFA

reg

∂mc
(44)

and the chiral susceptibility χch, defined as

χch =
∂ 〈q̄q〉
∂mc

. (45)

To characterize the deconfinement transition, it is usual to introduce the associated PL
susceptibility χΦ, defined by

χΦ =
dΦ
dT

. (46)

However, as seen below, there are regions of the µ − T phase diagram where this
quantity may not be adequate to determine the occurrence of the transition. Alternatively,
it can be assumed that the deconfinement region is characterized by a value of Φ lying in
some intermediate range, e.g., between 0.3 and 0.5 [81].

2.3. Form Factors, Parameterizations and Numerical Results for T = µ = 0

To fully specify the nonlocal NJL model under consideration, one has to fix the
model parameters as well as the form factors g(p) and f (p) that characterize the nonlocal
interactions. Several forms for these functions have been considered in the literature. For
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definiteness, here we concentrate mostly on three particular functional forms, which lead
to the parameterizations that we call PA, PB and PC, defined as follows.

• In parameterization PA, we consider the simple case in which one takes

g(p) = exp(−p2/Λ2
0) f (p) = 0 (47)

i.e., Z(p) = 1. In general, the exponential form of g(p) ensures a fast convergence
of loop integrals, and it has been often used in the literature. On the other hand, the
results obtained with this parameterization can be related to those of early studies in
which the quark propagator WFR was ignored (see, e.g., [27,51,57,58,63]).

• In the second parameterization, PB, it is assumed that both g(p) and f (p) are given
by Gaussian functions, namely

g(p) = exp(−p2/Λ2
0) f (p) = exp(−p2/Λ2

1) . (48)

Note that the range (in momentum space) of the nonlocality in each channel is deter-
mined by the parameters Λ0 and Λ1, respectively. From Equation (12), one has

M(p) = Z(p)
[
mc + σ̄1 exp(−p2/Λ2

0)
]

Z(p) =
[
1− σ̄2 exp(−p2/Λ2

1)
]−1

. (49)

• Finally, the third parameterization, PC, is taken from Refs. [31,32]. In this case, the
functions M(p) and Z(p) are written as

M(p) = mc + αm fm(p)

Z(p) = 1 + αz fz(p) (50)

where αm = M(0)− mc, αz = Z(0)− 1. The form of fm(p) and fz(p) is proposed
taking into account the results from lattice QCD calculations in the Landau gauge.
One has

fm(p) =
[

1 +
(

p2/Λ2
0

)3/2
]−1

, fz(p) =
[
1 +

(
p2/Λ2

1

)]−5/2
. (51)

The analytical expression for fm(p) was originally proposed by [82,83], while that of
fz(p) has been chosen so as to reproduce lattice results, ensuring at the same time
the convergence of quark loop integrals. Some alternative parameterization of this
type, suggested from vector meson dominance in the pion form factor, can be found
in Ref. [84]. In terms of the functions fm(p) and fz(p) and the constants mc, αm and
αz, the form factors g(q) and f (q) are given by [see Equation (12)]

g(p) =
1 + αz

1 + αz fz(p)
αm fm(p)−mc αz fz(p)

αm −mc αz
f (p) =

1 + αz

1 + αz fz(p)
fz(p) (52)

while for the mean field values σ̄1 and σ̄2 one has

σ̄1 =
αm −mcαz

1 + αz
σ̄2 =

αz

1 + αz
. (53)

The numerical values of the model parameters corresponding to the above param-
eterizations are quoted in Table 1. In all three cases, they lead to the empirical values of
the pion mass and decay constant, fπ = 92.4 MeV and mπ = 139 MeV. In addition, for
parameterizations PA and PB, the input value 〈q̄q〉 = −(240 MeV)3 is taken. In the case
of PB, which includes a wave function renormalization Z(p), it is also required that the
parameters lead to Z(0) = 0.7, as suggested by lattice calculations [33,34]. Finally, for
parameterization PC, the condition Z(0) = 0.7 is also imposed, and the effective cutoff
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scales Λ0 and Λ1 are taken in such a way that the functions fm(p) and Z(p) reproduce
reasonably well the lattice QCD data given in Ref. [33].

Table 1. Model parameters for the alternative parameterizations.

PA PB PC

mc MeV 5.78 5.70 2.37
GsΛ2

0 20.65 32.03 20.82
κP GeV - 4.18 6.03
Λ0 MeV 752 814 850
Λ1 MeV - 1034 1400

In Figure 1, we show the quark mass functions fm(p) and the quark WFR functions
Z(p) for the three above scenarios, including for comparison lattice QCD results quoted in
Ref. [33]. The main reason for taking fm(p), defined by the first of Equation (50), instead
of M(p) is that lattice calculations obtained by [33,34]—which use different inputs—lead
to quite similar results for fm(p), despite showing substantial differences in the functions
M(p). On the other hand, the quark WFR is much less sensitive to the choice of lattice input
parameters; in fact, the two mentioned groups provide similar results for the behavior
of Z(p). From the figure, it is seen that in the case of PA and PB the functions fm(p),
which are based on exponential forms, decrease faster with the momentum than lattice
data. However, as seen below, many observables are not significantly affected by the
parameterization, and the choice of Gaussian form factors can be taken as a reasonable
approximation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0   PA
  PB
  PC
 LQCD
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 )
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1.0
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Z 
( p

 )

Figure 1. (Color online) Values of fm(p) (left) and Z(p) (right) for parameterizations PA, PB and PC and lattice QCD results
from Ref. [33].

In Table 2, we quote the numerical results obtained for several quantities in the
framework of the considered nlNJL model. By construction, parameterizations PA and
PB lead to a quark condensate lying within the phenomenologically accepted range
(200 MeV)3 . −〈q̄q〉 . (260 MeV)3 [85,86], while for PC the absolute value of the con-
densate is found to be somewhat larger. On the other hand, the current quark mass mc in
parameterization PC is quite smaller than in the case of PA and PB. In this regard, it is worth
noticing that both the chiral condensate and the current quark masses are scale dependent
objects. In particular, the above-mentioned phenomenological range for the condensate
corresponds to a renormalization scale µR ' 1 GeV. In parameterization PC, some parame-
ters have been determined so as to obtain a good approximation to LQCD results for the
quark propagator, which also depend on the renormalization point. In fact, lattice values
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in Ref. [33] have been obtained taking a renormalization scale µR = 3 GeV. One might
wonder whether the fact that this renormalization point differs from the one usually used
to quote the values of the condensates can account for the fact that the PC prediction falls
outside the empirical range. This issue is discussed in Ref. [32], taking into account that
the current quark mass and the condensate are linked by the Gell–Mann–Oakes–Renner
relation given by Equation (30). It is found that a rescaling of the quark condensate in
parameterization PC down to µR = 1 GeV would lead to −〈q̄q〉1/3 ∼ 280 MeV, close to
the upper limit of the phenomenologically allowed range.

Table 2. Numerical results for various phenomenological quantities. Input values are marked with
an asterisk.

PA PB PC

σ̄1 MeV 424 529 442
σ̄2 - −0.43 −0.43

−〈q̄q〉1/3 MeV 240 ∗ 240 ∗ 326

gπqq̄ 4.62 5.74 4.74
g(0)σqq̄ 5.08 5.97 4.60

g(1)σqq̄ - −0.77 −0.26

mπ MeV 139 * 139 * 139 *
mσ MeV 683 622 552
fπ MeV 92.4 * 92.4 * 92.4 *

Γσππ MeV 347 263 182

Table 2 shows that the mass and decay width of the sigma meson show some depen-
dence on the parameterization, although this dependence is less significant than in the
case of the local NJL model [87]. In general, it can be said that the predictions for mσ and
Γσππ are compatible with empirical data, taking into account the large experimental errors.
Present estimations from the Particle Data Group lead to values of the σ meson mass in
the range from 400 to 550 MeV and to a total width Γσ between 400 and 700 MeV [88]. In
the case of the σ′ state, the mass is not given in Table 2 since the corresponding two-point
function shows no real poles at a low energy scale in which the effective model could be
trustable.

We conclude this subsection by mentioning that an alternative functional form for
g(p) is used in Refs. [61,89,90]. The basic difference with the functions in PA and PB
is that in those articles the exponential form is used only up to certain matching scale
Γ ' 0.8 GeV. Beyond this scale, the exponential is replaced by a function of the form
∼ αs(p2)/p2 [αs(p2) being the QCD running coupling constant], which is based on the
large momentum behavior predicted by QCD. This type of form factor does not exclude that
some quantities, e.g., the quark condensates can be weakly divergent, and the introduction
of a cutoff at very high momenta (∼20 GeV) is still required. In any case, the results
obtained using this alternative scheme are not significantly different from those arising
from the parameterizations given above. One important issue addressed in Ref. [90] is
the validity of the assumption that nonlocal form factors are separable. To get an idea of
the uncertainty introduced by this approximation, the solution of the Schwinger–Dyson
(gap) equation resulting from a nonseparable interaction g(q− p) is compared with the one
associated with the separable form g(q)g(p). For simplicity, Gaussian functions are used
for the momentum distributions g(p) both in the full Schwinger–Dyson expression and
in the case of the separable ansatz. The numerical analysis shows that the corresponding
results turn out to be coincident up to a 95% level (see Figure 1 and Section II-E1 of Ref. [90]
for details). Another relevant point discussed in Ref. [90] is that, since the integrals in
momentum space needed for the calculation of the different relevant quantities include n
powers of the momentum p (n = 2 and n = 3 for integrals in three and four dimensions,
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respectively), the details of the low-momentum behavior of form factors in the integrands
do not affect dramatically the numerical results.

2.4. Results for Finite Temperature and Vanishing Chemical Potential

In this subsection, we analyze, in the context of the above presented nlPNJL approach,
the characteristics of the deconfinement and chiral restoration transitions at finite tempera-
ture and vanishing chemical potential. We consider the parameterizations PA, PB and PC
defined in the previous section, as well as the polynomial and logarithmic Polyakov loop
potentials introduced in Section 2.2, taking the reference temperature T0 as a parameter.
The corresponding numerical results are obtained by solving numerically Equation (43),
with φ8 = 0.

In Figure 2, we show the results for the normalized quark condensates and the traced
Polyakov loop (top), as well as the corresponding susceptibilities (bottom), for the lattice
inspired parameterization PC [80]. Figure 2 (left and right) corresponds to the polynomial
PL potential in Equation (32) and the logarithmic PL potential in Equation (35), respectively.
Regarding the parameter T0, three characteristic values have been considered. As stated in
Section 2.2, the proposed PL potentials are such that T0 turns out to be the deconfinement
transition temperature obtained from LQCD in the pure gauge theory, viz. T0 = 270 MeV.
However, as discussed in Refs. [71,72], this value should be modified when the color gauge
fields are coupled to dynamical fermions. In the case of two and three active flavors, it is
found that T0 gets shifted to 208 and 180 MeV, respectively [71,72]. In Figure 2, we show
the results corresponding to these two values, and for comparison the case T0 = 270 MeV
is also included. From the figure it is clearly seen that both the chiral restoration and
deconfinement transitions proceed at smooth crossovers. In addition, it is found that both
transitions occur at approximately the same critical temperature, as indicated by the peaks
of the corresponding susceptibilities. The curves for the susceptibilities also show that the
transitions turn out to be smoother in the case of the polynomial PL potential.

In the case of the logarithmic PL potential, it can be noticed that as long as T0 decreases
the chiral susceptibility tends to become asymmetric around the peak, being somewhat
broader on the high temperature side. While this could be considered as an indication of
some shift in the chiral restoration critical temperature, even for T0 = 180 MeV, the splitting
between the main peak and the potential second broad peak is less than 10 MeV. For the
polynomial PL potential, it is seen that the peaks of the susceptibilities are somewhat
separated, though this splitting is not larger than a few MeV for the considered T0 range.
It is important to point out that this strong entanglement between chiral restoration and
deconfinement transitions, which also holds for parameterizations PA and PB, occurs in a
natural way within nonlocal models and is in agreement with lattice QCD results. On the
contrary, this feature is usually not observed in local PNJL models, where both transitions
appear to be typically separated by about 20 MeV, or even more (see, e.g., [91,92]). In those
models the splitting can be reduced, e.g., by including an eight-quark coupling [93] or by
considering an “entangled scalar interaction”, in which the effective four-quark coupling
constant is a function of Φ [94,95]. It is also worth noticing that while nlPNJL models
predict in general steeper transitions than the local PNJL model, this feature should not be
understood as a consequence of the nonlocality. In fact, the enhancement of the steepness
arises from the feedback between chiral restoration and deconfinement transitions. This
is supported by the results found in the above-mentioned “entangled” PNJL scheme: if
one includes a Φ-dependent coupling that leads, e.g., to a common critical temperature of
about 175 MeV, it is found that the transitions become steeper, resembling those obtained
within nonlocal PNJL models.
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Figure 2. (Color online) Order parameters (top) and susceptibilities (bottom) at µ = 0 for values of
T0 corresponding to 0, 2 and 3 dynamical quarks. Left (right) panels show the results obtained using
the polynomial (logarithmic) PL potential. All results correspond to parameterization PC. Note that
in the case of the polynomial potential the susceptibilities are multiplied by a factor 2.

On the other hand, although for the cases considered above the critical temperatures
of deconfinement and chiral restoration transitions are basically coincident, the character
of the transitions may be different from one another. This is shown in Figure 3, where
we quote the behavior of the critical temperatures as functions of T0 [80]. In the case of
the polynomial PL potential (left), the transitions are always crossover-like. The critical
temperatures for chiral restoration, Tch (dashed lines), are slightly different from those
of deconfinement, TΦ (dotted lines). The splitting is in all cases lower than 10 MeV and
decreases as T0 grows. For the logarithmic PL potential it is found that both transitions
occur at the same temperature and can be either crossover-like (dash-dotted lines) or
first order (full lines). For parameterizations PA and PB, they become of first order for
values of T0 below ∼ 235 and 190 MeV, respectively, while—as already mentioned—
for the lattice-inspired parameterization PC, they proceed as smooth crossovers for all
considered values of T0. It should be stressed that for T0 = 208 MeV (corresponding to the
N f = 2 models addressed throughout this section) the resulting critical temperatures are in
good agreement with the values obtained from N f = 2 lattice QCD calculations, namely

TLQCD
ch = 173± 8 MeV [96]. Indeed, for the polynomial potential the chiral restoration

transition is found to occur at Tch = 178, 178 and 180 MeV for PA, PB and PC, respectively,
while for the logarithmic potential the corresponding critical temperatures are Tch = 173,
171 and 173 MeV. Regarding lattice QCD results, there has been some debate concerning
the nature of both transitions for the case of two light flavors. While most studies [97–101]
favor a second-order transition in the chiral limit, there are also some results which indicate
that it could be of first order [102,103]. The analysis of nlPNJL models discussed here
appears to favor the second-order scenario.
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Figure 3. Critical temperatures as functions of T0 for parameterizations PA (top), PB (middle) and PC
(bottom), considering polynomial (left) and logarithmic (right) PL potentials. Solid lines correspond
to first order chiral transitions, while dashed (dotted) lines correspond to chiral (deconfinement)
crossover-like transitions. Dash-dotted lines stand for the cases in which both crossover-like transi-
tions coincide.

Another relevant feature of the chiral restoration and deconfinement transitions is
their dependence on the strength of the explicit symmetry breaking induced by the finite
quark masses. The study of this property provides a further test of the reliability of
effective models, since the results can be compared with available lattice QCD calculations.
It fact, for vanishing chemical potential, it has been shown that several chiral effective
models [104–106] are not able to reproduce the behavior of critical temperatures found in
lattice QCD when one varies the parameters that explicitly break chiral symmetry, viz. the
current quark masses or the pion mass in the case of meson models.
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This issue is investigated in the framework of two-flavor nlPNJL models in Ref. [107].
As a first step, the behavior of the pion mass and the pion decay constant at vanishing
temperature were compared with those obtained in the local NJL model and in lattice QCD.
The results are shown in Figure 4. As usual in LQCD literature, the relevant quantities
are plotted as functions of mπ instead of mc. The main reason for this is that mπ is an
observable, i.e., a renormalization scale-independent quantity, whereas mc is scale depen-
dent. Hence, the value of mc is subject to possible ambiguities related to the choice of the
renormalization point, as mentioned in Section 2.3. Figure 4 (left) shows the behavior of the
ratio m2

π/mc as a function of mπ/mphys
π , with mphys

π = 139 MeV. To account for the above
mentioned renormalization point ambiguities, the corresponding quark masses have been
normalized so as to yield the lattice value mMS

u,d ' 4.45 MeV at the physical point [108]. In
the figure, one observes that both NJL and nlNJL models reproduce qualitatively the results
from lattice QCD, showing a particularly good agreement in the case of the nlNJL model for
parameterization PC. However, the situation is different in the case of fπ (Figure 4, right):
while the predictions from nonlocal models follow a steady increase with mπ , in agreement
with lattice results, the local NJL model in general fails to reproduce this behavior. More-
over, it can be seen that the discrepancy cannot be cured even if one allows the coupling
GS to depend on the current quark mass [109,110] (the curves in Figure 4 correspond to
constant values of GS, both for local and nonlocal models). In this way, these results can be
considered as a further indication in favor of the inclusion of nonlocal interactions as a step
towards a more realistic description of low momenta QCD dynamics.
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Figure 4. (Color online) Pion properties at T = 0 as functions of the pion mass in local and nonlocal
NJL-like models. Left and right panels correspond to the ratio m2

π/mc and the pion decay constant
fπ , respectively. Lattice results are taken from Ref. [108], while the local NJL model parameterization
is that given in Refs. [22,109,110].

The above results also indicate that within nonlocal NJL models the change in the
amount of the explicit symmetry breaking can be accounted for by varying only the current
quark mass, i.e., other model parameters do not appear to change significantly with mc.
Having this in mind, the features of deconfinement and chiral restoration transitions
have been studied in nlPNJL models for different values of mc, keeping the coupling
constants and cutoff scales unchanged. The results for the critical temperatures Tch and
TΦ as functions of mπ are displayed in Figure 5, where, for comparison, we also quote
typical curves obtained in the framework of the local PNJL model (here, we consider
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the parameterization in Ref. [22]). Left and right panels correspond to polynomial and
logarithmic PL potentials, respectively. Concerning the value of T0, the results in the top
panels correspond to the pure gauge value T0 = 270 MeV, while the curves in the bottom
panels are obtained considering the coupling of color gauge fields to N f = 2 active quark
flavors, plus some dependence on the current quark mass, as proposed in Ref. [71]. In fact,
this dependence is found to be rather mild, and one gets in practice T0 ' 208 MeV for the
whole range covered by the graphs in the figure.
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Figure 5. (Color online) Critical temperatures as functions of the pion mass for PNJL and nlPNJL
models. (Left) Results for a polynomial PL potential. Dashed and dotted lines correspond to chiral
restoration and deconfinement transition temperatures Tch and TΦ, respectively. (Right) Results for
a logarithmic PL potential. Solid and dash-dotted lines correspond to first-order and crossover-like
transitions, respectively, in which Tch = TΦ. In all four panels, green, blue and red lines correspond to
nlPNJL model parameterizations PA, PB and PC, respectively, while black short-dashed (short-dotted)
lines correspond to PNJL results for Tch (TΦ).

Before discussing the results obtained for nlPNJL models, let us comment on those
corresponding to the local PNJL model. In Figure 5, it is seen that already at the physical
value mπ = mphys

π the model predicts a noticeable splitting between Tch (short-dashed
lines) and TΦ (short-dotted lines). In addition, the growth of Tch with mπ is found to be
more pronounced than that of TΦ, which implies that the splitting between both critical
temperatures becomes larger if mπ is increased. This is not supported by existing lattice
results [111,112], which indicate that both transitions occur at approximately the same
temperature up to values of mπ even larger than those considered here. Comparing left
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and right panels, it is seen that the splitting is larger for the PNJL model that includes a
logarithmic Polyakov-loop potential.

We turn now to the curves obtained within nonlocal PNJL models [107]. By looking
at the graphs in Figure 5, it is observed that all parameterizations lead to qualitatively
similar results. Moreover, contrary to the situation in the local PNJL model, in nlPNJL
models both the chiral restoration and deconfinement transitions occur at basically the
same temperature for all considered values of mπ . Comparing the results for the two
alternative PL potentials, it is seen that the main qualitative difference is given by the fact
that in the case of the logarithmic potential (Figure 5, right) the character of the transition
changes from crossover-like to first order when the pion mass exceeds a critical value.
Crossover and first order transition regions are indicated by dashed-dotted and solid lines,
respectively.

Let us analyze in more detail the pion mass dependence of the critical temperatures.
For T0 = 270 MeV, it is seen that the results from nlPNJL models can be quite accurately
adjusted through linear functions

Tc(mπ) = A mπ + B (54)

where Tc denotes either Tch or TΦ. This is in agreement with the findings of LQCD
calculations in Refs. [111,112]. The slope parameter A can be fitted for all considered nlPNJL
model parameterizations and Polyakov loop potentials in Figure 5, leading to values in the
range 0.06–0.07 [107]. For comparison, most lattice calculations find A . 0.05 [111,113–115],
while, according to the analyses in Refs. [112,116], the value could be somewhat above this
bound. Thus, the slope parameter predicted by nlPNJL models appears to be compatible
with lattice estimates. This can be contrasted with the results obtained within other effective
chiral models, where one finds a strong increase of the chiral restoration temperature with
mπ [104–106]. For example, within the chiral quark model studied in Ref. [106], one has
A = 0.243. Finally, let us consider the results in the lower panels of Figure 5, which
correspond to T0 ' 208 MeV. As shown in the figure, the lowering of T0 leads to an overall
decrease of the transition temperatures, which keep the rising linear dependence on mπ .
However, the slope parameter is found to be reduced by about 15–20%. In addition, it is
found that in all cases the transition becomes steeper, which leads to lower values of the
pion mass threshold at which it starts to be of first order. For example, for parameterization
PC, it is found that the transition becomes of first order already at mπ ' 500 MeV (i.e.,
somewhat above the range shown in Figure 5) in the case of the polynomial PL potential,
and at about one half of this value for the logarithmic one. Lattice QCD results also predict
the onset of a first order phase transition for mπ larger than some critical value, which is
found to be of the order of a few GeV [117]. In any case, the estimation of this critical mass
is rather uncertain in nlPNJL models, depending crucially on the form of the PL potential.

We conclude this subsection by quoting nlPNJL model results for some selected
thermodynamical quantities, viz. the normalized pressure p/T4, the normalized entropy
s/sSB and the trace anomaly (e − 3p)/T4. These can be obtained from the regularized
thermodynamic potential through the relations

p = −ΩMFA
reg s =

∂p
∂T

e = − p + T s . (55)

The massless Stefan–Boltzmann limit for the entropy for N f = 2 and Nc = 3 is given
by sSB = 74π2T3/45. The numerical results obtained for the parameterizations introduced
in Section 2.3 are shown in Figure 6, where the left and right panels correspond to the
polynomial and logarithmic PL potentials, respectively. Most of these quantities have been
also calculated within the Polyakov–quark–meson model [71], showing a thermal behavior
similar to the one observed in Figure 6 for parameterization PC. It is worth noticing that the
curves for PB show some oscillation at about T ∼ 250 MeV, which is not observed for the
other parameterizations. This is particularly clear for the case of the normalized entropy.
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In fact, as mentioned in Refs. [118,119], in the absence of the couplings between the quarks
and the PL, thermodynamic instabilities might appear in the context of nonlocal models for
some particular form factors. Although the couplings to the PL largely reduce the impact
of these instabilities on thermodynamic quantities, it is observed that in the case of PB they
still lead to sizeable effects. A detailed analysis [120] shows that the oscillatory behavior is
due to the pole structure of the WFR function Z(p) that arises from the exponential shape
of the form factor f (p). From this point of view, it can be concluded that the power-like
behavior for f (p) used in parameterization PC appears to be a more convenient choice (the
instabilities are also not found in the case of parameterization PA, for which Z(p) = 1).
Another point analyzed in Ref. [120] in connection with the couplings leading to quark
WFR concerns the effect of medium-induced Lorentz symmetry breaking. As a general
conclusion, it is found that this effect does not modify significantly the phase transition
features and the behavior of thermodynamic functions.
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Figure 6. (Color online) Normalized pressure p/T4 (top), normalized entropy s/sSB (middle) and
trace anomaly (e− 3p)/T4 (bottom) as functions of the temperature, for nlPNJL model parameteri-
zations PA, PB and PC. Left (right) panels correspond to the polynomial (logarithmic) PL potential.
In all cases, T0 = 208 MeV has been used.



Symmetry 2021, 13, 121 21 of 92

A final aspect to be commented regards the steepness of the curves in the transition
region. As stated above, it is seen that for the case of the polynomial potential the transition
is somewhat smoother than for the logarithmic one. However, it is worth mentioning
that the observed behavior may be softened after the inclusion of mesonic corrections
to the Euclidean action, since when the temperature is increased light meson degrees of
freedom should get excited before quarks excitations arise. For nlPNJL models, this has
been analyzed in Refs. [59,61,121]. In any case, the critical temperatures should not be
modified by the incorporation of meson fluctuations.

2.5. Results for Finite Temperature and (Real) Chemical Potential

In this subsection, we analyze the main features of the phase diagram in the µ− T
plane in the context of the above discussed nlPNJL models. For now, we consider the
chemical potential to be a real quantity, as it should be for a physical system. However,
let us recall that, as mentioned in Section 1, the region of nonzero real µ is not fully
accessible from first principle lattice QCD calculations. On the contrary, for a purely
imaginary chemical potential these calculations become feasible, providing a further test of
the predictive capacity of effective models for low energy QCD. We come back to this issue
in Section 2.6. In addition, we stress that here scalar field VEVs and quark condensates are
assumed to be translational invariant quantities. The possible existence of inhomogeneous
phase regions is studied in Section 5.3.

Let us start by analyzing the behavior of deconfinement and chiral restoration order
parameters as functions of the temperature for various chemical potentials. The results
obtained in nlPNJL models are illustrated in Figure 7, where we display the normalized
chiral condensate 〈q̄q〉/〈q̄q〉T=0 and the traced Polyakov loop Φ (top), as well as their
associated susceptibilities (bottom), for parameterization PC. Left (right) panels correspond
to polynomial (logarithmic) PL potentials, with T0 = 208 MeV. The representative values
µ = 150 and 240 MeV, which lead to different types of transitions, have been chosen.

Figure 7. (Color online) Order parameters and susceptibilities as functions of the temperature for
two representative values of the quark chemical potential. Left (right) panels show the results for
polynomial (logarithmic) PL potentials, with T0 = 208. All curves correspond to parameterization PC.
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Figure 7 shows that for µ = 150 MeV there is a critical temperature at which the chiral
condensate decreases quite fast, signaling the restoration of chiral symmetry. At about
the same temperature, Φ starts to grow, indicating the beginning of the deconfinement
transition. Both transitions are found to be crossover-like for this chemical potential. By
looking at the susceptibilities, it is seen that for the logarithmic PL potential both peaks
coincide, while in the case of the polynomial potential there is a small difference between
the critical temperatures associated to both transitions. Such a behavior is very similar to
the one found at µ = 0. By increasing the chemical potential, one arrives at a certain value
µCEP for which the chiral condensate starts to be discontinuous, i.e., the chiral restoration
transition becomes of first order. The point in the µ − T phase diagram at which this
happens is known as “critical end point” (CEP). As shown in Ref. [81], for nlPNJL models,
the transition is of second order at this point. The behavior of the order parameters for
µ > µCEP is illustrated in Figure 7 considering the case µ = 240 MeV. It is seen that the first
order character of the chiral restoration transition also induces a discontinuity in the order
parameter for deconfinement. One observes, however, that, whereas the PL susceptibility
presents a divergent behavior at this point, the order parameter Φ remains quite close
to zero. Therefore, as mentioned in Section 2.2, in this region of the phase diagram, it is
convenient to introduce an alternative definition for the deconfinement critical temperature
TΦ. One reasonable way of determining this temperature is by requiring that Φ reaches
a value in the range between 0.3 and 0.5, which could be assumed to be large enough so
as to denote deconfinement [81]. Note that the transition is smooth, and occurs at higher
temperatures than the chiral restoration one. This implies the existence of a phase in which
quarks remain confined (Φ . 0.3) even though chiral symmetry is already restored. The
latter is usually referred to as a “quarkyonic” phase [122–124].

The phase diagrams corresponding to the three nonlocal NJL model parameterizations
introduced in Section 2.3 are displayed in Figure 8. The top, middle and bottom panels
show the results for PA, PB and PC, respectively, while left (right) panels correspond to
the polynomial (logarithmic) potentials. In each panel, the diagrams associated to both
T0 = 270 MeV and T0 = 208 MeV are shown. Solid and dashed lines indicate the critical
temperatures for first order and crossover-like chiral restoration transitions, dotted lines
correspond to the peaks of the PL susceptibility, and the green bands indicate the regions in
which 0.3 ≤ Φ ≤ 0.5. It is observed that, as in the µ = 0 case, the deconfinement and chiral
restoration transitions occur at basically the same critical temperature in the whole range
of values of µ for which the chiral transition is crossover-like. In fact, for the logarithmic
potential, both transitions overlap, which is indicated by the dash-dotted lines in Figure 8
(right). For the polynomial potential, the splitting between the critical temperatures Tch and
TΦ does not exceed the values obtained for µ = 0, namely |Tch − TΦ| . 6 MeV. In principle,
the dotted lines (peaks of the PL susceptibility) could also be extended to µ > µCEP; at
µ = µCEP, they are found to suffer a discontinuity, after which they fall within the green
bands. These lines are not shown in Figure 8 since, as stated, in that region we find it
preferable to define the deconfinement transition temperatures through the bands where Φ
lies in the range from 0.3 to 0.5.

Concerning the character of the transitions, it is seen that the case of PA and a loga-
rithmic PL potential, with T0 = 208 MeV, is the only one for which the transition is always
of first order. For all other parameterizations and PL potentials, there is a CEP at which
the chiral transition changes its character from crossover to first order as µ grows. Once
the transition becomes of first order (i.e., for µ > µCEP) the critical temperatures for chiral
restoration start to decrease quite fast as µ increases, reaching the T = 0 axis at a certain
value value µc(0). Beyond that critical chemical potential, the system lies in a phase where
chiral symmetry is approximately restored for all values of T. However, as mentioned
above, for temperatures below the green bands, quarks are still confined and in these
regions the system is in the quarkyonic phase. Similar phase transition features have been
found within other effective approaches for low energy QCD, as, e.g., the quark–meson and
Polyakov-quark–meson models, both at the mean field level [71] and after the inclusion
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of meson fluctuations [125–127]. For those models, it is seen that the inclusion of beyond
mean field corrections can affect significantly the location of the CEP in the µ− T plane.
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Figure 8. (Color online) Phase diagrams for parameterizations PA (top), PB (middle) and PC (bottom), considering
polynomial (left) and logarithmic (right) PL potentials, with both T0 = 270 and 208 MeV. Solid lines correspond to first
order chiral transitions, while dashed (dotted) lines correspond to chiral (deconfinement) crossover-like transitions. Dash-
dotted lines stand for the cases in which both crossover-like transitions coincide. The green bands indicate the regions in
which 0.3 ≤ Φ ≤ 0.5.
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The position of the most relevant points in the phase diagrams are quoted in Table 3.
Given a value of T0, the main difference among parameterizations PA, PB and PC resides in
the location of the CEP. In general, parameterization PA—which does not account for WFR
effects—leads to lower values of µCEP. Comparing the results of PB and PC, we observe
that the latter leads to somewhat lower values of TCEP and higher values of µCEP. The
position of the critical end point is also quite sensitive to the amount of explicit breakdown
of chiral symmetry (i.e., the size of current quark masses). This is illustrated in Figure 9,
where we plot the values of TCEP (left) and µCEP (right) as functions of the ratio mπ/mphys

π .
The results correspond to the logarithmic PL potential, with T0 = 208 MeV. As discussed in
Section 2.4, the values of mπ are obtained by varying the value of the current quark mass mc

while keeping fixed other model parameters. Note that, for a pion mass mπ ∼ 1.75 mphys
π ,

a second CEP appears at low chemical potentials. This is due to the fact that the phase
transition at µ = 0 becomes of first order, and consequently a crossover line connects the
two CEPs. As mπ increases, this crossover line gets shortened, until at mπ/mphys

π ∼ 2
the two CEPs meet. Beyond that value, the whole transition line becomes of first order.
Although it is likely that the predicted values for these critical pion masses are too low,
it would be interesting to verify if this behavior of the CEP position as a function of the
amount of explicit symmetry breaking is supported by other model calculations.

Table 3. Positions of some characteristic points in the µ− T phase diagram for various nlPNJL model
parameterizations. All values are given in MeV.

T0 = 208

PA PB PC

Pol Log Pol Log

Tχ(0) 178 174 178 171 181 173
TΦ(0) 175 174 174 171 175 173
µCEP 135 − 180 135 227 213
TCEP 162 − 147 162 125 141
µc(0) 322 322 312 312 298 298

T0 = 270

PA PB PC

Pol Log Pol Log Pol Log

Tχ(0) 210 210 210 210 214 215
TΦ(0) 206 210 206 210 210 215
µCEP 160 132 193 182 232 235
TCEP 181 198 165 182 142 154
µc(0) 322 322 312 312 298 298
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Figure 9. (Color online) CEP temperature and chemical potential as functions of the pion mass. The
results correspond to the logarithmic PL potential, with T0 = 208 MeV.

2.6. Extension to Imaginary Chemical Potential

In this section, we address the extension of previous analyses to the case of imaginary
chemical potential. As mentioned above, this deserves significant theoretical interest, since
for imaginary µ lattice QCD calculations do not suffer from the sign problem [128–131],
and the corresponding results can be compared with the predictions arising from effective
models. It is seen that lattice data, as well as analyses based on the exact renormalization
group equations [132], suggest a close relation between the deconfinement and chiral
restoration transitions for imaginary chemical potentials. In addition, the behavior of
physical quantities in the region of imaginary chemical potential is expected to have
implications on the QCD phase diagram at finite real values of µ [133–136].

As shown by Roberge and Weiss (RW) [137], the QCD thermodynamic potential
in the presence of an imaginary chemical potential µ = iθT is invariant under the so-
called extended Z3 symmetry transformations, which are given by a combination of a
Z3 transformation of the quark and gauge fields and a shift θ → θ + 2kπ/3. The RW
symmetry is a remnant of the Z3 symmetry that exists in the pure gauge theory. In QCD
with dynamical quarks, if the temperature is larger than a certain value TRW , it can be seen
that three Z3 vacua appear. They can be classified according to the corresponding Polyakov
loop phases, viz. ϕ, ϕ + 2π/3 and ϕ + 4π/3. It should be stressed that, as mentioned in
Section 2.2, for imaginary chemical potential, the restriction of having Φ ∈ R in order
to get a real thermodynamic potential is lost. Thus, both φ3 and φ8 can be nonvanishing.
For T > TRW , there is a first-order phase transition at θ = π/3 mod 2π/3—known as the
“Roberge–Weiss transition”—in which the vacuum jumps to one of its Z3 images. The point
at the end of the RW transition line in the (T, θ) plane, i.e., (T, θ) = (TRW , π/3), is known
as the “RW end point”. The order of the RW transition at the RW end point has been subject
of considerable interest in the last years in the framework of lattice QCD [138–143], due to
the implications it might have on the QCD phase diagram at finite real chemical potential.
According to N f = 2 LQCD calculations, it appears that the RW end point is first order for
realistically small values of the current quark mass.
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It is not difficult to show that the RW symmetry is also present in nlPNJL models [79,144].
This can be done as follows. The last two terms of the thermodynamic potential in the r.h.s.
of Equation (40) are clearly invariant under the transformations

Φ(θ) → Φ(θ) exp(−i 2 k π/3) θ → θ + 2 k π/3 . (56)

To check the invariance of the first term, notice that the first of the transformations in
Equation (56) can be obtained through

φ3(θ) → φ3(θ) φ8(θ) → φ8(θ)− 2 k π T/
√

3 . (57)

Taking into account Equations (56) and (57), from the definition of (ρc
n,~p)

2 in Equation (40), it is

easy to see that any sum of the form ∑c=r,g,b F[(ρc
n,~p)

2], where F is an arbitrary function, is
invariant under the extended Z3 symmetry transformations. The invariance of the terms
introduced through the regularization of the thermodynamic potential can be shown in
a similar way. As a further evidence of the Z3 invariance of the model, it is interesting to
study the behavior of the order parameters as functions of T and θ. For this analysis, it is
useful to introduce an “extended traced Polyakov loop” Ψ, defined by Ψ = exp(iθ)Φ. The
latter is invariant by construction under the transformations in Equation (56), and its phase
ψ can be taken as order parameter of the RW transition [145,146].

In what follows, we discuss some of the results obtained using the nlPNJL model
parameterizations introduced in Section 2.3 [79,80]. Similar results arising from some
alternative parameterization are quoted in Ref. [144], while results from the Polyakov–
quark–meson model, including meson fluctuations, can be found in Ref. [147]. First, let
us keep T constant and verify the periodicity of thermodynamic quantities as functions
of θ. For definiteness, we concentrate for now in the case of the logarithmic potential. In
Figure 10, we display, from top to bottom, the modulus of the extended PL, the phase ψ, the
mean field value of the σ1 field, the chiral condensate and the thermodynamic potential, as
functions of θ/(π/3) for various values of T. The curves correspond to parameterization
PB, for T0 = 208 MeV. Qualitatively similar results are obtained for PC with T0 = 208 MeV,
as well as for all three parameterizations PA, PB and PC with T0 = 270 MeV. In the case of
PA with T0 = 208 MeV, although the same periodicity is observed, all curves turn out to be
discontinuous for temperatures in the transition region. For T > TRW , one finds the above
mentioned RW first-order phase transition at θ = π/3, which is signaled by a discontinuity
in the phase ψ of the extended Polyakov loop.

On the other hand, by looking at the behavior of the order parameters and susceptibil-
ities as functions of the temperature, one can find signals of both deconfinement and chiral
symmetry restoration transitions. This is clearly seen in Figure 11, where we show the
curves for the normalized quark condensate, the traced PL and the corresponding suscepti-
bilities χch and χΦ as functions of T, taking θ fixed at the representative values θ = π/6
and π/3. The results correspond once again to parameterization PB with T0 = 208 MeV.
For θ = π/6, both the deconfinement and chiral restoration transitions are found to be
crossover-like. Moreover, it can be seen that the susceptibilities associated to both order
parameters show peaks at a common temperature. This can be interpreted as a signal
indicating an entanglement between the transitions. However, notice that χch shows at a
larger temperature an additional, broader peak. For θ = π/3, one observes at T ' 190 MeV
a jump in Φ that can be understood as a first order deconfinement phase transition. How-
ever, in the case of the chiral condensate, the corresponding gap is relatively small and,
moreover, beyond this discontinuity one still finds the broad peak in χch. Consequently,
we find it reasonable to identify the chiral restoration temperature through the maximum
of this broad peak. We conclude that for θ = π/3 only the deconfinement transition
is of first order, while the chiral restoration still proceeds as a crossover. For PC with
T = 208 MeV and for all three parameterizations with T0 = 270 MeV, the situation is very
similar, whereas for PA with T0 = 208 MeV the transition is of first order for any value of θ
in the considered range of temperatures.
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Figure 10. (Color online) Results for some relevant quantities as functions of θ/(π/3), for fixed
values of the temperature. The observed periodicity is due to the fact that the nlPNJL model is
invariant under the extended Z3 symmetry transformations. The results correspond to PB and a
logarithmic PL potential, with T0 = 208 MeV.
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Figure 11. (Color online) Order parameters for the deconfinement and chiral restoration transitions
(top) and associated susceptibilities (bottom) as functions of T, for θ = π/6 and θ = π/3. The results
correspond to parameterization PB, with T0 = 208 MeV.

In Figure 12, we quote the critical temperatures as functions of θ (normalized to π/3)
for parameterizations PA, PB and PC [79]. The results correspond to the logarithmic PL
potential, with T0 = 208 MeV. For comparison, values obtained from LQCD calculations
taken from Ref. [131] are also shown. They have an error of about 10% due the uncertainty
in the determination of Tch(θ = 0). In the figure, it is seen that the predictions of the nlPNJL
model for the deconfinement critical temperatures are compatible with LQCD data. More-
over, the values of TRW obtained within the model are found to be 191, 188 and 191 MeV
for PA, PB and PC, respectively, in good agreement with the value TRW = 185(9) MeV
arising from N f = 2 LQCD calculations [131] (for N f = 2 + 1, LQCD results seem to favor
a slightly larger value [148]).

It is also seen that there is a splitting between chiral restoration and deconfinement
critical temperatures, which gets larger when θ increases. As already mentioned, there is a
critical value θCEP ∼ 0.7× π/3 above which the deconfinement transition is of first order
for all three parameterizations. Therefore, it is found that in all cases the transition lines
are of first order when they reach the RW end point. This implies that the RW end point is
a triple point, and the RW transition is also of first order there. This can be clearly seen in
Figure 13, which shows the behavior of the phase ψ as a function of T, for θ = π/3.
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Figure 12. Critical temperatures as functions of θ for parameterizations PA, PB and PC. First-order transitions are indicated
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Figure 13. Phase of the extended PL loop Ψ = exp(iθ)Φ as a function of T for θ = π/3. The results
correspond to parameterization PC and the logarithmic PL potential, with T0 = 208 MeV.

Up to now, we discuss the results obtained considering a logarithmic PL potential. For
the polynomial potential, the main novel qualitative feature is that there is no first-order
deconfinement transition. As a consequence, for this PL potential, the RW transition at
the end point is of second order for all considered parameterizations. This appears to
be in contradiction with LQCD results reported in Refs. [138–141], which indicate that
such a transition is of first order for a physical pion mass. Concerning the predictions
for TRW/Tch(θ = 0), they are somewhat larger than those found for the logarithmic PL
potential. On the other hand, the ratios Tch(θ = π/3)/Tch(θ = 0) for T0 = 208 MeV
(T0 = 270 MeV) are similar (larger) to those obtained using the logarithmic potential.

2.7. Meson Properties at Finite Temperature

To conclude this section, in this last subsection, we concentrate on the thermal behavior
of some σ and π meson properties. In the context of nlPNJL models, the relevant theoretical
expressions can be obtained from those given in Section 2.1 using the Matsubara formalism,
as described in Section 2.2. In this way, the finite temperature extension of the quadratic
term in the Euclidean action [see Equation (13)] reads

Squad
E =

1
2 ∑

M=σ,σ′ ,π

∫
q,m

GM(~q 2, ν2
m) δM(qm) δM(−qm) (58)
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where qm = (~q, νm), with νm = 2πmT. Here, the notation

∫
q,m
≡ T

∞

∑
m=−∞

∫ d3q
(2π)3 (59)

is used. For charged and neutral pions, one has

Gπ(~q 2, ν2
m) =

1
GS
− 8 ∑

c

∫
p,n

g
(

pnc +
qm

2

)2 Z(pnc + qm)Z(pnc)

D(pnc + qm)D(pnc)

×
[

p2
nc + pnc · qm + M(pnc + qm)M(pnc)

]
(60)

where pnc = (~p, (2n + 1)πT − φc) and D(p) = p2 + M(p)2. In the case of the σ and σ′

mesons, the GM functions are given by

G( σ
σ′)
(~q 2, ν2

m) =
Gσ1σ1(~q

2, ν2
m) + Gσ2σ2(~q

2, ν2
m)

2

∓

√
[Gσ1σ2(~q 2, ν2

m)]
2 +

[
Gσ1σ1(~q 2, ν2

m)− Gσ2σ2(~q 2, ν2
m)

2

]2

(61)

where

Gσ1σ1(~q
2, ν2

m) =
1

GS
− 8 ∑

c

∫
p,n

g
(

pnc +
qm

2

)2 Z(pnc + qm)Z(pnc)

D(pnc + qm)D(pnc)

×
[

p2
nc + pnc · qm −M(pnc + qm)M(pnc)

]
,

Gσ2σ2(~q
2, ν2

m) =
1

GS
+

8
κ2

p
∑

c

∫
p,n

(
pnc +

qm

2

)2
f
(

pnc +
qm

2

)2 Z(pnc + qm)Z(pnc)

D(pnc + qm)D(pnc)

×
[

p2
nc + pnc · qm −M(pnc + qm)M(pnc) +

p2
nc(pnc + qm)2 − (p2

nc + pnc · qm)2

2(pnc + qm/2)2

]
Gσ1σ2(~q

2, ν2
m) = − 8

κ2
p

∑
c

∫
p,n

g
(

pnc +
qm

2

)
f
(

pnc +
qm

2

) Z(pnc + qm)Z(pnc)

D(pnc + qm)D(pnc)

×
(

pnc +
qm

2

)
· [pnc M(pnc + qm) + (pnc + qm)M(pnc)] . (62)

As in the T = 0 case discussed in Section 2.1, the meson masses can be found by
looking for the poles of the corresponding propagators. In the present case, they are given
by the solutions of the equations

GM(−m2
M, 0) = 0 . (63)

The masses obtained in this way correspond to the spatial screening masses associated
with Matsubara zero modes. They determine a behavior ∼ exp(−mM r) in configuration
space, i.e., the reciprocals m−1

M describe the persistence lengths of zero modes in equilibrium
with the thermal bath. In fact, these masses are the quantities that are usually studied
in LQCD calculations [96]. It should be noted that one has a screening mass for each
Matsubara mode.

Another relevant physical quantity to be studied is the pion decay constant fπ . Its
finite temperature behavior provides another way to characterize the chiral restoration
transition. To obtain the corresponding expression at finite temperature, we replace F0 in
Equation (27) by

F0(~q 2, ν2
m) = 8 ∑

c

∫
p,n

g
(

pnc +
qm

2

) Z(pnc + qm)Z(pnc)

D(pnc + qm)D(pnc)

×
[

p2
nc + pnc · qm + M(pnc + qm)M(pnc)

]
(64)
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to be evaluated at (~q 2, ν2
m) = (−m2

π , 0).
Let us analyze the numerical results obtained for the above meson properties in

the context of nlPNJL models. We start by discussing the behavior of σ and π meson
masses. As mentioned in Section 2.3, at T = 0, one gets mσ = 683, 622 and 554 MeV for
parameterizations PA, PB and PC, respectively, while the value mπ(T = 0) = 139 MeV is
taken in all cases as one of the inputs for the determination of the model parameters. In
Figure 14, we show the behavior of σ and π masses as functions of T/Tch, for polynomial
(left) and logarithmic (right) PL potentials, taking T0 = 208 MeV. In each panel, the curves
corresponding to PA, PB and PC are displayed. Starting from T = 0, it is seen that if the
temperature is increased the masses remain almost constant up approximately the chiral
restoration critical temperature. Close to that temperature, the σ mass shows a sudden drop
and the π mass starts to increase, and both curves meet at T & Tch. Then, the masses of
both chiral partners grow together towards their asymptotic value 2πT, associated with an
uncorrelated qq̄ pair [149,150]. By analyzing the curves in more detail, it can be seen that for
the largest temperature considered in the graph such a limit has not been reached yet. This
is due to the fact that for T/Tch ∼ 1.4 the contribution of the PL parameter φ3 to the quark
screening masses still is nonnegligible. In fact, after the restoration of chiral symmetry,
the curves in the figure grow according to mM = 2(πT − φ3), behaving as straight lines
with approximately the same slope. Finally, it should be noted that, in the right panel
(corresponding to the logarithmic potential), there is a discontinuity in the masses for
parameterization PA. This is associated with the fact that the chiral restoration transition is
of first order in that case. Except for this particularity, the thermal behavior of the σ and π
masses is qualitatively similar in all considered cases. The results for T0 = 270 MeV, which
also include medium induced Lorentz braking effects, can be found in Ref. [120]. They
turn out to be very similar to those shown in Figure 14.
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Figure 14. (Color online) Masses of σ and π mesons as functions of T/Tch for polynomial (left) and
logarithmic (right) PL potentials, with T0 = 208 MeV. In each panel, the results for parameterizations
PA, PB and PC are shown.

Finally, in Figure 15, we show the temperature dependence of the pion decay constant
fπ , for the three parameterizations under consideration. Left and right panels correspond
to polynomial and logarithmic PL potentials, respectively. It is found that, again, the only
case that presents a distinct behavior is that of PA with the logarithmic PL potential, where
the curves show a discontinuity at the transition temperature.
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Figure 15. (Color online) Pion decay constant fπ as a function of T/Tch for polynomial (left) and logarithmic (right) PL potentials,
with T0 = 208 MeV. In each panel, the results for parameterizations PA, PB and PC are shown.

3. Two-Flavor Nonlocal NJL Model Including Vector and Axial Vector Quark Currents

In this section, we study an extension of the previously considered nlNJL models in
which vector and axial vector quark current–current interactions are included. This allows
for a description of vector and axial vector meson phenomenology. The cases of both zero
and finite temperature and/or quark chemical potential are discussed.

3.1. Formalism at Vanishing Temperature and Chemical Potential
3.1.1. Effective Action and Mean Field Equations

As stated, in what follows, we analyze a two-flavor nlNJL chiral quark model that
includes nonlocal vector and axial vector quark–antiquark currents. This type of model is
studied, e.g., in Refs. [151–154]. We consider an effective Euclidean action given by [151]

SE =
∫

d4x
{

ψ̄(x)(− i/∂ + mc)ψ(x)− GS
2

[
jS(x)jS(x) +~P(x) ·~P(x) + jR(x)jR(x)

]
− GV

2

[
~Vµ(x) ·~Vµ(x) +~A µ(x) ·~A µ(x)

]
− G0

2
j 0
Vµ(x) j 0

Vµ(x)− G5

2
j 0
A µ(x) j 0

A µ(x)
}

. (65)

As in Section 2, we work in the isospin limit; thus, we assume the current mass to be
the same for u and d quarks. The model includes the four-fermion couplings studied in
Section 2.1.1 [see Equations (1) and (2)], plus additional vector and axial vector pieces. The
new quark–antiquark currents read

~Vµ(x) =
∫

d4z H(z) ψ̄
(

x +
z
2

)
~τγµψ

(
x− z

2

)
~A µ(x) =

∫
d4z H(z) ψ̄

(
x +

z
2

)
~τγµγ5ψ

(
x− z

2

)
j 0
Vµ(x) =

∫
d4z H0(z) ψ̄

(
x +

z
2

)
γµψ

(
x− z

2

)
j 0
A µ(x) =

∫
d4z H5(z) ψ̄

(
x +

z
2

)
γµγ5ψ

(
x− z

2

)
(66)

where the functions H(z), H0(z) and H5(z) are covariant nonlocal form factors. Notice
that, to guarantee chiral invariance, the couplings involving the currents~Vµ and~A µ have
to carry the same form factorH(z).
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As discussed in Section 2.1.1, for the study of meson phenomenology, it is convenient
to perform a bosonization of the fermionic theory. In the present case, this is done by
introducing the auxiliary bosonic fields σ1(x), σ2(x) and πa(x) previously considered in
Section 2, as well as new fields v0

µ(x), va
µ(x) (vector) and a0

µ(x), aa
µ(x) (axial vector), where

indices a run from 1 to 3. After integrating out the fermion fields, the partition function can
be written as

Z =
∫

Dσ1 Dσ2 D ~π D v0
µ D a0

µ D~vµ D~aµ exp
(
− Sbos

E
)

(67)

where Sbos
E stands for the Euclidean bosonized action. In momentum space, the latter is

given by

Sbos
E = − ln detD +

∫ d4q
(2π)4

{
1

2GS
[σ1(q)σ1(−q) + ~π(q) · ~π(−q) + σ2(q)σ2(−q)]

+
1

2GV

[
~vµ(q) ·~vµ(−q) +~aµ(q) ·~aµ(−q)

]
+

1
2G0

v0
µ(q)v

0
µ(−q) +

1
2G5

a0
µ(q)a0

µ(−q)
}

(68)

where the operator D(p, p′) reads

D(p, p′) = (2π)4δ(4)(p− p′)(/p + mc) + g( p̄)
[

σ1(p− p′) + iγ5~τ · ~π(p− p′)
]

− f ( p̄)
/̄p
κp

σ2(p− p′) + h( p̄) γµ

[
~τ ·~vµ(p− p′) + γ5~τ ·~aµ(p− p′)

]
+ h0( p̄) γµ v0

µ(p− p′) + h5( p̄) γµγ5 a0
µ(p− p′) (69)

with p̄ ≡ (p + p′)/2. The functions f (p), g(p), h(p), h0(p) and h5(p) stand for
the Fourier transforms of the form factors entering the nonlocal currents. Without loss
of generality, the coupling constants can be chosen in such a way that the form factors
are normalized to f (0) = g(0) = h(0) = h0(0) = h5(0) = 1. Next, the bosonic fields
can be expanded around their vacuum expectation values, φ(x) = φ̄ + δφ(x). As done
in Section 2.1.1, on the basis of charge, parity and Lorentz symmetries, it is assumed
that in vacuum only σ1(x) and σ2(x) have nontrivial translational invariant mean field
values. These are denoted by σ̄1 and κp σ̄2, respectively, while vacuum expectation values
of the remaining bosonic fields are taken to be zero. Notice that, as discussed below,
at nonvanishing chemical potential Lorentz symmetry is broken, and the mean field
expectation value of v0

4(x) can also be nonzero. Following similar steps as those described
in Section 2.1.1, the bosonized effective action in Equation (68) can be expanded in powers
of meson fluctuations as

Sbos
E = SMFA

E + Squad
E + . . . (70)

It turns out that the mean field piece SMFA
E is the same as the one given in Equation (10).

Therefore, the corresponding gap equations coincide with Equations (18) and (19). As
found in Section 2.1.1, the mean field quark propagator is given by

S0(p) = D0(p)−1 =
Z(p)

/p + M(p)
(71)

with

Z(p) = (1− σ̄2 f (p))−1 M(p) = Z(p)(mc + σ̄1 g(p)) . (72)

3.1.2. Meson Masses and Decay Constants

In this subsection, we discuss the analytical expressions to be used for the calculation
of basic meson phenomenological quantities, such as masses and decay constants. It is
important to notice that pion observables, already calculated within the nonlocal NJL
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approach in Section 2.1.3, need to be revisited owing to the mixing between pion and axial
vector fields.

As discussed in Section 2.1.3, the meson masses can be obtained from the piece of the
Euclidean action that is quadratic in the bosonic fields, Squad

E . In the present case, one has

Squad
E =

1
2

∫ d4q
(2π)4

{
Gσ(q2) δσ(q) δσ(−q) + Gσ′(q

2) δσ′(q) δσ′(−q)

+ Gπ(q2) δ~π(q) · δ~π(−q)− i Gπa(q2)
[
qµ δ~aµ(−q) · δ~π(q)− qµ δ~aµ(q) · δ~π(−q)

]
+ G0 µν(q2) δv0

µ(q) δv0
ν(−q) + G5 µν(q2) δa0

µ(q) δa0
ν(−q)

+ Gv µν(q2) δ~vµ(q) · δ~vν(−q) + Ga µν(q2) δ~aµ(q) · δ~aν(−q)
}

(73)

where the functions GM(q2), M = σ, σ′, π, . . . include one-loop integrals arising from the
fermionic determinant in the bosonized action. The analysis of the scalar meson sector is
similar to the one discussed in Section 2.1.1, i.e., the mass eigenstates δσ and δσ′ are defined
as linear combinations of δσ1 and δσ2 as in Equation (14). Moreover, the expressions for
Gσ(q2) and Gσ′(q2) are the same as those given by Equations (16)–(17). To analyze the
vector meson sector, one has to take into account the tensors Gv µν, Ga µν, G0 µν and G5 µν.
From the expansion of the fermionic determinant, one gets [151]

Gv µν(q2) = Gρ(q2)

(
δµν −

qµqν

q2

)
+ L+(q2)

qµqν

q2

Ga µν(q2) = Ga1(q
2)

(
δµν −

qµqν

q2

)
+ L−(q2)

qµqν

q2 (74)

where

G( ρ
a1
)(q

2) =
1

GV
− 8Nc

∫ d4 p
(2π)4 h(p)2 Z(p+)Z(p−)

D(p+)D(p−)

[
p2

3
+

2(p · q)2

3q2 − q2

4
±M(p−)M(p+)

]
, (75)

L±(q2) =
1

GV
− 8Nc

∫ d4 p
(2π)4 h(p)2 Z(p+)Z(p−)

D(p+)D(p−)

[
p2 − 2(p · q)2

q2 +
q2

4
±M(p−)M(p+)

]
, (76)

with p± = p± q/2. The functions Gρ,a1(q
2) and L±(q2) correspond to the transverse and

longitudinal projections of the vector and axial vector fields, describing meson states with
spin 1 and 0, respectively. Thus, the masses of the physical ρ0 and ρ± vector mesons (which
are degenerate in the isospin limit) can be obtained by solving the equation

Gρ(−m2
ρ) = 0 . (77)

In addition, to obtain the physical states, the vector meson fields have to be normal-
ized through

δva
µ(q) = Z1/2

ρ ṽa
µ(q) (78)

where

Z−1
ρ = g−2

ρqq̄ =
dGρ(q2)

dq2

∣∣∣∣
q2=−m2

ρ

. (79)

Here, gρqq̄ can be viewed as an effective ρ meson–quark effective coupling constant.
Regarding the isospin zero channels, it is easy to see that the expressions for G0 µν(q2) can
be obtained from those for Gv µν(q2), just replacing GV → G0 and h(p)→ h0(p). The I = 0,
JP = 1− state can be naturally associated with the ω vector meson, denoting by Gω(q2) the
form factor corresponding to the transverse part of G0 µν(q2). Thus, the ω mass and wave
function renormalization can be obtained as in Equations (78) and (79). Similar relations
apply to the I = 0 axial vector sector, where G5 µν(q2) can be obtained from Ga µν(q2) by
replacing GV → G5 and h(p)→ h5(p). The lightest physical state associated to this sector
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(I = 0, JP = 1+) is the f1 axial vector meson. Hence, we denote by G f1(q
2) the form factor

corresponding to the transverse part of G5 µν(q2).
In the case of the pseudoscalar sector, it is seen from Equation (73) that there is a

mixing between the pion fields and the longitudinal part of the axial vector fields [155,156].
The mixing term includes a loop function Gπa(p2), while the term quadratic in δπ is
proportional to Gπ(p2). These functions are given by

Gπ(q2) =
1

GS
− 8Nc

∫ d4 p
(2π)4 g(p)2 Z(p+)Z(p−)

D(p+)D(p−)
[
p+ · p− + M(p+) M(p−)

]
Gπa(q2) =

8NC

q2

∫ d4 p
(2π)4 g(p) h(p)

Z(p+)Z(p−)
D(p+)D(p−)

[
p+ M(p−)− p− M(p+)

]
· p (80)

where once again we use the definitions p± = p± q/2. The physical states ~̃aµ and ~̃π can be
now obtained through the relations [155,156]

δπb(q) = Z1/2
π π̃b(q)

δab
µ(q) = Z1/2

a ãb
µ(q) + i λ(q2) qµ Z1/2

π π̃b(q) (81)

where the mixing function λ(q2), defined in such a way that the cross terms in the quadratic
expansion vanish, is given by

λ(q2) =
Gπa(q2)

L−(q2)
. (82)

Thus, the pion mass can be calculated from Gπ̃(−m2
π) = 0, where

Gπ̃(q2) = Gπ(q2)− q2 λ(q2) Gπa(q2) (83)

while the pion WFR is obtained from

Z−1
π = g−2

πqq̄ =
dGπ̃(q2)

dq2

∣∣∣∣
q2=−m2

π

. (84)

In the case of the a1 axial vector mesons (I = 1 triplet), since the transverse parts
of the ab

µ fields do not mix with the pions, the corresponding mass and WFR can be
calculated using relations analogous to those quoted for the vector meson sector, namely
Equations (78) and (79), with Ga1(p2) given by Equation (75).

On the other hand, the pion weak decay constant fπ can be determined following
similar steps as those described in Section 2.1.3, now taking into account the existence of
π − a mixing. One gets in this way [151]

fπ =
gπqq̄

m2
π

mc

[
F0(q2) + λ(q2) F1(q2)

]∣∣∣∣
q2=−m2

π

(85)

where

F0(q2) = 8Nc

∫ d4 p
(2π)4 g(p)

Z(p+)Z(p−)
D(p+)D(p−)

[
p+ · p− + M(p+) M(p−)

]
F1(q2) = 8Nc

∫ d4 p
(2π)4 h(p)

Z(p+)Z(p−)
D(p+)D(p−)

q ·
[
p+ M(p−)− p− M(q+)

]
. (86)

It is important to notice that the result for fπ does not depend on the path chosen
for the transport function in Equation (26). In the absence of axial-vector meson fields,
the mixing term in Equation (85) vanishes and this expression reduces to the one given in
Equation (27).

Concerning the vector and axial vector meson sector, after some lengthy calculations
one can obtain analytical expressions for other physical quantities, such as the vector and
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axial vector decay constants fv and fa and the decay widths for the processes ρ→ ππ and
a1 → ρπ. The corresponding results can be found in Refs. [151,154].

3.2. Extension to Finite T and µ in the Mean Field Approximation

We extend now the analysis of this model to a system at finite temperature and chemi-
cal potential. Following the prescriptions described in Section 2.2, the grand canonical ther-
modynamic potential in the mean field approximation is found to be given by [144,152–154]

ΩMFA
reg = ΩMFA − Ωfree

q + Ωfree
q,reg + Ω0 (87)

where

ΩMFA − Ωfree
q = − 4T ∑

c=r,g,b

∞

∑
n=−∞

∫ d3~p
(2π)3 ln

[
(ρ̃c

n,~p)
2 + M(ρc

n,~p)
2

Z(ρc
n,~p)

2 [(ρc
n,~p)

2 + m2
c ]

]

+
σ̄2

1 +κ2
p σ̄2

2

2 GS
− ω̄2

2 G0
+ U (Φ, Φ∗, T) . (88)

Here, ω̄ stands for the mean field value of the isoscalar field v0
4(x) (which vanishes

for µ = 0), while the function U (Φ, Φ∗, T) is an effective Polyakov loop potential that
accounts for color gauge field self-interactions (see Section 2.2). The expression for Ωfree

q,reg

in Equation (87) is given in Equation (42), and Ω0 is a constant that fixes ΩMFA
reg = 0 for

T = µ = 0.
Notice that in Equation (88) we also introduce the generalized momenta ρc

n,~p and ρ̃c
n,~p.

The former is defined in the same way as in Section 2.2, namely(
ρc

n,~p

)2
= ~p2 +

[
(2n + 1)πT + iµ− φc

]2
. (89)

A similar definition applies to ρ̃c
n,~p , in which µ is replaced by a shifted chemical

potential µ̃ given by [152]
µ̃ = µ− g(ρc

n,~p) Z(ρc
n,~p) ω̄ . (90)

This shift arises from the presence of the nonvanishing mean field value ω̄, associated
to the ω vector meson.

As discussed in Section 2.2, the mean field values of the meson fields and the traced
Polyakov loop Φ can be calculated by minimizing the regularized thermodynamic potential.
In the present case, Equation (43) has to be supplemented by the condition

∂ΩMFA
reg

∂ω̄
= 0 . (91)

On the other hand, the quark condensates and the susceptibilities χch and χΦ, associ-
ated with chiral restoration and deconfinement transitions, can be obtained as indicated in
Section 2.2 (see Equations (44)–(46)).

3.3. Model Parameterization and Numerical Results for Zero T and µ

As stated in Section 2.3, to obtain numerical predictions for physical quantities, it is
necessary to specify the model parameters and nonlocal form factors. For definiteness and
simplicity, we take h(p) = h0(p) = g(p). In fact, this can be justified from the assumption
of a similar effective form for the quark currents carrying angular momenta J = 0 and
J = 1, together with an approximate degeneracy between the vector–isovector and vector–
isoscalar couplings. The axial vector–isoscalar sector can be studied separately, since it
decouples from the rest of the Lagrangian. Following [151], we consider h5(p) = g(p) just
to get an estimation for the constant G5 from phenomenology.
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For the form factors g(p) and f (p), we consider here an exponential momentum
dependence as the one given by Equation (48), which corresponds to parameterization PB
of the model studied in Section 2. Namely, we take

g(p) = exp(−p2/Λ2
0) f (p) = exp(−p2/Λ2

1) . (92)

As stated, the exponential functions ensure a fast ultraviolet convergence of quark
loop integrals. In any case, from the analysis in the previous section it is seen that most
numerical results are qualitatively similar for different form factor functions, such as those
in parameterizations PB and PC. As mentioned in Section 2.3, the form factors introduce
two additional parameters Λ0 and Λ1, which act as effective momentum cutoff scales. The
other six free parameters entering the action in Equation (66) are the current quark mass mc;
the coupling constants GS, GV , G0 and G5; and the parameter κp in the term that includes
the derivative current jR(x).

As discussed in the previous section, to get a close resemblance to QCD features, one
can require the model to reproduce the results obtained from lattice QCD calculations for
the functions M(p) and Z(p) that characterize the effective quark propagators. Since these
functions are determined by the shape of the form factors in Equation (92), from a fit to
LQCD data, it is possible to obtain a set of values for Z(0) and the parameters Λ0 and
Λ1. The analysis in Ref. [154], taking LQCD results from Ref. [33], leads to Z(0) = 0.75,
Λ0 = 1092 MeV and Λ1 = 1173 MeV. The corresponding curves for the functions M(p)
and Z(p), together with LQCD data, are shown in Figure 16. It can be seen that the fit is
somewhat inaccurate for low momenta (where errors from LQCD calculations are larger).
However, as mentioned at the end of Section 2.2, since volume integrals in momentum
space include in general n powers of momentum p (n = 2 and n = 3 for integrals in three
and four dimensions, respectively), these differences in the low-momentum behavior of
the form factors are not expected to have a significant effect on the numerical results.
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Figure 16. (Color online) Fit to lattice data from Ref. [33] for the functions M(p) and Z(p). Values up to p = 3 GeV have
been considered.

Given the form factor functions, it is possible to determine the remaining model
parameters from some set of input phenomenological quantities. Following [154], we
consider the case in which one takes as inputs the π and ρ meson masses and the pion
weak decay constant fπ , together with the already mentioned value Z(0) = 0.75. This lead
to the model parameter values quoted in Table 4. Regarding the coupling constant G0,
corresponding to the isoscalar vector sector, as in Refs. [152,154], we leave this parameter
free, using the ratio η = G0/GV to tune the model. In fact, the qualitative effect of this ratio
is increased in the case of a finite chemical potential, where the mean field value ω̄ is in
general nonzero and the isoscalar vector term can contribute significantly to the mean field
thermodynamic potential. Finally, the coupling constant G5 can be in principle determined
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from the f1 meson mass. However, the observed value of this mass is well above 1 GeV,
which makes the determination quite uncertain. This is discussed in Ref. [151], where
G5 ∼ GV is obtained.

Table 4. Model parameter values.

Value

mc MeV 2.26
GSΛ2

0 27.78
GVΛ2

0 23.91
G5 ∼GV
κp GeV 4.265
Λ0 MeV 1092
Λ1 MeV 1173

Once the model parameterization has been established, numerical predictions for
different quantities can be obtained. The results for the mean field values of scalar fields,
quark condensates and quark–meson effective couplings are summarized in Table 5. In
addition, in Table 6, we quote some numerical predictions for meson properties, together
with the corresponding experimental estimates. In general, it is seen that the values
obtained for meson masses, mixing angles and decay constants are in reasonable agreement
with phenomenological expectations. As in the case of the parameterization PC considered
in Section 2, one finds relatively low values for mc and a somewhat large value for the
light quark condensate. On the other hand, one gets −〈q̄q〉mc ' 8.1× 10−5 GeV4, which is
consistent with the scale-independent result obtained from the Gell–Mann–Oakes–Renner
relation in Equation (30), viz. −〈q̄q〉mc = f 2

πm2
π/2 ' 8.3× 10−5 GeV4.

Table 5. Numerical results for various phenomenological quantities.

Model

σ̄1 MeV 648
σ̄2 −0.331

−〈q̄q〉1/3 MeV 330
gπqq̄ 7.07
gρqq̄ 4.16
ga1qq̄ 3.74

Table 6. Numerical results for various meson properties. Quantities marked with an asterisk have
been taken as inputs.

Model Phenomenology

mπ MeV 139 * 139
mσ MeV 794 400–550
mρ MeV 775 * 775
ma1 MeV 1204 1230± 40
fπ MeV 92.4 * 92.4
fv 0.173 0.200

Γρ→ππ MeV 121 149
Γa1→ρπ MeV 185 150–360

It is worth pointing out that effective theories based on quark current–current interac-
tions usually present a threshold above which the constituent quarks can be simultaneously
on shell. This threshold, which depends on the model parameterization and regularization
prescriptions, is typically of the order of 1 GeV. One noticeable feature of the parameter-
ization in Table 4 is that it leads to a threshold of about 1.25 GeV, which turns out to be
above the value obtained for the a1 meson mass. This prevents the unphysical situation of
a possible decay of the a1 meson into two on-shell quarks.
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3.4. Phase Transitions in the µ− T Plane

Through the study of the behavior of the order parameters 〈q̄q〉 and Φ, it is possible to
determine the regions of the phase diagram in which the chiral symmetry is either broken
or approximately restored, as well as those in which the system lies either in confined or
deconfined states. In this subsection, we identify these regions in the µ− T plane, together
with the features of the existing phase transitions. The numerical results correspond to the
parameterization in Section 3.3, considering the polynomial Polyakov loop potential in
Equation (32) and T0 = 208 MeV.

In general, the situation is found to be similar to the one observed in the case of the
model with no vector and axial vector quark current interactions analyzed in Section 2.5.
The results for the phase diagram are sketched in Figure 17, where the values η = 0
and η = 0.5 are considered [154]. At vanishing chemical potential, it is seen that the
system undergoes crossover-like chiral restoration and deconfinement transitions. The
corresponding critical temperatures are close to each other, viz. Tch(0) = 202 MeV and
TΦ(0) = 194 MeV. They are found to be somewhat larger than those obtained for the
model in Section 2, due to the different parameterizations considered. Now, taking a
fixed temperature and increasing the chemical potential, it is seen that for T . Tch(0)
both crossover-like transitions occur at some approximately common critical value µ =
µc(T). This is shown in Figure 17, where chiral restoration and deconfinement curves are
indicated with dashed and dotted lines, respectively. Both crossover lines end at a critical
end point (CEP) of coordinates (µCEP, TCEP). For T < TCEP, it is seen that at a critical
chemical potential the quark condensate shows a discontinuity, signaling a first-order
phase transition (solid lines in Figure 17). This gap in 〈q̄q〉 also induces a jump in the
traced Polyakov loop Φ. However, this should not necessarily be interpreted as a first
order deconfinement transition. In fact, for low temperatures, it is seen that the values of Φ
are relatively low at both sides of the discontinuity, indicating that the system is still in a
confined phase even if chiral symmetry has been approximately restored (we recall that
Φ = 0 and Φ = 1 indicate maximum confinement and deconfinement, respectively). As
discussed in Section 2.5, one can alternatively define the deconfinement transition region
as the one in which Φ takes a value in the range between 0.3 and 0.5. For the model under
consideration, this is shown by the green shaded bands in Figure 17. As mentioned in
Section 2.5, the region in which Φ is below this range and chiral symmetry is already
approximately restored is usually referred to as a quarkyonic phase [122–124].

The effect of the value of the parameter η on the phase diagram can be observed by
comparing the top and bottom panels of Figure 17. As stated, this parameter measures
the relative strength of the J = 1 isoscalar couplings in comparison with their isovector
counterparts. As expected, it is seen that the effect of the isoscalar piece increases with
the chemical potential. In particular, when η is enhanced, the CEP moves towards lower
temperatures and higher chemical potentials, and the critical value µc(T = 0) gets larger.
The results for various critical temperatures and chemical potentials, considering η = 0,
0.3 and 0.5 are summarized in Table 7. Qualitative similar results for the phase diagram
were found by [152] for a logarithmic PL potential. In addition, a more complete analysis
of the existence and position of the CEP within nonlocal models that include the couplings
between isoscalar J = 1 quark currents can be found in Ref. [153]. Regarding the case of
imaginary chemical potential, it has been argued [144] that the isoscalar vector interactions
can have some effect on the location of the RW end point and the pattern of transition lines
in its neighborhood.
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Figure 17. (Color online) µ− T phase diagrams for the parameterization given in Section 3.3, taking
η = 0 (top) and η = 0.5 (lower panel). The results correspond to a polynomial PL potential, with
T0 = 208 MeV. First-order chiral restoration transitions are indicated by solid lines, while dashed
and dotted lines correspond to chiral restoration and deconfinement crossover-like transitions,
respectively. The green bands indicate the regions in which 0.3 ≤ Φ ≤ 0.5.

Table 7. Critical temperatures and chemical potentials for various values of η. Values are given
in MeV.

η = 0 η = 0.3 η = 0.5
Tch(0) 202 202 202
TΦ(0) 194 194 194
TCEP 173 166 156
µCEP 209 252 295
µc(0) 343 366 388

3.5. Thermal Behavior of Meson Properties

The thermal evolution of meson masses and decay constants in the context of the
nlPNJL models studied in this section can be obtained by following similar steps as those
outlined in Section 2.7. In Figure 18, we show the numerical results obtained in Ref. [154]
for the masses of J = 0 chiral partners σ and π, as well as J = 1 mesons ρ and a1. It is seen
that π and ρ meson masses (solid lines) remain approximately constant up to the critical
temperature Tch, while σ and a1 meson masses (dashed lines) start to drop somewhat below
Tch. As expected from chiral restoration, right above the critical temperature chiral partner
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masses become degenerate. When the temperature is further increased, the masses rise
continuously, showing that they are basically dominated by thermal energy.
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Figure 18. Meson masses as functions of the temperature.

Finally, the thermal behavior of fπ and fv decay form factors is shown in Figure 19.
It is seen that both quantities remain constant up to approximately the chiral restoration
critical temperature, and then they show a sudden drop. For large temperatures both fπ

and fv tend to zero, at different rates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.00 0.25 0.50 0.75 1.00 1.25 1.50

T / Tch

f
π
(T) / f

π
(0)

f
v
(T) / f

v
(0)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Figure 19. Normalized fπ and fv decay form factors as functions of the temperature.
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4. Three-Flavor Nonlocal NJL Models

In this section, we review the extension of nonlocal NJL models to three dynamical
quark flavors. This is first addressed in Ref. [157] for the case of vanishing temperature
and chemical potential, and then extended to finite temperature—including the coupling
to the Polyakov loop—in Ref. [60]. In those works, the scheme based on the instanton
liquid model has been considered (see the discussion in Section 2.1.1). In the case of the
nlNJL approach inspired by one gluon exchange interactions, three-flavor models were
first analyzed by the authors of [90,158].

4.1. Three-Flavor nlNJL Model at Vanishing Temperature and Chemical Potential
4.1.1. Effective Action

Let us consider a three-flavor extension of the model studied in Section 2, which
includes quark WFR interactions. The corresponding Euclidean effective action, proposed
in Ref. [159], reads

SE =
∫

d4x
{

ψ̄(x)(−i/∂ + m̂)ψ(x)− GS
2
[ja

S(x)ja
S(x) + ja

P(x)ja
P(x) + jR(x)jR(x)]

−H
4

Aabc

[
ja
S(x)jb

S(x)jc
S(x)− 3ja

S(x)jbP(x)jc
P(x)

]}
(93)

where ψ is the u, d, s quark triplet and m̂ = diag(mu, md, ms) is the current quark mass
matrix. As in the two-flavor case, we consider the isospin symmetry limit, assuming
mu = md. The nonlocal quark–antiquark currents are now given by

ja
S(x) =

∫
d4z G(z) ψ̄

(
x +

z
2

)
λa ψ

(
x− z

2

)
ja
P(x) =

∫
d4z G(z) ψ̄

(
x +

z
2

)
i λaγ5 ψ

(
x− z

2

)
jR(x) =

∫
d4z F (z) ψ̄

(
x +

z
2

) i
←→
/∂

2κp
ψ
(

x− z
2

)
(94)

where G(z) and F (z) are covariant form factors, as described in Section 2.3, and λa,
a = 0, . . . , 8 are the standard eight Gell–Mann matrices, plus λ0 =

√
2/3 13×3. As in the

two-flavor case, the couplings involving scalar and pseudoscalar currents have to carry the
same form factor to guarantee chiral invariance, while the coupling jR(x)jR(x), responsible
for quark WFR, is self-invariant under chiral SU(3) transformations. The relative weight of
this self-invariant term is controlled by the parameter κp. In addition, the model accounts
for flavor mixing through a ’t Hooft-like term, in which the constants Aabc are defined by

Aabc =
1
3!

εijkεmnl(λa)im(λb)jn(λc)kl . (95)

The role of this six-fermion coupling, which is obtained from a determinant in flavor
space, is to break the U(1)A symmetry, not observed in nature.

As stated in the previous sections, to deal with meson degrees of freedom, it is
convenient to perform a bosonization of the fermionic theory. In the present case, this can
be done by introducing scalar fields σa(x) and ζ(x) and pseudoscalar fields πa(x), together
with auxiliary fields Sa(x), Pa(x) and R(x), with a = 0, . . . , 8. After integrating out the
fermion fields, one obtains a partition function of the form

Z =
∫

Dσa Dπa Dζ detD
∫

DSa DPa DR exp

[ ∫
d4x

(
σaSa + πaPa + ζR

+
GS
2
(SaSa + PaPa + R2) +

H
4

Aabc(SaSbSc − 3SaPbPc)

)]
. (96)
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Here, the operator D—in momentum space—is given by

D(p, p′) = (2π)4δ(4)(p− p′)(/p + m̂)

+ g
(

p + p′

2

)[
σa(p− p′) + i γ5πa(p− p′)

]
λa − f

(
p + p′

2

)
/p + /p′

2κp
ζ(p− p′) (97)

where, as in the two-flavor case, g(p) and f (p) denote the Fourier transforms of the
form factors G(z) and F (z).

4.1.2. Mean Field Approximation and Chiral Quark–Antiquark Condensates

We consider the mean field approximation (MFA), in which scalar and pseudoscalar
fields are expanded around homogeneous vacuum expectation values, viz.

σa(x) = σ̄a + δσa(x)

πa(x) = δπa(x)

ζ(x) = ζ̄ + δζ(x) . (98)

As usual, it is assumed that pseudoscalar mean field values vanish, owing to parity
conservation. Moreover, in the scalar field sector, only σ̄0, σ̄8 and ζ̄ are taken to be different
from zero, due to charge and isospin symmetries.

Following the stationary phase approximation, the path integral over the auxiliary
fields can be replaced by the corresponding integrand, evaluated at the values S̃a, P̃a and
R̃ that minimize the argument of the exponential in Equation (96) [157]. In this way, the
Euclidean action per unit volume reduces to

SMFA
E

V(4)
= −

∫ d4 p
(2π)4 Tr lnD0(p)− σ̄aS̄a − ζ̄R̄− GS

2
(S̄aS̄a + R̄2)− H

4
AabcS̄aS̄bS̄c (99)

where S̄a, P̄a and R̄ stand for the values of S̃a, P̃a and R̃ within the MFA. In the first term on
the right hand side, one has

D0(p) =

[
1− ζ̄

κp
f (p)

]
/p + m̂ + g(p)

(
σ̄0λ0 + σ̄8λ8

)
(100)

and the trace is taken over color, flavor and Dirac indices.
For the neutral fields (a = 0, 3, 8), it is convenient to change to a flavor basis, φa → φi,

where i = u, d, s, or equivalently i = 1, 2, 3. In this basis, by minimizing the mean field
action in Equation (99), one obtains the gap equations

σ̄u + GSS̄u +
H
2

S̄dS̄s = 0

σ̄d + GSS̄d +
H
2

S̄sS̄u = 0

σ̄s + GSS̄s +
H
2

S̄uS̄d = 0 (101)

plus an extra equation arising from the jR(x) current–current interaction, namely

ζ̄ + GS R̄ = 0 . (102)
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The mean field values S̄i and R̄ are given by

S̄i = −8Nc

∫ d4 p
(2π)4 g(p)

Z(p) Mi(p)
Di(p)

R̄ =
4Nc

κp

3

∑
i=1

∫ d4 p
(2π)4 p2 f (p)

Z(p)
Di(p)

(103)

where we define Di(p) = p2 + Mi(p)2. As in the two-flavor case [see Equation (12)], the
functions Mi(p) and Z(p) correspond to the momentum-dependent effective masses and
WFR of quark propagators. They are related to the nonlocal form factors through

Mi(p) = Z(p)
[
mi + σ̄i g(p)

]
Z(p) =

[
1 − ζ̄

κp
f (p)

]−1

. (104)

Thus, for a given set of model parameters and form factors, from Equations (101)–(104),
one can numerically obtain the mean field values σ̄i and ζ̄. As expected from isospin sym-
metry, one has S̄u = S̄d and σ̄u = σ̄d.

4.1.3. Meson Masses and Decay Constants

As in the two-flavor case (see Section 2.1), to analyze the properties of meson fields, it
is necessary to go beyond the MFA, considering quadratic fluctuations in the Euclidean
action,

Squad
E =

1
2

∫ d4q
(2π)4 ∑

M
rM GM(q2) φM(q) φ̄M(−q) . (105)

Here, the meson fluctuations δσa and δπa in Equation (98) are translated to a charge
basis φM, M being the scalar and pseudoscalar mesons in the lowest mass nonets, plus the
ζ field. The coefficient rM is 1 for charge eigenstates M = a0

0, σ, f0, ζ, π0, η and η′, and 2
for M = a+0 , K∗+0 , K∗00 , π+, K+ and K0. Analogously to Equation (22), meson masses are
given by the equations

GM(−m2
M) = 0 . (106)

In addition, physical states have to be normalized through

φ̃M(q) = Z−1/2
M φM(q) (107)

where the meson renormalization constants ZM and the associated on-shell quark–meson
coupling constants gMqq̄ are given by

Z−1
M = g−2

Mqq̄ =
dGM(q2)

dq2

∣∣∣∣
q2=−m2

M

. (108)

The functions GM(q2) can be written in terms of the coupling constants GS and H, the
mean field values S̄u,s and quark loop functions that prove to be ultraviolet convergent
owing to the asymptotic behavior of the nonlocal form factors. For the pseudoscalar meson
sector, the π and K mesons decouple, while the I = 0 states get mixed. In the case of the
scalar fields, the a0 and K∗0 mesons decouple, while the ζ, σ0 and σ8 states get mixed by a
3× 3 matrix [see Equation (115) below].
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The explicit expressions for the functions GM(q2) in the context of nlNJL models with
quark WFR are quoted in Ref. [159]. For the I 6= 0 states π, a0, K and K∗0 , one has

G( π
a0
)(q

2) = (GS ±
H
2

S̄s)
−1 + 4 C∓uu(q

2)

G
( K

K∗0
)
(q2) = (GS ±

H
2

S̄u)
−1 + 4 C∓us(q

2) (109)

where the functions C∓ij (q
2), with i, j = u or s, are defined as

C∓ij (q
2) = − 2 Nc

∫ d4 p
(2π)4 g(p)2 Z(p+)

Di(p+)
Z(p−)
Dj(p−)

[p+ · p− ±Mi(p+)Mj(p−)] (110)

with p± = p± q/2. At the I = 0 pseudoscalar sector, one has a mixing between the η0 and
η8 fields. The masses of the physical states η and η′ can be obtained from the functions

G(
η

η′)
(q2) =

G−88(q
2) + G−00(q

2)

2
∓

√√√√[G−80(q
2)]2 +

(
G−88(q

2)− G−00(q
2)

2

)2

, (111)

where we use the definitions

G∓00(q
2) =

4
3

[
2C∓uu(q

2) + C∓ss(q
2) +

6GS ∓ HS̄s ± 4HS̄u

8G2
S − 4H2S̄2

u ∓ 4HGSS̄s

]

G∓88(q
2) =

4
3

[
2C∓ss(q

2) + C∓uu(q
2) +

6Gs ∓ 2HS̄s ∓ 4HS̄u

8G2
S − 4H2S̄2

u ∓ 4HGSS̄s

]

G∓80(q
2) =

4
3

√
2

[
C∓uu(q

2)− C∓ss(q
2)± H(S̄s − S̄u)

8G2
S − 4H2S̄2

u ∓ 4HGSS̄s

]
. (112)

The states η and η′ are defined as

η = η8 cos θη − η0 sin θη

η′ = η8 sin θ′η + η0 cos θ′η (113)

where the mixing angles θη , θη′ are given by

tan 2 θη,η′ =
−2G−80(q

2)

G−88(q
2)− G−00(q

2)

∣∣∣∣
q2=−m2

η,η′

. (114)

Finally, for the I = 0 scalar sector, the quadratic terms involving the fields ζ, σ0 and σ8
are mixed by the 3× 3 matrix
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
4 Cζ(q2) + G−1

S

√
8
3 [2 C+ζ

u (q2) + C+ζ
s (q2)] 4√

3
[C+ζ

u (q2)− C+ζ
s (q2)]√

8
3 [2 C+ζ

u (q2) + C+ζ
s (q2)] G+

00(q
2) G+

80(q
2)

4√
3
[C+ζ

u (q2)− C+ζ
s (q2)] G+

80(q
2) G+

88(q
2)

 (115)

where

Cζ(q2) =
Nc

κ2
p

3

∑
i=1

∫ d4 p
(2π)4 p2 f (p)2 Z(p+)

Di(p+)
Z(p−)
Di(p−)

×
[

p+ · p− +
p+2 p−2 − (p+ · p−)2

2p2 −Mi(p+)Mi(p−)
]

C+ζ
i (q2) = −2 Nc

κp

∫ d4 p
(2π)4 g(p) f (p)

Z(p+)
Di(p+)

Z(p−)
Di(p−)

p ·
[
p− Mi(p+) + p+Mi(p−)

]
(116)

with i = u, s. The functions Gσ(q2), G f0(q
2) and Gζ(q2) are given by the eigenvalues

of this matrix. From the first two, one can determine the masses of the σ and f0 physical
states, while the function Gζ(q2) turns out to be positive definite for real, positive values of
−q2. The corresponding mixing angles can be obtained in a similar way as for the η meson
sector, now defining SO(3) rotation matrices.

The weak decay constants of pseudoscalar mesons can be calculated following similar
steps as those sketched in Section 2.1.3. Details of this procedure for the three-flavor case
can be found in Refs. [90,157,159]. The weak decay constants for π and K mesons in the
isospin limit are given by

fπ =
gπqq̄

m2
π

Fuu(−m2
π)

fK =
gKqq̄

m2
K

Fus(−m2
K) (117)

where

Fij(q2) = 2Nc

∫ d4 p
(2π)4

[
g(p+) + g(p−)− 2g(p)

]
Z(p)

[
Mi(p)
Di(p)

+
Mj(p)
Dj(p)

]

− 2Nc

∫ d4 p
(2π)4 (σ̄i + σ̄j)

[
g(p+) + g(p−)− 2g(p)

]
g(p)

× Z(p+)
Di(p+)

Z(p−)
Dj(p−)

[
p+ · p− + Mi(p+)Mj(p−)

]
+ 4Nc

∫ d4 p
(2π)4 g(p)

[
Mi(p+)p− −Mj(p−)p+

]
· [Z(p−)p+ − Z(p+)p−]

Di(p+) Dj(p−)
(118)

with p± = p± q/2. It is worth pointing out that the functions Fij do not depend on the
arbitrary path chosen in the transport functions.

For the η − η′ sector, one has

f a
η =

Z1/2
η

m2
η

[
fa8(q2) cos θη − fa0(q2) sin θη

]∣∣∣∣
q2=−m2

η

f a
η′ =

Z1/2
η′

m2
η′

[
fa8(q2) sin θη′ + fa0(q2) cos θη′

]∣∣∣∣
q2=−m2

η′

(119)
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where a = 0, 8. The functions fab(q2) are related to Fij(q2) through

f00(q2) =
1
3

[
2Fuu(q2) + Fss(q2)

]
f88(q2) =

1
3

[
Fuu(q2) + 2Fss(q2)

]
f08(q2) =

√
2

3

[
Fuu(q2)− Fss(q2)

]
. (120)

To compare with phenomenological determinations, it is convenient to consider an
alternative parameterization in terms of two decay constants f0, f8 and two mixing angles
θ0, θ8 [160,161]. Both parameterizations are related by(

f 8
η f 0

η

f 8
η′ f 0

η′

)
=

(
f8 cos θ8 − f0 sin θ0
f8 sin θ8 f0 cos θ0

)
. (121)

4.2. Extension to Finite Temperature and Chemical Potential. Coupling with the Polyakov Loop

In this subsection, we analyze the predictions of three-flavor nonlocal models for a
system at finite temperature T and/or quark chemical potential µ. The formalism presented
in Section 4.1 can be extended to nonzero T and µ following the prescriptions described in
Section 2.2 for the two-flavor case. This includes the couplings between the quarks and
the Polyakov loop and the effective potential U (Φ, Φ∗, T) that accounts for color gauge
self-interactions. The grand canonical thermodynamic potential per unit volume within
the MFA is given by [60,90,159]

ΩMFA
reg = ΩMFA − Ωfree

q + Ωfree
q,reg + Ω0 (122)

where

ΩMFA −Ωfree
q = − 2 ∑

c, f
T

∞

∑
n=−∞

∫ d3 p
(2π)3 ln

[
(ρc

n,~p)
2 + M f (ρ

c
n,~p)

2

Z(ρc
n,~p)

2 [(ρc
n,~p)

2 + m2
f ]

]

−
(

ζ̄ R̄ +
GS
2

R̄2 +
H
4

S̄u S̄d S̄s

)
− 1

2 ∑
f

(
σ̄f S̄ f +

GS
2

S̄2
f

)
+ U (Φ, Φ∗, T)

Ωfree
q,reg = −2 T ∑

c, f
∑

s=±1

∫ d3 p
(2π)3 Re ln

[
1 + exp

(
−

ε f p + s (µ + i φc)

T

)]
. (123)

Here, we use the definition in Equation (38), viz. (ρc
n,~p)

2 = ~p 2 + [(2n + 1)πT + iµ−

φc]2, while the free quark energies are given by ε f p =
√
~p 2 + m2

f . The sums over color and

flavor indices run over c = r, g, b and f = u, d, s, respectively. As discussed in Section 2.3,
the color background fields φc can be written in terms of a single field φ3 (the other
independent field, φ8, is taken to be zero since in this section we deal with real values of the
chemical potential). We recall that Ω0 is a constant that fixes to zero the thermodynamic
potential at T = µ = 0. From the minimization of ΩMFA

reg , it is possible to obtain a set of
coupled gap equations that determine the mean field values of the scalar fields, as well as
the traced Polyakov loop, at a given temperature T and chemical potential µ.

To characterize the chiral and deconfinement phase transitions, it is necessary to define
the corresponding order parameters. As stated, the chiral quark condensates 〈q̄q〉 are
appropriate order parameters for the restoration of the chiral symmetry. Their expressions
can be obtained by varying the regularized thermodynamic potential with respect to the
current quark masses. In general, the corresponding quark loop integrals are divergent
and can be regularized by subtracting the free quark contributions as in Equation (20). For
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the three-flavor case, it is usual to define a subtracted chiral condensate normalized to its
value at T = 0 according to

〈q̄q〉sub =
〈ūu〉 − mu

ms
〈s̄s〉

〈ūu〉0 − mu
ms
〈s̄s〉0

. (124)

In addition, from the thermodynamic potential we can also calculate various thermo-
dynamic quantities such as the pressure, the entropy and the energy density, which are
given by

p = −ΩMFA
reg s = −

∂ΩMFA
reg

∂T
ε = ΩMFA

reg + T s . (125)

4.3. Form Factors, Parameterizations and Numerical Results for T = µ = 0

The three-flavor action in Equation (93) includes five free parameters, namely the
current quark masses mu and ms and the coupling constants GS, H and κp. In addition,
one has to specify the nonlocal form factors g(p) and f (p). As in the case of two-flavor
models, we take into account two types of functions for these form factors. The first
parameterization, PI, considers the often used exponential forms, which guarantee a fast
ultraviolet convergence of the loop integrals. For the second one, PII, we consider a
momentum dependence based on lattice QCD results for quark propagators [159]. The
corresponding explicit expressions are given by Equations (48) and (50)–(52) in Section 2.3,
where the parameterizations are denoted as PB and PC, respectively.

Taking into account the nonlocal form factors, one has to add to the above mentioned
free parameters the effective momentum cutoff scales Λ0 and Λ1. Then, to determine the
full parameter sets, one can require that the model be able to reproduce the empirical
values of some physical quantities. Following the authors of [159,162], these are taken to
be the masses of the pseudoscalar mesons π, K and η′, and the pion weak decay constant
fπ . In the case of PI [159], the additional three input values are the current quark mass
mu, the value of the quark wave function renormalization Z(p) at p = 0 and the chiral
quark condensate 〈q̄q〉, q = u, d, which is fixed to 〈q̄q〉 = (−240 MeV)3. For the lattice-
inspired parameterization PII, input values for Λ0, Λ1 and αz [or, equivalently, Z(0)] are
obtained through a fit to LQCD results quoted in Ref. [33] for the functions Z(p) and fm(p)
given in Equations (50) and (51). This fit leads to Λ0 = 861 MeV, Λ1 = 1728 MeV and
αz = −0.249 [162]. The numerical values for the model parameters, for both PI and PII,
are quoted in Table 8. The curves corresponding to the functions fm(p) and Z(p) for both
parameterizations, together with N f = 2 + 1 LQCD results from Ref. [33], are shown in
Figure 20.

Table 8. Values of model parameters for PI [159] and PII [162].

PI PII
mu MeV 5.7 2.4
ms MeV 136 61.5

GSΛ2
0 23.64 14.03

HΛ5
0 −526 −159

κp GeV 4.36 10.76
Λ0 MeV 814 861
Λ1 MeV 1032 1728
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Figure 20. (Color online) Quark propagator functions fm(p) (left) and Z(p) (right). Dashed and solid lines correspond to
parameterizations PI (Equation (49)) and PII (Equation (50)), respectively. Lattice results from Ref. [33] are indicated by the
black dots.

After fixing the model parameterization, it is possible to calculate the mean field values
of the scalar fields, as well as to obtain predictions for various physical quantities. In Table 9,
we quote the numerical results for the mean field values σ̄u, σ̄s and ζ̄, together with the u-
and s-quark condensates. In the same way as in the two-flavor case (see Tables 1 and 2), for
PII, one obtains relatively low values for the current quark masses and large values for the
quark condensates [32,89,159]. As discussed in Section 2.3, this can be understood by notic-
ing that PII is based on a fit to LQCD results that correspond to a renormalization scale of 3
GeV. In any case, for both PI and PII one gets a phenomenologically adequate quark mass ra-
tio mu/ms ∼ 1/25. Moreover, the product−〈ūu〉mu is found to be about 8× 10−5 GeV4, in
agreement with the scale-independent result obtained from the Gell–Mann–Oakes–Renner
relation, Equation (30), namely −〈ūu〉mu = f 2

πm2
π/2 ' 8.3× 10−5 GeV4.

Table 9. Numerical results for mean field values of scalar fields and chiral quark condensates.

PI PII
σ̄u MeV 529 400
σ̄s MeV 702 630

ζ̄/κp −0.429 −0.332
−〈ūu〉1/3 MeV 240 325
−〈s̄s〉1/3 MeV 198 358

Finally, in Table 10, we summarize the numerical results obtained for meson masses,
decay constants and mixing angles [159,162]. For comparison, we also include the corre-
sponding phenomenological estimates. Notice that quantities chosen as inputs are marked
with an asterisk. In the case of the I = 0 scalar particles, the masses have been obtained
by determining the zeroes of the functions GM(p2) arising from the diagonalization of the
3× 3 matrix in Equation (115). As stated, from the corresponding numerical calculations,
it is seen that one of these functions is positive definite for the whole momentum range
described by the model. Therefore, the corresponding eigenstate cannot be associated to a
light physical meson. The remaining two states can be identified with the σ (or f0(500))
and f0(980) scalar mesons quoted by the Particle Data Group [88]. Analogously, the masses
of K∗0 charged and neutral states can be identified with the K∗0(1430) mesons [88]. By
comparing with the phenomenological values, it is seen that in general the predictions
of the model for both PI and PII are in a reasonable agreement with phenomenological
expectations. Some numerical results for three-flavor nlNJL schemes that consider other
form factor functions and/or parameter sets can be found in Refs. [89,90,157].
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Table 10. Numerical results for various phenomenological quantities. Input values are marked with
an asterisk.

PI PII Empirical
mπ MeV 139 ∗ 139 ∗ 139
mσ MeV 599 518 400–550
mK MeV 495 ∗ 495 ∗ 495
mK∗0 MeV 1300 1159 1425
mη MeV 527 511 547
ma0 MeV 936 968 980
mη′ MeV 958 ∗ 958 ∗ 958
mf0 MeV 1300 1280 990
fπ MeV 92.4 ∗ 92.4 ∗ 92.4

fK/ fπ 1.17 1.18 1.22
f 0
η / fπ 0.17 0.27 (0.11–0.51)

f 8
η / fπ 1.12 1.05 (1.17–1.22)

f 0
η′/ fπ 1.09 2.12 (0.98–1.16)

f 8
η′/ fπ −0.48 −0.63 −(0.42–0.46)

θ0 deg −8.6 −7 −(10–12)
θ8 deg −23 −31 −(25–29)

4.4. Results for Finite Temperature and Vanishing Chemical Potential

In the framework of the three-flavor nlPNJL models introduced above, we present
here some results for physical quantities at finite temperature and µ = 0. We consider
the parameterizations PI and PII defined in the previous subsection and the Polyakov
loop potentials introduced in Section 2.2. Figure 21 illustrates the behavior of the order
parameters for deconfinement and SU(2) chiral symmetry restoration transitions, namely
the traced Polyakov loop Φ and the subtracted chiral condensate 〈q̄q〉sub, as well as the
associated susceptibilities, as functions of the temperature. The curves correspond to
parameterization PII [162]. In the top panel, we show the results for 〈q̄q〉sub (solid lines) and
the traced Polyakov loop Φ (dashed lines). Thin and thick lines correspond to logarithmic
and polynomial PL potentials, respectively, with T0 = 200 MeV. For comparison, we also
include LQCD data quoted in Refs. [163,164]. As expected, it is found that when the
temperature is increased the system undergoes both chiral restoration and deconfinement
transitions, which proceed as smooth crossovers. As discussed in Section 2.4 for the case
of two-flavor nlPNJL models, the curves for the order parameters get steeper for lower
values of T0. Indeed, for the three-flavor model, the transitions are found to be of first
order for T0 < 185 MeV. In the middle and bottom panels of Figure 21, we display the
curves for the PL and chiral susceptibilities, defined by χΦ = dΦ/dT and χq = d〈q̄q〉/dT
(q = u, s), as functions of the temperature [for clarity, the graphs show the subtracted
susceptibilities χ̄q ≡ χq(T)− χq(0)]. As usual, the deconfinement and chiral restoration
critical temperatures are defined by the peaks of χΦ and χu, respectively. In addition, in
the curves for χs it is possible to identify a second, broad peak that allows one to define an
approximate critical temperature for the restoration of the full SU(3) chiral symmetry.
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Figure 21. (Color online) Order parameters and susceptibilities as functions of the temperature, for parameterization PII. Triangles,
circles and squares stand for lattice QCD results from Refs. [163,164].

It is seen that both the SU(2) chiral restoration and deconfinement transitions occur
essentially at the same critical temperatures, in agreement with lattice QCD findings.
From the curves in Figure 21 one gets Tch ' 165 MeV, while LQCD analyses lead to
a transition temperature of about 160 MeV for N f = 2 + 1 [136,165]. As in the two-
flavor case (see Table 3), the above results, which correspond to the lattice QCD-inspired
parameterization PII, are qualitatively similar to those obtained for parameterization PI,
based on Gaussian form factors. To compare the predictions from both parameterizations,
it is useful to consider other thermodynamical quantities, as, e.g., the interaction energy
and the entropy. In Figure 22, we show the numerical results for the normalized interaction
energy (ε− 3p)/T4 (left) and the normalized entropy density s/sSB (right), where sSB =
(32 + 21N f )π

2T3/45 is the entropy density in the free-particle Stefan–Boltzmann limit.
Dashed and solid lines correspond to parameterizations PI and PII, respectively, for the
logarithmic PL potential given by Equation (35). We include for comparison three sets
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of lattice data, taken from Refs. [163,166,167]. As in the case of two-flavor models (see
Figure 6), it can be seen that for both the interaction energy and the entropy the curves for
PI show a pronounced dip at about T ∼ 300 MeV, which is not observed in the case of PII.
To trace the source of this effect, we also consider a third parameterization, PIII [90,158],
in which the form factor g(p) has a Gaussian shape as in PI, but the coupling driven by
the currents jR(x) is not included [i.e., there is no quark WFR, f (p) = 0, Z(p) = 1]. This
parameterization is equivalent to PA in Section 2.3. The results from PIII are shown by the
dashed-dotted curves in Figure 22, which do not show the mentioned dip. This indicates
that, as in the two-flavor case, the effect can be attributed to the exponential behavior of the
form factor f (p) that leads to the quark WFR in PI. Moreover, our results can be compared
with those obtained from the parameterization considered in Ref. [89], where the form
factors are introduced so as to fit lattice results for the quark propagator (as in PII), but
f (p) is assumed to have a Gaussian shape. The curves for the interaction energy and the
entropy for this model (indicated in Figure 22 as PHKW, dotted lines) are similar to those
obtained for the parameterization PI. Thus, taking into account lattice data, it could be
stated that the choice of a power-like behavior for f (p) as that proposed in Equation (52)
turns out to be more adequate than the exponential one.
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Figure 22. (Color online) Normalized interaction energy (left) and entropy density (right) as functions of the temperature, for
different model parameterizations. Curves correspond to nlPNJL models with logarithmic PL potentials and T0 = 200 MeV.
Squares, circles and triangles stand for lattice data from [163,166,167], respectively. PHKW denotes the parameterization
used in Ref. [89].

As for the general comparison with lattice QCD results, from the plots in Figure 21,
it is seen that the transition predicted by nlPNJL models is somewhat too sharp. In
particular, there is an appreciable difference with lattice data in the case of the curves
for the traced Polyakov loop Φ (dashed lines in the upper panel of Figure 21). This is a
general feature of Polyakov NJL-like models, both local and nonlocal, and also extends
to quark–meson models. In fact, as discussed in Refs. [168–170], the strict comparison
between the curves for the traced PL and lattice data has to be taken with some care, owing
to the difference between the definitions of Φ in the continuum and on the lattice. One
should expect a coincidence in the crossover temperatures, which in general appears to
be satisfied in nlPNJL models for the potentials considered here. On the other hand, for
PII, the behavior of the normalized interaction energy and the entropy density (Figure 22,
left and right, respectively) are found to be in reasonable agreement with LQCD results.
The dependence of these quantities on the PL potential is shown in Figure 23, where the
curves for PII considering both logarithmic and polynomial PL potentials are displayed,
together with lattice data from Refs. [163,166,167]. It is worth mentioning that similar
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results for the mentioned thermodynamic quantities and order parameters are obtained in
Refs. [72,170,171] within the Polyakov–quark–meson model.
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Figure 23. (Color online) Normalized interaction energy (left) and entropy density (right) as functions of the temperature
for both the logarithmic and the polynomial PL potentials. Squares, circles and triangles stand for lattice data from
Refs. [163,166,167].

In Figure 23 (left), it is seen that both LQCD data and nlPNJL model numerical results
for the interaction energy do not tend to zero even for large temperatures. This can be
interpreted as a remnant of the strong interaction in the deconfined region, signaling that
the quark–gluon plasma should not be understood as a free gas of quarks and gluons.
Concerning the steepness of the transitions, it is worth mentioning that the behavior may
be softened after the inclusion of mesonic corrections to the Euclidean action, since—as
mentioned in Section 2.4—when the temperature is increased light meson degrees of
freedom should get excited before quarks excitations emerge [59,61,90,121]. The incorpora-
tion of meson fluctuations should not modify the critical transition temperatures, which
for the parameterizations considered here turn out to be in good agreement with lattice
estimations.

To conclude this subsection, we briefly mention some results given in Ref. [172]
concerning the magnetic susceptibility of the QCD vacuum within nonlocal NJL models. A
relevant quantity to be analyzed is the vacuum expectation value of the tensor polarization
operator 〈ψ̄ σµν ψ〉 = QqFµν τq, where σµν = i[γµ, γν]/2 is the relativistic spin operator,
Fµν is the electromagnetic field strength tensor, Qq is the quark electric charge and τq is
the so-called tensor coefficient. After a somewhat long but straightforward calculation, at
T = µ = 0, the tensor coefficient within the three-flavor nlPNJL model is found to be given
by [172]

τq = 4 Nc

∫ d4 p
(2π)4 Z(p)

Mq(p)− p2M′q(p)[
p2 + Mq(p)2

]2 (126)

where q = u, d, s and M′q ≡ dMq(p)/dp2. In addition, one can study the magnetic sus-

ceptibilities χ(cond)
q associated to the quark condensates. These are given by the relation

τq = χ(cond)
q 〈q̄q〉, for q = u, d, s. In Table 11 we quote the values obtained for the above

quantities, for parameterization PI. The results show a diamagnetic behavior for the QCD
vacuum, i.e., χ(cond)

q < 0. The prediction for the u-tensor coefficient is in good agreement
with the value obtained from lattice QCD, whereas the quark magnetic susceptibilities
turn out to be of the order of the corresponding LQCD estimates. On the other hand, the
prediction for the s-tensor coefficient is significantly lower than the LQCD value. However,
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it can be seen [172] that the nlPNJL result for τs is strongly dependent on the chosen
parameterization, hence the comparison of numerical values should be taken with some
care in this case.

Table 11. Tensor coefficients and magnetic susceptibilities for parameterization PI, compared to
LQCD results from Ref. [173].

PI LQCD

τu MeV 38.2 40
τs MeV 9.7 53

χ
(cond)
u GeV−2 −2.77 −(2.05± 0.09)

χ
(cond)
s GeV−2 −1.25 −(3.40± 1.40)

Following the procedure described in Section 2.2, the expression in Equation (126) can
be extended to finite temperature. The thermal dependence of the u-tensor coefficient for
parameterization PI and the polynomial PL potential is shown in Figure 24. Results for
other parameterizations and PL potentials are found to be qualitatively similar. A detailed
comparison, which also includes the results obtained in Ref. [174] using a ILM-inspired
nonlocal model, can be found in Ref. [172].
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Figure 24. (Color online) Normalized u-quark tensor coefficient as a function of the temperature for
parameterization PI, considering the polynomial PL potential. Results from LQCD [173] are indicated
by dashed gray band.

If the temperature is increased from T = 0, it is seen that the tensor coefficient remains
approximately constant up to the chiral restoration temperature Tch ' 165 MeV, where one
finds a sudden drop. For comparison, we also show the LQCD estimates from Ref. [173]
(gray dashed band). Once again, the transition predicted by the nlPNJL model seems to
be somewhat too sharp, although—as in the case of thermodynamical quantities—this
behavior may be softened after the inclusion of mesonic corrections to the Euclidean action.

4.5. Results at Nonzero Temperature and Chemical Potential

In this subsection, we discuss the features of the phase transitions in the µ− T plane
in the context of the three-flavor nlPNJL model introduced in Sections 4.1–4.3. The phase
diagram can be sketched by analyzing the numerical results obtained for the relevant
order parameters. As stated, for the deconfinement and chiral symmetry restoration
transitions we take as order parameters the traced Polyakov loop Φ and the subtracted
chiral condensate 〈q̄q〉sub [defined in Equation (124)], respectively. The associated critical
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temperatures Tch and TΦ are defined by the position of the peaks in the chiral susceptibilities
in the region where the transition occurs as a smooth crossover. On the other hand, for
relatively low temperatures the chiral restoration occurs as a first order phase transition
at a given critical chemical potential µc(T). As in the case of the two-flavor model, even
if this leads to a discontinuity in the order parameter Φ, the latter remains close to zero
after the transition, and it can be assumed that the system is still in a confined phase. Thus,
we consider the prescription proposed in Section 2.5, defining a deconfinement transition
region in which the PL lies within the range 0.3 ≤ Φ ≤ 0.5.

For all parameterizations and PL potentials under consideration, one finds that for
T = 0 the chiral restoration occurs through a first order phase transition at a critical chemi-
cal potential µc(0) ∼ 300 MeV. If the temperature is increased, the critical chemical potential
gets reduced, and the chiral transition continues to be of first order up to a certain critical
end point (CEP) of coordinates (µCEP, TCEP) (see Table 12). For T > TCEP, or µ < µCEP, the
chiral restoration phase transition proceeds as a smooth crossover. In particular, as already
discussed in the previous subsection, at µ = 0, the system undergoes chiral restoration and
deconfinement crossover-like transitions at an approximately common critical temperature
Tch ∼ 165 MeV (see Figure 21), in reasonable agreement with LQCD. However, for larger
values of the chemical potential (particularly for µ > µCEP), these transitions might occur
at different temperatures. This generic behavior is illustrated in Figure 25, where we quote
the order parameters for the deconfinement transition and the chiral symmetry restoration
as functions of the temperature, considering two representative values of the chemical
potential. The results in the figure correspond to parameterization PII. For µ = 100 MeV
(top), the curves are qualitatively similar to those obtained for µ = 0 (see Figure 21), while,
for µ = 250 MeV (larger than µCEP), there is a jump on 〈q̄q〉sub at T ' 100 MeV that signals
a first-order chiral restoration transition (lower panel). As discussed above, the values of Φ
at the discontinuity indicate that right after the transition the system remains in a confined
phase. In fact, the deconfinement occurs at larger temperatures where Φ gets closer to one,
say T & 150 MeV for the chosen value of µ. As already mentioned in Section 2.5, the phase
in which quarks remain confined (signaled by Φ . 0.3) even though chiral symmetry has
been restored is usually referred to as a quarkyonic phase [122–124].

The phase diagrams for three-flavor nlPNJL model parameterizations PI and PII
and both logarithmic and polynomial PL potentials, taking T0 = 200 MeV, are shown
in Figure 26. Solid (dashed) lines indicate first order (crossover) phase transitions for
the chiral symmetry restoration, while the deconfinement transition region (defined by
0.3 ≤ Φ ≤ 0.5) is denoted by the color shaded areas. The fat dots denote the position
of the critical endpoints. Numerical results for CEP coordinates, critical temperatures
and chemical potentials are summarized in Table 12 (values are given in MeV). As in
the two-flavor case, the location of the CEP is found to be quite sensitive to the model
parameterization and to the form of the PL potential. The dependence of CEP coordinates
on the axial anomaly has also been studied [90]. Although nonnegligible, it is found to
be less strong than that in the local PNJL model. Qualitatively similar predictions for the
structure of phase diagram were presented by [175,176] in the context of quark–meson and
Polyakov–quark–meson models, respectively.
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Figure 25. (Color online) Subtracted chiral condensate (solid lines) and traced Polyakov loop (dashed
lines) as functions of the temperature. Thin and thick lines correspond to the logarithmic and
polynomial PL potentials, respectively.

Table 12. Numerical results for some critical temperatures and chemical potentials. All values are
given in MeV.

PI PII

Pol Log Pol Log

Tch(0) 168 164 169 163
TΦ(0) 166 164 167 163
µCEP 169 120 234 214
TCEP 145 157 112 130
µc(0) 311 311 293 293
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Figure 26. (Color online) Phase diagrams corresponding to parameterizations PI (top) and PII
(bottom), for polynomial (left) and logarithmic (right) PL potentials. Dashed and solid lines corre-
spond to crossover and first order chiral restoration transitions, respectively, while critical end points
are indicated by the fat dots. The color shaded areas denote the deconfinement transition regions,
defined by the condition 0.3 ≤ Φ ≤ 0.5.

4.6. Meson Properties at Finite Temperature

The thermal evolution of meson masses, decay constants and mixing angles in the
context of three-flavor nlPNJL models is studied in Ref. [162]. The corresponding analytical
expressions can be obtained from those given in Section 4.1.3 for T = 0, following the steps
sketched in Sections 2.2 and 2.6.

The behavior is found to be qualitatively similar for all parameterizations and PL
potentials under consideration [162], as well as analogous to the one obtained within
other effective theories, such as the quark–meson model [175]. We quote here the results
corresponding to parameterization PII, which—as shown in Section 4.4—provides the
best agreement with lattice QCD results for thermodynamical quantities. For definiteness,
we consider the polynomial PL potential (Equation (32)), with T0 = 200 MeV. The plots
for meson masses as functions of the temperatures are displayed in Figure 27. As shown
in Figure 27 (top), the masses of the π and η pseudoscalar mesons (solid lines) remain
approximately constant up to the critical temperature Tch, while those of their scalar meson
counterparts σ and a0 (dashed lines) start dropping at somewhat lower temperatures.
As expected, right above Tch, the masses of chiral partners become degenerate, while at
higher temperatures they are dominated by thermal energy. In the case of the η′ meson
and its chiral partner f0, and similarly for K and K∗0 (lFigure 27, bottom), the degeneracy
is achieved at temperatures larger than Tch. This is due to the large current mass of the
strange quark, which is expected to shift the restoration of the full SU(3) chiral symmetry
to higher temperatures.
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Figure 27. (Color online) Scalar (dashed lines) and pseudoscalar (solid lines) meson masses as
functions of the temperature. The results correspond to PII and a polynomial PL potential.

Finally, in Figure 28, we show the numerical results obtained for the thermal behavior
of the pseudoscalar meson decay constants fπ and fK. The curve for fπ shows a sudden
drop at T ' Tch, similar to the one observed in two-flavor nlPNJL models (see Figure 15).
In the case of fK the fall is more moderate, owing to the large explicit chiral symmetry
breakdown caused by the strange quark current mass.

 0

 30

 60

 90

 120

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

f M
  

[ 
M

e
V

 ]

T / Tch

f
π

fK

 0

 30

 60

 90

 120

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Figure 28. (Color online) Pion (thin line) and kaon (thick line) decay constants as functions of the
temperature. The results correspond to PII and a polynomial PL potential.
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5. Further Developments and Applications
5.1. Two-Flavor Superconducting Quark Matter and µ− T Phase Diagram under Compact Star
Conditions

As mentioned in the Introduction, the analysis of the phase diagram for strong-
interaction matter has important applications in astrophysics. In particular, as we discuss
in the next subsection, the region of low temperatures and moderate baryon chemical
potentials is very interesting for the description of compact star cores [2,3]. Thus, in the
framework of nonlocal chiral quark models, it is worth analyzing the features of the phase
diagram under compact star conditions, i.e., under the requirements of color and electric
charge neutrality together with β equilibrium [177,178].

An important issue to be addressed in this context is the presence of color supercon-
ducting quark matter [179]. In fact, a great variety of possible diquark pairing patterns
has been explored in the literature, and estimations of the order of magnitude of the
corresponding pairing gaps have been obtained [180,181]. A detailed discussion on this
subject within the local NJL model can be found, e.g., in Ref. [182]. For phenomenological
applications in compact stars, one relevant problem is the determination of the number
of active flavors. It turns out that at low temperatures one obtains a sequential melting
pattern of the light and strange quark chiral condensates, which is rather insensitive to
the details of the four-momentum dependence of the interaction, but crucially dependent
on a self-consistent determination of the strange quark mass. Results obtained at the
mean field level within the three-flavor local NJL model [183–185] indicate that under
compact star conditions a two-flavor color superconducting (2SC) phase is favored over
the three-flavor color-flavor-locking (CFL) one. Even if the third quark flavor occurs at not
too high densities to be realized in compact star interiors, star configurations with CFL
quark cores are found to be hydrodynamically unstable [186]. Studies of neutral 2SC quark
matter consider also the presence of a so-called gapless phase [187,188], which is found to
occur at intermediate temperatures and chemical potentials.

Color neutrality arises basically from the interactions between matter and color gauge
fields. In NJL-like effective quark models—which do not include explicit gauge field
dynamics—the effect of these interactions is taken into account just through current–
current quark couplings. Anyway, it is possible to account for gauge interactions leading to
color neutrality through the introduction of effective chemical potentials µ f c for each quark
of flavor f and color c. In addition, the conditions of charge neutrality and β equilibrium
require the inclusion of electrons, as well as chemical potentials associated with quark
electric charges.

If the system is in chemical equilibrium, it can be seen that quark chemical potentials
are in general not independent [189]. Indeed, taking into account the gauge symmetry of
the theory, it is shown that only one color chemical potential is needed in order to ensure
color charge neutrality. For a two-flavor quark model, all µ f c can be written in terms of
only three independent quantities: the baryonic chemical potential µB, a quark electric
chemical potential µQq and a color chemical potential µ8. Defining as usual µ = µB/3, the
corresponding relations read [190]

µur = µug = µ +
2
3

µQq +
1
3

µ8

µdr = µdg = µ− 1
3

µQq +
1
3

µ8

µub = µ +
2
3

µQq −
2
3

µ8

µdb = µ− 1
3

µQq −
2
3

µ8 . (127)

Notice that red and green quarks remain indistinguishable, owing to the existence of
a residual SU(2) color symmetry.
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One also has to take into account the presence of electrons and the condition of β equi-
librium. The electrons can be easily included as a gas of free Dirac particles, contributing
to the full grand canonical thermodynamic potential with a new term

Ωe = − 1
12π2

(
µ4

e + 2π2T2µ2
e +

7π4

15
T4
)

(128)

where µe is the electron chemical potential. Here, the electron mass is neglected for
simplicity. Finally, the condition of β equilibrium arises from the β decay reaction d →
u + e + ν̄e. Thus, assuming that antineutrinos escape from the stellar core, quark and
electron chemical potentials appear to be related by

µdc − µuc = −µQq = µe . (129)

Under this condition, all effective fermion chemical potentials can be written in terms
of µ, µ8 and µe.

Now, the conditions of electric and color charge neutrality can be imposed by requiring
that the electric charge density ρQtot and the diagonal color charge densities ρ3 and ρ8
vanish simultaneously [178]. The condition ρ3 = 0 is trivially satisfied, while for the charge
densities ρQtot and ρ8 one has

ρQtot = ρQq − ρe = ∑
c=r,g,b

(
2
3

ρuc −
1
3

ρdc

)
− ρe = 0

ρ8 =
1√
3

∑
f=u,d

(
ρ f r + ρ f g − 2ρ f b

)
= 0 (130)

where the quark and electron densities ρ f c and ρe can be obtained from the derivation of
the full grand canonical potential with respect to µ f c and µe, respectively.

In the framework of nonlocal NJL-like models, color superconductivity can be ac-
counted for through the inclusion of an interaction that involves nonlocal quark–quark
currents. In the context of the two-flavor model analyzed in Section 2, this interaction
reads [190]

Lqq = − GD
2 ∑

A=2,5,7

[
jA
D(x)

]†
jA
D(x) (131)

where
jA
D(x) =

∫
d4z I(z) ψ̄C(x +

z
2
) i γ5 τ2 λA ψ(x− z

2
) . (132)

Here, one has ψC(x) = γ2γ4 ψ̄T(x), while λA, with A = 2, 5, 7, are Gell–Mann matrices
acting on color space.

The effective coupling in Equation (131) might arise via Fierz rearrangement from
some underlying more fundamental interactions and is understood to be used—at the
mean field level—in the Hartree approximation. In general, taking into account the interac-
tions between quark–antiquark currents in Equation (1), the ratio of coupling constants
GD/GS would be determined by these microscopic couplings. For example, one-gluon
exchange interactions, as well as instanton model interactions, lead to GD/GS = 0.75.
Since the precise derivation of the effective couplings from QCD is not known, there is a
significant theoretical uncertainty in this ratio. We consider here values of GD/GS within
a phenomenologically reasonable range between 0.5 and 1, taking for the quark–quark
current in Equation (132) the same nonlocal form factor as for the quark–antiquark current,
i.e., I(z) = G(z).

To carry out the bosonization of the fermionic theory, in addition to the bosonic fields
σ and πa (a = 1, 2, 3) considered in Section 2.1.1 one has to introduce diquark fields ∆A,
with mean field values ∆̄A. Owing to color SU(3) symmetry, without loss of generality, it
is possible to take ∆̄5 = ∆̄7 = 0, ∆̄2 = ∆̄, which leaves a residual symmetry under a color
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SU(2) subgroup. The mean field thermodynamic potential per unit volume can be obtained
by making use of the Nambu–Gorkov formalism, as detailed, e.g., in Refs. [190,191], and a
new “gap equation” arises by requiring the minimization of this effective thermodynamic
potential with respect to ∆̄. In this way, under color neutrality conditions, for each value of
T and µ, one should find the values of σ̄, µe, µ8 and ∆̄ that solve the corresponding gap
equations, supplemented by Equations (129) and (130).

In what follows, we discuss the numerical results obtained in Ref. [190] for a two-flavor
nlNJL model. The parameterization used in that work is similar to PA (see Section 2.3),
i.e., it involves a Gaussian form factor and does not include the derivative currents in
Equation (1). Moreover, for simplicity the analysis in Ref. [190] does not take into account
the coupling between quarks and the Polyakov loop. In principle, these simplifications
should not imply qualitative changes in the phase diagram. Even if the inclusion of the
couplings involving the Polyakov loop would increase the transition temperatures at low
chemical potentials, the phase diagram structure should not be significantly modified in
the low temperature region, which is the most interesting one for compact star applications.

In Figure 29, we quote the numerical results for the behavior of the mean field values
σ̄ and ∆̄, as well as the effective chemical potentials µe and µ8, as functions of µ. The plots
correspond to a ratio GD/GS = 0.75. Solid, dashed and dotted lines correspond to T = 0,
40 and 100 MeV respectively. For T = 0, at low chemical potentials the system lies in a
chiral symmetry broken phase (CSB), where the quarks acquire large dynamical masses.
By increasing the chemical potential one reaches a first order phase transition, in which
the chiral symmetry is approximately restored, and a certain fraction of the quark matter
undergoes a transition to the 2SC phase, coexisting with the remaining normal quark
matter (NQM) phase. The jump of µ8 at the transition is related to that of ∆̄, which governs
the amount of breakdown of the color symmetry arising from quark pairing. Moreover,
it is seen that the chemical potential µe (which for T = 0 vanishes in the CSB region) also
shows a discontinuity across the transition.
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Figure 29. (Color online) Behavior of σ̄, ∆̄, µe and µ8 as functions of the chemical potential, for three different values of the
temperature. Solid lines correspond to T = 0, dashed lines to T = 40 MeV and dotted lines to T = 100 MeV. In the case of
T = 0, lines marked with stars and dots correspond to 2SC and NQM phases, respectively. The nlNJL model parameters
used here are mc = 5.12 MeV, Λ = 827 MeV and GSΛ2

0 = 18.78 [190].
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The new 2SC-NQM mixed phase is a way in which the constraint of electric neutrality
is globally fulfilled: the coexisting phases have opposite electric charges which neutralize
each other, at a common equilibrium pressure. In its simplest realization, this mixed phase is
treated within an approximation in which Coulomb and surface energies are neglected [192].
For color superconducting quark matter, this realization of charge neutrality has been
considered, e.g., in Refs. [188,193] within the NJL model and an instantaneous nonlocal
quark model, respectively. On the other hand, notice that color neutrality has been imposed
as a local constraint [194,195]. This is based on the fact that the color Debye screening
length is expected to be short and comparable to the inter-particle distance in the regime of
interest. As a consequence, the color chemical potential µ8 turns out to be different in the
two components of the mixed phase.

When the temperature is increased up to ∼ 20 MeV, the transition to a mixed phase
is no longer favored and the system goes into a pure 2SC phase. As can be seen from
the dashed curves in Figure 29, for T = 40 MeV this still shows up as a first order phase
transition. For even larger temperatures, it is seen that the 2SC phase is no longer present,
and the system undergoes a transition from the CSB phase to a normal quark matter
(NQM) phase, in which the chiral symmetry is approximately restored and there is no color
superconductivity. For T = 100 MeV this transition occurs as a smooth crossover, as shown
by the dotted lines in Figure 29. The full phase diagram for GD/GS = 0.75 is displayed in
the central panel of Figure 30. If one moves along the first order transition line from T = 0
towards higher temperatures, at T ' 50 MeV, a triple point (3P) is reached. At this point,
the CSB and 2SC phases coexist with a third NQM phase. Finally, if T is still increased, one
reaches a critical end point (CEP) where the first order transition from the CSB to the NQM
phase becomes a smooth crossover. For comparison, in Figure 30, the phase diagrams for
GD/GS = 0.5 and GD/GS = 1 are also shown.

Another feature to be discussed is the presence of the so-called gapless 2SC (g2SC)
phases. As shown in Figure 30, g2SC phases are favored in a narrow band close to the 2SC–
NQM phase border. In this region, in addition to the two gapless modes corresponding
to the unpaired blue quarks, the presence of flavor asymmetric chemical potentials µdc −
µuc 6= 0 gives rise to another two gapless fermionic quasiparticles [187]. Although the
corresponding dispersion relations cannot be derived analytically owing to the nonlocality
of the interactions, the border of the g2SC region can be found numerically. This is done
by determining whether for some value of the quark momentum |~p| the imaginary part
of some of the poles of the Euclidean quark propagator vanish in the complex p4 plane.
Although for the cases shown in the figure the g2SC region is given by a narrow band, it
appears to be considerable enlarged depending on the model parameterization [190].

The above phase diagrams can be compared with those obtained for isospin symmetric
quark matter. In general, it is seen that the 2SC region becomes reduced when one imposes
color and electric charge neutrality conditions. This is what one would expect, since the
condition of electric charge neutrality leads in general to unequal u and d quark densities,
disfavoring the u–d pairing. In any case, the effect is found to be relatively small, and
the positions of triple points and critical end points, as well as the shapes of critical lines,
remain approximately unchanged [190]. Qualitatively similar results for isospin symmetric
quark matter are obtained in the context of a chiral two-flavor quark–meson–diquark
model in Ref. [196].
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Figure 30. Phase diagrams for GD/GS = 0.5, 0.75 and 1. Solid and dashed lines indicate first-
and second-order phase transition curves, respectively; dotted lines correspond to crossover-like
transitions; and dash-dotted lines delimit the gapless 2SC band. Different phases are denoted
as NQM (normal quark matter phase), CSB (chiral symmetry broken phase) and 2SC (two-flavor
superconducting phase), while the region marked as “Mixed” corresponds to a NQM-2SC mixed
phase. CEP and 3P denote the critical end points and triple points, respectively.

5.2. Astrophysical Applications

After having analyzed the thermodynamic features of quark matter, it is natural to
investigate if such a state can exist in the cores of cold compact stars, where particles
appear to be compressed up to densities several times larger than that of nuclear matter
(n0 ∼ 0.16 fm−3). Unfortunately, a consistent relativistic approach to the quark–hadron
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phase transition, in which hadrons are treated as bound states of quarks, has not been
developed up to now. In this situation, hadronic models, as, e.g., the Walecka model or
the relativistic Dirac–Brueckner–Hartree–Fock (DBHF) approach, have been proposed for
the description of the hadronic phase, and quark models have been considered in order to
account for the quark matter phase. In particular, several works have employed nonlocal
NJL-like schemes to provide an effective theoretical description of quark matter states
inside compact stellar cores.

From the observational side, early measurements of the pulsar J0751+1807 and other
neutron stars (NS) in X-ray binaries have indicated the existence of large mass compact
stars. This has been confirmed by the further observation of the binary pulsars PSR J1614-
2230, PSR J0348+0423, PSR J2215+5135 and PSR J0740+6620, with masses of the order of
2 M� [197–202]. The evidence of compact objects of such a large mass can be used as
a test for the viability of hadronic and/or quark matter equations of state (EoS) arising
from theoretical models [203]. Given the EoS of a neutron star (i.e., the functional relation
between pressure and energy density), the corresponding mass vs. radius relation can be
obtained through the Tolman–Oppenheimer–Volkoff (TOV) equations of hydrodynamic
stability for self-gravitating matter. In general, it is found that a rather stiff EoS is required
in order to satisfy observational constraints for large mass neutron stars.

In the context of covariant nonlocal NJL models (instantaneous nlNJL models have
also been analyzed, see [204]), the study of a possible quark matter phase in the core
of compacts stars was first addressed [205], considering a two-phase description of the
NS interior. In this “hybrid star” scheme, the nuclear matter phase is treated within the
relativistic DBHF approach [206] and the transition to quark matter is obtained through
a Maxwell construction. The two-flavor nlNJL model considered in Ref. [205] includes a
diquark coupling of the form proposed in Equation (131), as well as a current–current vector
coupling in the I = 0 channel, as that in Equation (66). The presence of a nonvanishing
diquark condensate reduces the critical low-temperature transition density (allowing for
a quark matter phase in the NS core), whereas the nonzero mean field ω̄ arising from
the vector coupling has the effect of stiffening the EoS. This leads to an increase of the
maximum accessible NS masses up to a magnitude of about 2M�. The model parameters
are similar to those considered in Section 5.1 for the study of phase diagrams under
compact star conditions, while the proposed additional interaction in the vector channel is
relatively weak, and does not affect the qualitative features of the phase transitions [205].
The numerical results for this model are found to be in agreement with observational
constraints for a given range of the model parameters. Moreover, the corresponding
isospin symmetric equations of state are shown to be consistent with flow data analyses
from heavy ion collisions.

In Refs. [207,208], the existence of quark matter in the core of NSs has been studied
using three-flavor nonlocal NJL models, such as those described in Section 4. Once again,
some repulsive current–current interaction in the I(JP) = 0(1−) channel is included, so
as to increase the critical T = 0 chemical potential and stiffen the quark matter EoS. In
turn, the description of the confined, hadronic phase is carried out by considering the
parameterizations GM1 [209] and NL3 [210], within the relativistic mean field theory. The
phase regions are determined by assuming a smooth Gibbs transition, in which the condi-
tion of pressure equilibrium is imposed together with the requirement of global electric
charge neutrality and baryon number conservation [192] in the mixed quark–hadronic
phase. The volume fraction of quark matter is given by a parameter χ, which ranges
continuously from 0 to 1 along the transition. Form the corresponding numerical analysis,
it is found that the results are compatible with the existence of extended regions of mixed
quark–hadron matter in neutron stars with masses of about 2M� and radii in the canonical
range of 12–13 km. This also holds for local versions of NJL-like models. Furthermore, it
is seen that pure quark matter can exist in stellar cores for certain parameterizations of
the effective quark and hadronic interactions. These works have been complemented by
the study of the thermal evolution of NSs, obtained from balance and transport equations
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under the assumption of spherical symmetry [211]. It is found that high-mass NSs may
contain a fraction of 35–40% of deconfined quark-hybrid matter in their cores, while, for
stars with canonical masses of around 1.4 M� (for which cooling curves show a good
agreement with experimental data), a pure hadronic composition is predicted. In this same
theoretical context, the possible existence of a crystalline quark–hadron mixed phase and
its effects on neutrino emissivity are studied in Refs. [212,213]. Moreover, in Ref. [214],
the existence of quark matter in the cores of rotating NSs is also considered. On the other
hand, in Ref. [215], it is claimed that if the surface tension at the boundary separating
neutral hadronic and neutral quark matter phases is larger than a critical value of about 10
to 40 MeV/fm2 [216–218], the mixed phase turns out to be disfavored and there should
be a sharp interface between both regions (Maxwell construction). If this is the case, the
analysis of [215] concludes that large mass hybrid stars would not be allowed within the
three-flavor nlNJL approach for quark matter. Similar results are found for the three-flavor
local NJL model.

Turning back to astrophysical observations, in the past few years, important new
constraints for the description of compact stars have come out from the direct detection
of gravitational waves emitted from the binary NS merger GW170817 [219]. In particular,
the analysis of GW170817 data leads to an upper limit for the tidal deformability—which
measures the NS deformation due to the gravitational field of its companion object—and
this translates into an upper limit for the NS radius. For a NS mass of 1.4 M�, it is found
that the radius cannot exceed a limit of approximately 13.6 km [220]. Moreover, it is argued
that GW170817 data also imply a general upper limit of about 2.3M� for the mass of a cold
spherical NS [221]. These constraints have been taken into account for the analysis of EoS
arising from hybrid star models that include nlNJL approaches for quark matter [222–228].

In Refs. [223,225], these new constraints are considered in the context of the above
described three-flavor nonlocal NJL models, at both zero and finite temperature. In the finite
temperature region, the treatment of quark matter includes the coupling between the quarks
and the Polyakov loop, as described in Section 2.2. In addition, new parameterizations
called DD2 and GM1L are used for the description of the purely hadronic phase. They are
based on the standard relativistic mean field approach, taking into account medium effects
through the inclusion of explicit density dependent meson–baryon couplings [223,229]. The
hadron–quark transition is treated according to a Maxwell construction in which there is a
sharp interface and no mixed phase regions. For the case of cold neutron stars, it is found
that the presence of a quark matter core is allowed for a coupling constant ratio G0/GS lying
in a range from ∼0.33 to 0.38 in order to satisfy observational constraints. This is illustrated
in Figure 31, where we show the curves for NS mass vs. radius obtained in Ref. [225] after
solving the TOV equations, for both GM1L and DD2 hadronic parameterizations. The
shaded bands indicate the mass region to be reached in order to fulfill the constraints from
the the measurements of PSR J1614-2230 and PSR J0348+0423 masses, while the brown
horizontal line indicates the bounds for the radius of a NS star of M = 1.4 M� arising
from the analysis of GW170817 data. The vertical bars on the curves denote the onset
of the transition from hadronic to quark matter. On the other hand, from the study of
the evolution of proto-neutron stars to neutron stars, it is found that in these models the
existence of hybrid stars is allowed only for temperatures not higher than 15–30 MeV. Even
in the case in which the model parameters are compatible with a quark matter core at T = 0,
this deconfined phase region would disappear for hot neutron or proto-neutron stars. In a
more recent work [228], the analysis is extended (at T = 0) to a three-flavor nlNJL model
that includes also a 2SC+s superconducting phase. Depending on the stability criteria for
the hadron–quark interface, once again it is found that the existence of neutron stars with a
superconducting quark matter core can be compatible with observational data. The study
of hybrid star constraints has been also carried out in the context of the quark–meson model
for quark matter, considering the DD2 parameterization for the hadronic phase [230].
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Figure 31. (Color online) Gravitational mass as a function of the stellar radius for two parameteriza-
tions of the hadronic phase. The shaded bands indicate the constraints given by the observed PSR
J1614-2230 and PSR J0348+0423 masses, while the horizontal line shows the bounds for a 1.4 M� NS
radius arising from the analysis of GW170817 data. The vertical bars on the curves denote the onset
of the transition from hadronic to quark matter.

Finally, it is worth mentioning that recent works [226,227] address, in the context of
nonlocal NJL-like models, the so-called “hyperon puzzle”. In principle, the core of a NS
should include hyperonic degrees of freedom, which soften the EoS in such a way that
NS masses larger than ∼ 1.5 M� could become unreachable. A possible solution of this
puzzle can arise from hybrid NS models, provided that quark deconfinement occurs at
low enough densities so as to prevent the existence of hypernuclear matter in the stellar
core. In Refs. [226,227], it is seen that such a scenario can be obtained within two-flavor
nlNJL models that include color superconductivity and vector current–current couplings,
which lead to a stiff EoS [222]. The hadron–quark phase transition is obtained by a Maxwell
construction, considering either fixed or density-dependent couplings. The numerical
analysis shows that only in the case of density-dependent couplings an intermediate
hypernuclear phase can be found in the cores of hybrid stars. In addition, it is seen that in
both situations the onset of deconfinement occurs for compact stars of about 1–1.14 M�.
The observational radius and mass constraints are found to be satisfied, circumventing
the hyperon puzzle. There are also alternative ways of dealing with this problem, e.g.,
by considering the effects of three-body forces that involve hyperons, such as nucleon–
nucleon–Λ interactions. Analyses in this sense are carried out in Refs. [231,232].

5.3. Inhomogeneous Phases

In the past few years, it has been claimed that the phase diagram of strong-interaction
matter at low temperatures and high densities could include spatially nonuniform phases
(for a review, see, e.g., [233]). Within the framework of the local two-flavor NJL model in
the mean field approximation, it has been shown that the critical end point of the first-order
chiral restoration transition exactly coincides with the so-called Lifshitz point (LP), where
two homogeneous phases and one inhomogeneous phase meet [234,235]. This result has
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been obtained in the chiral limit, where the critical end point becomes a tricritical point
(TCP). If vector-like interactions are added, it is seen that the LP remains at the same
temperature, while the TCP moves to a lower T, in such a way that it gets covered by the
inhomogeneous phase and disappears from the phase diagram [236]. In addition, this issue
has been studied in the context of a quark–meson model with vacuum fluctuations [237],
where it is found that the LP might coincide or not with the TCP depending on the model
parameterization. In fact, in the framework of both the NJL model and quark–meson
models, it is found that the TCP tends to becomes covered by the inhomogeneous phase
and does not show up in the phase diagram. The analysis of inhomogeneous phase regions
in the context of the Polyakov-NJL model [238] and the three-flavor NJL model [239], as
well as the effects of finite current quark masses [240], have also been addressed. Moreover,
indications of the existence of an inhomogeneous phase have been found in a recent
Functional Renormalization Group study of the QCD phase diagram [241].

In this subsection, we discuss the possible presence of inhomogeneous phases in the
context of nlNJL models. We consider in particular the analyses in Refs. [242,243], which
correspond to a model similar to the one introduced in Section 2.1. Given the complexity
of the problem, the derivative currents jR(x) are been included and the chiral limit mc = 0
is taken.

As discussed in Section 2.1.1, it is convenient to bosonize the fermionic theory, intro-
ducing scalar and pseudoscalar fields that can be expanded around the mean field values
σ̄(~x) and π̄i(~x). These mean field values are now allowed to be inhomogeneous, hence the
explicit dependence on spatial coordinates. The resulting mean field Euclidean action reads

SMFA
E = − ln det D0 +

1
2GS

∫
d3x φa(~x) φa(~x) (133)

where we define a chiral four-vector φa = (σ̄(~x), ~̄π(~x)). In this expression, the operator D0
is given by

D0(x, y) = δ(4)(x− y) (−i/∂y) + G(x− y) Γa φa((~x +~y)/2) (134)

where Γa = (1,~τ). The extension to finite temperature T and quark chemical potential µ
can be performed by following the usual Matsubara procedure (see, e.g., Section 2.2).

The relative locations of the TCP and LP in the µ− T plane can be studied in general
through the so-called Ginzburg–Landau (GL) approach, which does not require to specify
the explicit form of the inhomogeneity [234,244]. Following the analysis proposed in
Ref. [234], the mean field thermodynamic potential can be expanded around the symmetric
ground state in powers of the order parameters and their spatial gradients. Up to sixth
order in this double expansion, the GL functional has the general form [245]

Ω(T, µ, φa(~x)) =
α2

2
φ2 +

α4

4
(φ2)2 +

α4b
4

(∇φ)2 +

α6

6
(φ2)3 +

α6b
6

(φ,∇φ)2 +
α6c

6

[
φ2(∇φ)2 − (φ,∇φ)2

]
+

α6d
6

(4φ)2 (135)

where φ2 = (φ, φ) = φaφa = σ̄2 + ~̄π 2, (φ,∇i φ) = φa∇i φa = σ̄∇i σ + ~̄π · ∇i ~̄π, etc. By
looking at this functional, it is seen that for α4b > 0 the system is in the usual homogeneous
phase. Now, if in addition one has α4 > 0, the system undergoes a first-order chiral
restoration transition when α2 = 0 (φ2 = 0 for α2 > 0, φ2 6= 0 for α2 < 0), which defines a
first-order transition line in the µ− T plane. This line ends at the tricritical point, where
also α4 = 0 is satisfied. Thus, the position of the TCP can be determined by solving the set
of equations

α2 = 0 α4 = 0 . (136)
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On the other hand, for α4b < 0, inhomogeneous solutions are favored. Hence, the
Lifshitz point (i.e., the point where the onset of the inhomogeneous phase meets the chiral
transition line) is obtained from [233]

α2 = 0 α4b = 0 . (137)

This general discussion can also be applied to the NJL model, where it can be shown
that the coefficients of the quartic terms are equal to each other, i.e., αNJL

4 = αNJL
4b [234,242,245].

Therefore, Equations (136) and (137) are simultaneously satisfied, and, as stated above,
the TCP and LP are predicted to coincide. This is in general not true in the context of
nlNJL models, where the relation becomes modified owing to the presence of the nonlocal
form factor [242]. In fact, a numerical analysis carried out in Ref. [242] shows that for
various phenomenologically acceptable parameterizations the TCP is located at a higher
temperature and a lower chemical potential in comparison with the LP. As a consequence,
it is seen that nlNJL models favor a scenario in which the TCP is not covered by the
inhomogeneous phase.

Let us investigate, in the framework of nlNJL models, the possible shape of the inho-
mogeneous phase regions. In principle, a full analysis would require considering general
spatial-dependent condensates, looking for the configurations that minimize the mean
field thermodynamic potential at each value of the temperature and chemical potential.
Since for an arbitrary three-dimensional configuration this turns out to be a very diffi-
cult task, even in the case of local models, it is customary to consider one-dimensional
modulations, expecting that the qualitative features of the inhomogeneous phases will
not be significantly affected by the specific form of the spatial dependence carried by the
condensates [233]. It is worth noticing that, as stated in Ref. [235], the theoretical problem
of finding inhomogeneous phases with a lower dimensional modulation can be reduced to
a problem in a lower dimensional theory. Thus, the results from analytically solvable 1 + 1
dimensional chiral models [246–250] can be used to study the crystalline phase structure in
3 + 1 dimensions. Here, due to the additional difficulties introduced by the presence of
nonlocal quark currents, we consider a simple one-dimensional configuration, namely the
so-called dual chiral density wave (DCDW) [251], in which the chiral condensate rotates
along the chiral circle, carrying a constant three-momentum ~Q. The spatial dependence of
the quark condensates is given in this case by

〈q̄(~x)q(~x)〉 ∝ cos(~Q ·~x) 〈q̄(~x)iγ5q(~x)〉 ∝ sin(~Q ·~x) (138)

for both q = u and d quark flavors. This behavior of the chiral condensates can be obtained
by considering an adequate ansatz for the mean field configuration of the chiral four-vector
in momentum space [252].

The values of φ and Q ≡ |~Q| can be obtained, as usual, by minimization of the
mean field thermodynamic potential ΩMFA. A region in which the absolute minimum is
reached for a nonzero Q will correspond to an inhomogeneous phase. As expected, if chiral
symmetry is not dynamically broken (φ = 0), the regularized thermodynamic potential
reduces to the free quark piece Ωfree

q , which does not depend on Q.
Numerical results for the corresponding phase diagrams within nlNJL models are

quoted in Ref. [243], considering a Gaussian form factor g(p) = exp(−p2/Λ2
0). Although

this analysis does not include the couplings between the quarks and the Polyakov loop, the
qualitative features of the phase diagram should not be significantly affected, since one is
mostly interested in the low temperature region. In Figure 32, we quote the results for two
parameterizations, which correspond to a pion decay constant f ch

π = 86 MeV (we recall that
the chiral limit is taken) and quark condensate values (−〈q̄q〉ch)1/3 = 240 and 270 MeV,
respectively, at zero T and µ. The various regions of the phase diagram, as well as the
corresponding transition curves and critical points, are shown in the left panels of Figure 32.
Solid and dashed lines correspond to first- and second-order transitions, respectively.
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Figure 32. (Color online) (Left) µ− T phase diagrams. Solid (dashed) lines indicate first- (second-)order phase transitions.
The dotted line is the lower spinodal corresponding to the homogeneous chiral restoration transition, while the dashed-
dotted line is a boundary of a region in which there exists a local inhomogeneous minimum of the thermodynamic potential.
TCP, LP and 3P stand for tricritical, Lifshitz and triple points. (Right) Values of φ and Q as functions of the chemical
potential, for T = 0.

Let us analyze in detail the phase diagram in the top left panel, which corresponds
to 〈q̄q〉ch = −(240 MeV)3. For low chemical potentials, at temperatures below ∼120 MeV,
the system lies in an homogeneous chiral symmetry broken (CSB) phase (notice that the
corresponding critical temperature should be higher if couplings with the Polyakov loop are
included). Taking a fixed temperature of, e.g., 100 MeV, by increasing the chemical potential
one finds at some critical value µc(T = 100 MeV), a second-order phase transition to an
homogeneous normal quark matter (NQM) phase in which chiral symmetry is restored.
If the temperature is lowered, the second-order transition curve µc(T) ends at a tricritical
point, beyond which it becomes a first-order transition line. Now, by following this line,
at a temperature T3P ' 20 MeV, one arrives at a triple point. For T < T3P, at a critical
chemical potential, the system undergoes a first-order transition from the CSB phase into
an inhomogeneous (IH) phase, in which Q 6= 0 and the chiral symmetry is found to be only
approximately restored. On the other hand, if one starts with a system in the IH phase and
increases the temperature at constant chemical potential, at some critical value of T one
arrives at a second-order phase transition into the NQM phase. As shown in the figure,
the corresponding second-order transition line continues beyond the triple point with a
dash-dotted line inside the CSB area. The latter is the boundary of a region in which the
thermodynamic potential has a local minimum that corresponds to an (unstable) IH phase.
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Finally, the dotted line in the phase diagram shows the lower spinodal corresponding to
the homogeneous chiral restoration transition.

The previously described first-order transition from the CSB to the IH phase is illus-
trated in Figure 33 [243]. The top and bottom panels show contour plots of the mean field
thermodynamic potential at zero temperature for µ = 260 and µ = 280 MeV, respectively,
which correspond to both sides of the transition point µc(0) = 274 MeV. The plots show
the transition from an absolute minimum at φ ' 340 MeV, Q = 0, to another one in which
φ reduces to about 50 MeV, while the chiral condensates get spatial dependences as those
given by Equation (138), with Q ' 450 MeV. These features are also shown in the top right
panel of Figure 32, where the curves for φ and Q at T = 0 as functions of the chemical
potential are quoted. Notice that on the CSB side (Figure 33, top) there also exists a local
minimum at (φ, Q) ∼ (50 MeV, 400 MeV).

If the dimensionless product GSΛ2
0 is decreased, the absolute value of the condensate

|〈q̄q〉ch| gets increased, and the onset of the inhomogeneous phase is pushed up to larger
values of the chemical potential, leaving a region of homogeneous NQM phase even at
T = 0 [243]. This is shown in the bottom left panel of Figure 32, where we quote the phase
diagram for a parameterization leading to 〈q̄q〉ch = −(270 MeV)3 at zero T and µ. In this
case, it is seen that the onset of the IH phase (this region is sometimes called a “continent”)
occurs at a chemical potential µc(0) of the order of 500 MeV. The discontinuity of Q at
this transition for T = 0 becomes increased, as it is shown in the bottom right panel of
Figure 32.

It is worth pointing out that for the considered nlNJL models the would-be Lifshitz
point appears to be hidden inside the CSB phase region [243]. Instead, a triple point can be
found if the CSB and inhomogeneous phases meet. It is also worth mentioning that the
second-order phase transition curves, as well as both the TCP and would-be LP, can be
calculated for these models through a quite precise semianalytical approach [58,242]. In
addition, it is interesting to notice that, according to the analyses in Refs. [233,237,253], for
both the NJL and quark–meson models, some parameterizations lead to phase diagrams
that include IH “continents” which extend to arbitrarily high chemical potentials. In fact, it
is a matter of discussion whether the emergence of these continents is just a regularization
artifact. In nonlocal models, the ultraviolet convergence of loop integrals follows from
the behavior of form factors, which effectively embrace the underlying QCD interactions
(indeed, as discussed in previous sections, the form factors can be fitted from lattice QCD
calculations for the effective quark propagators [32,154,159]). The fact that various quark
models including different regularization procedures lead to similar qualitative features of
the phase diagram seems to indicate that these features are rather robust. However, it is
necessary to mention that in the described works the effects of color superconductivity have
not been considered. As discussed in Section 5.1, the latter are expected to be important
at intermediate and large chemical potentials and could have a significant impact on the
phase diagram.
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Figure 33. Contour plots of the thermodynamic potential ΩMFA at zero temperature, close to the first order transition between CSB
and IH phases [243]. The plots correspond to a condensate 〈q̄q〉ch = −(240 MeV)3, for chemical potentials µ = 260 MeV (up) and
µ = 280 MeV (down).

5.4. Effects of External Strong Magnetic Fields on Phase Transitions and Meson Properties

The study of the behavior of strongly-interacting matter under intense external mag-
netic fields is another subject that has gained significant interest in the past years. Once
again, the theoretical analysis requires in general to deal with quantum chromodynamics
in nonperturbative regimes, therefore most studies are based either in the predictions of
effective models or in the results obtained from lattice QCD calculations. In fact, in view
of the theoretical difficulty, most works concentrate on the situations in which one has a
uniform and static external magnetic field. Recent reviews on this subject can be found, e.g.,
in Refs. [254,255]. In this subsection, we discuss, in the framework of nonlocal NJL-like
models, the features of QCD phase transitions under an intense homogeneous external
magnetic field ~B [256,257]. In addition, we show some results on the behavior of π0 and σ
meson properties, at both zero and finite temperature [258,259].

At zero temperature, the results of low-energy effective models of QCD as well as
LQCD calculations indicate that the size of light quark–antiquark condensates should get
increased with the magnetic field. Thus, the external field appears to favor the breakdown
of chiral symmetry, which is usually known as “magnetic catalysis”. On the contrary,
close to the chiral restoration temperature, LQCD calculations carried out with realistic
quark masses [260,261] show that the condensates behave as nonmonotonic functions of
B, and this leads to a decrease in the transition temperature when the magnetic field is
increased. This effect is known as “inverse magnetic catalysis” (IMC). In addition, LQCD
calculations predict an entanglement between the chiral restoration and deconfinement
critical temperatures [260]. The observation of IMC has become a challenge for effective
models. Indeed, most naive effective approaches to low energy QCD predict that the chiral
transition temperature should grow with B, i.e., they do not find IMC. Interestingly, the
corresponding studies carried out in the context of nlNJL models show that the latter are
able to describe, at the mean field level, not only the IMC effect but also the entanglement
between chiral restoration and deconfinement transition temperatures. Moreover, it is
found that the behavior of the mass and decay constant of the π0 meson as functions of the
external magnetic field are also in agreement with LQCD results [258].

Here, we concentrate on the two-flavor nlPNJL model introduced in Section 2, consid-
ering a parameterization of the type of PA, in which quark–antiquark derivative currents
are not included. In fact, the general picture is expected to be similar for parameterizations
in which such a coupling is also taken into account. To account for the interaction with the
magnetic field, one can proceed as described in previous sections for the case of axial vector
gauge fields. As usual, a coupling between the fermions and the external electromagnetic
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gauge field Aµ is obtained by introducing a covariant derivative in the kinetic term in
Equation (1), i.e., by changing

∂µ → Dµ ≡ ∂µ − i Q̂Aµ(x) (139)

where Q̂ = diag(Qu, Qd), with Qu = 2e/3, Qd = −e/3, is the electromagnetic quark
charge operator. In addition, as discussed in Section 2.1.3, gauge symmetry requires a
further change in the nonlocal currents jS(x) and~P(x) in Equation (1), namely

ψ(x− z/2) → Wem(x, x− z/2) ψ(x− z/2) (140)

and the corresponding change for ψ̄(x + z/2) [32]. The function Wem(x, y) is given by

Wem(x, y) = P exp
[
− i

∫ y

x
dsµ Q̂Aµ(s)

]
(141)

where s runs over a path connecting x with y. As is usually done, we take it to be a straight
line. As stated, we consider the case of a constant and homogenous magnetic field, which,
without loss of generality, can be taken to be orientated along the 3-axis. For definiteness,
the analysis can be carried out using the Landau gauge, in which one has Aµ = B x1 δµ2.

As discussed in previous sections, it is convenient to carry out a bosonization of the
fermionic theory, introducing scalar and pseudoscalar meson fields and integrating out
the fermions. Next, within the mean field approximation, we assume that the scalar field
σ has a nontrivial translational invariant mean field value σ̄, while the mean field values
of pseudoscalar fields ~π are zero. It should be stressed at this point that the assumption
stating that σ̄ is independent of x does not imply that the resulting quark propagator will
be translational invariant. In fact, as discussed below, one can show that this invariance is
broken by the appearance of the so-called Schwinger phase. Our assumption just states that
the deviations from translational invariance driven by the magnetic field are not affected by
the dynamics of the theory. In this way, the mean field bosonized action can be written as

SMFA
E = − ln det D0 + V(4) σ̄2

2GS
(142)

where
D0(x, x′) = diag(Du

0 (x, x′) Dd
0(x, x′)) (143)

with

D f
0 (x, x′) = δ(4)(x− x′)

(
−i/∂−Q f B x1γ2 + mc

)
+ σ̄ G(x− x′) exp

[
i

Q f B
2

(x1 + x′1) (x2 − x′2)
]

. (144)

Here, the function G(z) is the nonlocal form factor in the quark currents defined in
Equation (1). Notice that, contrary to the B = 0 case, in the presence of the magnetic field,
the charged particles cannot be in states of definite momentum; hence, it is not adequate
to transform the action to momentum space. Instead, to deal with the operators D f

0 , it is

convenient to introduce Ritus transforms D f
0 ( p̄, p̄ ′), defined by

D f
0 ( p̄, p̄ ′) =

∫
d4x d4x′ Ēp̄(x) D f

0 (x, x′) Ep̄ ′(x′) (145)

where Ep̄(x) and Ēp̄(x) are Ritus functions [262]. Here, p̄ = (k, p2, p3, p4), k being an integer
quantum number that labels the so-called Landau energy levels. Using the properties of
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Ritus functions, after some calculation, it can be shown that the operators D f
0 are diagonal

in this basis. One obtains [256,257]

D f
0 ( p̄, p̄ ′) = (2π)4 δkk′ δ(p2 − p ′2 ) δ(p3 − p ′3 ) δ(p4 − p ′4 ) D

f
k,p‖

(146)

where
D f

k,p‖
= Pk,s f

(
−s f

√
2k|Q f B| γ2 + p‖ · γ‖

)
+ ∑

λ=±
Mλ, f

k,p‖
∆λ (147)

with

Mλ, f
k,p‖

=
4π

|Q f B| (−1)kλ

∫ d2 p⊥
(2π)2 [mc + σ̄ g(p)] exp(−p2

⊥/|Q f B|) Lkλ
(2p2
⊥/|Q f B|) . (148)

In these equations, the definitions s f = sgn(Q f B), p‖ = (p3, p4), p⊥ = (p1, p2),
γ‖ = (γ3, γ4), ∆+ = diag(1, 0, 1, 0), ∆− = diag(0, 1, 0, 1), Pk,±1 = (1− δk0) I + δk0 ∆± and
k± = k− 1/2± s f /2 are used. The function g(p) stands for the Fourier transform of G(x),
while Lm(x) are Laguerre polynomials, with the usual convention L−1(x) = 0.

Using the fact that D f
0 is diagonal in Ritus space, the corresponding contribution to

the mean field action can be readily calculated. One obtains

SMFA
E

V(4)
= −Nc ∑

f=u,d

|Q f B|
2π

∫ d2 p‖
(2π)2

[
ln
(

p2
‖ + M

λf , f
0,p‖

2 )
+

∞

∑
k=1

ln ∆ f
k,p‖

]
+

σ̄2

2G
(149)

where λ f = + (−) for s f = +1 (−1), and ∆ f
k,p‖

is defined by

∆ f
k,p‖

=
(

2k|Q f B|+ p2
‖ + M+, f

k,p‖
M−, f

k,p‖

)2
+ p2

‖

(
M+, f

k,p‖
−M−, f

k,p‖

)2
. (150)

By regarding at these equations [compare with Equation (10)], it is seen that the
functions M±, f

k,p‖
play the role of constituent quark masses in the presence of the external

magnetic field.
As done in Section 2.2, the analysis can be extended to a system at finite temperature

using the Matsubara formalism, and a coupling of fermions to the Polyakov loop can
be included to account for confinement effects. In what follows, we present the results
corresponding to the polynomial PL potential quoted in Equation (32) [21]. The full
expression of the corresponding mean field thermodynamic potential can be found in
Ref. [257]. As in the B = 0 case, this quantity is divergent and can be regularized using the
prescription in which one subtracts a free contribution and adds it in a regularized form.
In fact, this “free” contribution corresponds to the mean field potential obtained in absence
of the effective four-quark coupling (i.e., setting σ̄ = 0), but keeping the interaction with
the magnetic field and the PL.

By minimizing the regularized mean field thermodynamic potential one can obtain
the values of σ̄ and the traced Polyakov loop Φ as functions of the temperature T and the
magnetic field. Then, the magnetic field dependent quark condensates 〈q̄q〉, q = u, d, can
be calculated, as usual, by taking the derivatives with respect to the corresponding current
quark masses. To make contact with LQCD results given in Ref. [261], it is convenient to
define the quantities

Σq
B,T = −2 mc

S4

[
〈q̄q〉B,T − 〈q̄q〉0,0

]
+ 1 (151)

where S = (135× 86)1/2 MeV. We also introduce the definitions ∆Σq
B,T = Σq

B,T − Σq
0,T ,

Σ̄B,T = (Σu
B,T + Σd

B,T)/2 and ∆Σ̄B,T = (∆Σu
B,T + ∆Σd

B,T)/2 , which correspond to a sub-
tracted normalized flavor condensate, a normalized flavor average condensate and a
subtracted normalized flavor average condensate, respectively.
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In what follows, we quote the numerical results obtained for the case of a Gaussian
form factor, i.e., for some parameterizations similar to PA (see Section 2.3). For comparison,
we consider parameter sets leading to quark–antiquark condensates (−〈q̄q〉0,0)

1/3 = 240,
230 and 220 MeV. The corresponding model parameters can be found, e.g., in Ref. [257].

The behavior of quark condensates at zero temperature within this nlNJL framework
is calculated in Ref. [256]. The results are shown in Figure 34, where we include the predic-
tions for ∆Σ̄B,0 and Σu

B,0 − Σd
B,0 as functions of eB together with the corresponding LQCD

data given in Ref. [261]. Solid, dashed and dotted curves correspond to (−〈q̄q〉0,0)
1/3 = 240,

230 and 220 MeV, respectively. The growth of the condensates clearly show the effect known
as “magnetic catalysis”. It can be seen that the predictions for ∆Σ̄B,0 are very similar for
all parameter sets, while for the difference Σu

B,0 − Σd
B,0 there is some dependence on the

parameterization. In both cases, the predictions show a good agreement with LQCD results.
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Figure 34. (Color online) Normalized quark condensates as functions of the magnetic field at T = 0. Solid (blue),
dashed (black) and dotted (red) curves correspond to parameterizations leading to (−〈q̄q〉0,0)

1/3 = 240, 230 and 220 MeV,
respectively. Full square symbols indicate LQCD results given in Ref. [261].

Let us now look at the results for a system at finite temperature, which are obtained in
Ref. [257]. In Figure 35 (left), we show the behavior of the averaged chiral condensate Σ̄B,T
and the traced Polyakov loop Φ as functions of the temperature, for three representative
values of the external magnetic field, namely eB = 0, 0.6 and 1 GeV2. The curves correspond
to a quark condensate (−〈q̄q〉0,0)

1/3 = 230 MeV. Given a value of B, it is seen from the
figure that chiral restoration and deconfinement transitions proceed as smooth crossovers
occurring at approximately the same critical temperature Tc(B) (chiral restoration and
deconfinement critical temperatures are defined here from the peaks in the derivatives
−dΣ̄B,T/dT and dΦ/dT, respectively). For B = 0, Tc(0) is found to be approximately equal
to 180 MeV, with a variation not larger than a few percent within the above considered
parameterization range. This temperature compares well with the value Tc(0) = 173±
8 MeV obtained from N f = 2 LQCD calculations [96]. It is worth recalling that in absence
of the interaction with the Polyakov loop the value of Tc(0) is found to drop down to about
130 MeV [256].
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Figure 35. (Color online) (Left) Normalized flavor average condensate and traced Polyakov loop as functions of the
temperature, for three representative values of eB. (Right) Subtracted normalized flavor average condensate as a function
of eB for various representative temperatures.

It is interesting to discuss the effect of the magnetic field on the phase transition
features. On one hand, in Figure 35 (left), it is seen that the splitting between the chiral
restoration and deconfinement critical temperatures remains very small even for nonzero
B. On the other hand, the curves for the normalized flavor average condensate clearly
show the inverse magnetic catalysis effect. Indeed, contrary to what happens, e.g., in the
local NJL model [254,255] or in the quark–meson model [263], within the nlNJL approach
the chiral restoration critical temperature becomes lower as the external magnetic field
is increased. This is related with the fact that the condensates do not show in general a
monotonic increase with B for a fixed value of the temperature. The situation is illustrated
in the right panel of Figure 35, where we show the behavior of the averaged difference
∆Σ̄B,T as a function of eB, for T = 0 and for values of the temperature in the critical region.
While the value of ∆Σ̄B,T=0 shows a monotonic growth with the external magnetic field,
it is seen that when the temperatures get closer to critical values Tc(B) the curves show a
maximum and then start to decrease for increasing B. This is a typical behavior associated
to IMC and nicely agrees with the results obtained from lattice QCD (see, e.g., Figure 2
of [261]).

In Figure 36, we show the results given in Ref. [257] for the normalized chiral restora-
tion critical temperature, Tc(B)/Tc(0), as a function of eB. The curves correspond to the
above mentioned nlNJL model parameterizations. For comparison, LQCD results quoted
in Ref. [261] are indicated by the gray band. In the figure, it is clearly seen that the IMC
effect is sizeable and fully compatible with LQCD results for phenomenologically adequate
values of the chiral condensate. It is also worth mentioning that some effective approaches
to low energy QCD are able to obtain IMC by assuming some explicit dependence of
the effective coupling parameters on B and/or T [264,265] or by considering the effect
of anomalous magnetic moments in the quark energy dispersion relations [266]. In turn,
it is seen that within nlNJL models one gets IMC in a fully natural way. This can be
understood by noticing that for a given Landau level the associated nonlocal form factor
carries a dependence on the external magnetic field, which arises from the convolution in
Equation (148).
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Figure 36. (Color online) Normalized critical temperatures as functions of eB. For comparison, LQCD
results of Ref. [261] are indicated by the gray band.

In what follows, we quote some results concerning the properties of the π0 meson in
the presence of the external magnetic field. At zero temperature, the theoretical expression
for the π0 mass can be obtained by expanding the corresponding bosonic action in powers
of the fluctuations δπ3 = δπ0. In momentum space, the corresponding quadratic piece of
the bosonized action can be written as

Squad
E

∣∣∣
(δπ0)2

=
1
2

∫ d4q
(2π)4 Gπ0(q2

⊥, q2
‖) δπ0(q) δπ0(−q)

=
1
2

∫ d4q
(2π)4

[
1

GS
+ Fπ0(q2

⊥, q2
‖)

]
δπ0(q) δπ0(−q) (152)

where the polarization function Fπ0(q2
⊥, q2

‖) is given by a quark loop integral that involves
the external field B. Its explicit form can be found in Refs. [258,259]. Choosing the frame in
which the pion is at rest, its mass can be obtained as a solution of the equation

Gπ0(0,−m2
π0) = 0 . (153)

As shown in Ref. [267], a relevant feature induced by the presence of the external
magnetic field is the fact that the π0 dispersion relation turns out to be anisotropic, implying
that the movement along the direction perpendicular to the magnetic field is characterized
by a directional refraction index uπ0 which is in general different from one. To normalize
the π0 field, one can expand the action in Equation (152) around the pion pole (q⊥ = 0,
q2
‖ = −m2

π0 ) up to first order in momentum squared. Following [259], one can define

Z−1
‖ = g−2

π0qq̄ =
dGπ0 (q2

⊥, q2
‖)

dq2
‖

∣∣∣∣
q2
⊥=0, q2

‖=−m2
π0

, Z−1
⊥ =

dGπ0 (q2
⊥, q2
‖)

dq2
⊥

∣∣∣∣
q2
⊥=0, q2

‖=−m2
π0

(154)

renormalizing the pion field according to π0(q) = Z1/2
‖ π̃0(q). Thus, around the pion pole,

one has

Squad
E

∣∣∣
(δπ0)2

=
1
2

∫ d4q
(2π)4

(
u2

π0 q2
⊥ + q2

‖ + m2
π0

)
δπ̃0(q)δπ̃0(−q) (155)

where

u2
π0 =

Z‖
Z⊥

. (156)
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The behavior of the pion mass mπ0(B) predicted by the nlNJL approach is shown
in Figure 37 [258]. The results, normalized to the empirical π0 mass value at B = 0,
correspond to the parameter set leading to (−〈q̄q〉0,0)

1/3 = 230 MeV. It is found that the
π0 mass decreases when the magnetic field gets increased, reaching a value of about 65%
of mπ0(0) at eB ' 1.5 GeV2, which corresponds to a magnetic field of about 2.5× 1020

G. The figure also includes a gray band that corresponds to lattice QCD results given
in Ref. [268]. The latter have been obtained from a continuum extrapolation of lattice
spacing, considering a relatively large current quark mass for which mπ = 415 MeV. For
comparison, we also quote in the figure the results obtained within the nlNJL model by
shifting mc to 56.3 MeV, which leads to this enhanced pion mass. In general, it can be seen
that nlNJL model predictions—for which no ad-hoc adjustments or extra parameters have
been required—turn out to be in good agreement with LQCD calculations. It is also worth
mentioning that the curves in Figure 37 remain practically unchanged when the value of
the B = 0 condensate used to fix the parameterization is varied within the range from
−(220 MeV)3 to −(250 MeV)3.
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Figure 37. Mass of the π0 meson as a function of eB, normalized to its value for B = 0 [258].
The dotted line is obtained for a parameterization in which mπ = 415 MeV, while the gray band
corresponds to the results of lattice QCD calculations quoted in Ref. [268].

It is also interesting to study the behavior of the π0 meson “decay constants”. As
shown in Ref. [269], in the presence of an external magnetic field ~B, the pion-to-vacuum
vector and axial vector amplitudes can be in general parameterized in terms of three form
factors. Two of them, f (A||)

π0 and f (A⊥)
π0 , in the B = 0 limit reduce to the pion decay constant

usually denoted by fπ . The third one, f (V)
π0 , is associated to the vector piece of the quark

weak current and vanishes for B = 0. Following the notation in Ref. [270], these form
factors can be defined by the relations

HV
4 (x,~q)± HV

3 (x,~q) = ∓ f (V)
π0 (q4 ∓ q3) eiq ·x

HV
1 (x,~q)± iHV

2 (x,~q) = 0

HA
4 (x,~q)± HA

3 (x,~q) = −i f (A‖)
π0 (q4 ± q3) eiq ·x

HA
1 (x,~q)± iHA

2 (x,~q) = −i f (A⊥)
π0 (q1 ± iq2) eiq ·x , (157)
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where HV,A
µ are the π0-to-vacuum amplitudes for vector and axial vector quark currents,

HV
µ (x,~q) = 〈0|ψ̄(x) γµ

τ3

2
ψ(x)|π̃0(~q)〉

HA
µ (x,~q) = 〈0|ψ̄(x) γµγ5

τ3

2
ψ(x)|π̃0(~q)〉 . (158)

The matrix elements in Equation (158) can be obtained by introducing couplings
between the quark currents and auxiliary vector and axial vector gauge fields, and then
taking the corresponding functional derivatives of the effective action. Once again, gauge
invariance requires the couplings to these auxiliary gauge fields to be introduced through
the covariant derivative and the parallel transport of the fermion fields. The analytic calcu-
lations of the form factors require carrying out combined Laguerre–Fourier transformations
of the form factors. Explicit expressions can be found in Ref. [259].

It is interesting to study the relations involving form factors and renormalization con-
stants in the chiral limit, mc → 0. As expected, in this limit, one gets Fπ0(0, 0) = −1/GS [259],
which implies mπ0 = 0 according to Equation (153). In addition, from the calculations in
Refs. [258,259], it is seen that the Goldberger–Treiman relation

f (A‖)
π0,0 Z1/2

‖,0 = σ̄0 (159)

and the Gell–Mann–Oakes–Renner relation

f (A‖)
π0,0

2
m2

π0 = −mc 〈ūu + d̄d〉0 (160)

remain valid in the presence of the external magnetic field (subindices 0 indicate that the in-
volved quantities are evaluated in the chiral limit). The above equations are complemented
by the relation [259]

f (A⊥)
π0,0 Z−1/2

‖,0 Z⊥,0 = σ̄0 (161)

which implies
f (A⊥)
π0,0

f (A‖)
π0,0

=
Z‖,0
Z⊥,0

= u2
π0,0 . (162)

This result is also found in the framework of the local NJL model in Ref. [270] and
(using a different notation) in Ref. [267], where it is obtained from a modified partially-
conserved-axial-current (PCAC) relation.

In Figure 38, we show the numerical results obtained within the nlNJL model for
various quantities associated with the neutral pion at zero temperature, as functions of
eB [259]. Dashed, solid and dotted red lines correspond to quark condensate values
(−〈q̄q〉0,0)

1/3 = 220, 230 and 240 MeV, respectively. For comparison, we also include in the
figure the numerical results obtained within the local NJL model, quoted in Ref. [270]. Solid
blue lines correspond to a parameterization leading to a constituent quark mass M = 350
MeV (for B = 0), while the limits of the gray bands correspond to M = 320 MeV (dashed
lines) and M = 380 MeV (dotted lines). The values of the B = 0 quark–antiquark conden-
sates for these parameterizations of the NJL model are 〈q̄q〉 ' (−243MeV)3, (−236MeV)3

and (−250MeV)3, respectively. As shown in the figure, in general nlNJL results do not
show a large dependence with the model parameterization. On the other hand, in most
cases, the dependence with the external field is significantly stronger for the nlNJL model
than for the local NJL approach. In the case of the effective coupling constant gπ0qq̄, the
behavior is found to be opposite for both models. Concerning the axial form factors, for
B = 0, one has spacial rotation symmetry and both f (A‖)

π0 and f (A⊥)
π0 reduce to the usual pion

decay constant fπ [see Equation (158)]. As the magnetic field increases, f (A‖)
π0 is enhanced

and f (A⊥)
π0 is reduced, in the case of both the nlNJL and the local NJL model. The vector
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form factor f (V)
π0 , shown in the bottom left panel, is zero at vanishing external field and

shows a monotonic growth with eB, with little dependence on the parameterization within
the nlNJL model.
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Figure 38. (Color online) Neutral pion properties as functions of eB. Solid red and blue lines correspond nlNJL and local
NJL results, respectively. The gray bands account for model parameter ranges indicated in the text.

Finally, let us discuss the behavior of π0 and σ meson properties in the context of nlNJL
models for a system at finite temperature T. As in the case of the quark condensates, we
quote the results for the model parameterization corresponding to (−〈q̄q〉0,0)

1/3 = 230 MeV
and a polynomial PL potential. In Figure 39, we show the behavior of the π0 and σ meson
masses (top) and the normalized π0 axial and vector decay form factors (bottom) as
functions of the temperature, for three representative values of the external magnetic
field, namely eB = 0, eB = 0.6 GeV2 and eB = 1 GeV2. These results are obtained in
Ref. [259]. It can be seen that for nonzero B the masses show a similar qualitative behavior
with T as in the B = 0 case. The π0 mass remains approximately constant up to the
critical temperature, and π0 and σ masses match above Tc(B), as expected from chiral
symmetry. For large temperatures, it is seen that the masses steadily increase, the growth
being dominated by pure thermal effects. As stated, the IMC effect is observed, i.e., Tc(B)
decreases for increasing B. In the case of the form factors, the curves for f (A‖)

π0 and f (V)
π0

show sudden drops at the critical temperatures, exhibiting once again a qualitatively similar
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behavior for zero and nonzero external magnetic field. The curves for f (A⊥)
π0 overlap with

those corresponding to f (A‖)
π0 and are not displayed in the figure. We recall that, at any

temperature, f (V)
π0 is zero for vanishing external field.
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Figure 39. (Color online) π0 and σ meson masses (top) and normalized π0 decay form factors
(bottom) as functions of the temperature, for three representative values of eB.

For completeness, in Figure 40, we show the behavior of meson properties as func-
tions of eB for three representative values of the temperature, namely T = 0, 165 and
180 MeV [259]. The results for T = 0, same as those previously shown in Figure 39, are
included just for comparison. The curves for T = 165 MeV can be understood by looking at
the results in Figure 35, which show that this is the critical temperature that corresponds to
eB ' 0.6 GeV2. Thus, for this temperature, the pion mass and form factors in Figure 40 are
expected to show approximately the same behavior as for T = 0 up to eB ∼ 0.5− 0.6 GeV2.
Beyond these values, as expected from the results in Figure 39, one finds an enhancement
of the pion mass and a decrease of the axial and vector form factors. On the other hand, it
is seen that for T = 180 MeV the values of the pion mass and axial form factors are well
separated from the T = 0 values already at B = 0. This reflects the fact that at T ∼ 180 MeV
the system is undergoing the chiral restoration transition for vanishing magnetic field.
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Figure 40. (Color online) (Left) π0 and σ meson masses and directional refraction index as functions of eB, for three
representative values of the temperature. (Right) From top to bottom, decay form factors f (A‖)

π0 , f (A⊥)
π0 and f (V)

π0 as functions
of eB, for three representative values of the temperature.

6. Summary and Concluding Remarks

In this work, we present an overview of the current status of the research on effective
nonlocal NJL-like chiral quark models. Within this framework, we analyze the descrip-
tion of hadron properties in vacuum, as well as the features of deconfinement and chiral
restoration transitions for systems at finite temperature and/or density. In addition, we
address other related subjects, such as the study of phase transitions for imaginary chem-
ical potentials, the possible existence of inhomogeneous phase regions, the presence of
color superconductivity, the effects produced by strong external magnetic fields and the
applications to the description of compact stellar objects.

The reliability of nlNJL models and their advantage over the standard, local NJL
model can be evaluated by comparing the obtained predictions against vacuum hadron
phenomenology and existing results from lattice calculations, in particular, in the region of
low or vanishing chemical potentials. Here, we start by considering a two-flavor model
(see Section 2), which has been extended by including interaction channels that account for
vector and axial vector meson physics (Section 3). Then, the extension to three flavors is
also reviewed (Section 4). In all these approaches, the underlying QCD interactions are
effectively taken into account through a few coupling constants and nonlocal form factors.
In the simplest versions of the nonlocal NJL-like models (see Section 2), these form factors
can be obtained from a fit to lattice QCD results for the momentum dependence of effective
quark propagators. In fact, a general analyses of the results presented throughout this
article shows that most qualitative predictions of nlNJL models do not depend significantly
on the ultraviolet behavior of the form factors. Hence, in many cases, it is convenient to
use Gaussian functions, which guarantee a rapid convergence of quark loop integrals and
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simplify analytical calculations. It is also shown that—as expected—a more accurate fit
to LQCD results for quark propagators leads to a better agreement between nlNJL model
and LQCD predictions for thermodynamical quantities (see Section 4). After determining
the values of the coupling constants from a few input empirical quantities, various particle
properties can be obtained as predictions of the models. As shown by Tables 2, 6 and 10,
these results show in general a reasonable agreement with the observed phenomenology.
This includes both the J = 1 and the strange meson sectors. On the other hand, there is
a good agreement with most lattice QCD results for finite temperature and low chemical
potentials, as well as for the theoretical case of imaginary chemical potentials. A point
that deserves further investigation is the thermal behavior of the traced Polyakov loop, for
which the comparison between quark effective models and LQCD data has to be taken
with some care (see discussion in Section 4.4).

Concerning the comparison with standard local NJL-like approaches, there are several
reasons for which nonlocal models are expected to be more adequate for the description
of low energy QCD phenomenology than local effective theories. In fact, as stated in
Section 2, nonlocality arises naturally in the context of various successful approaches to
strong interactions in the nonperturbative regime, covering from the instanton liquid model
to Dyson–Schwinger resummation methods. Moreover, the presence of well behaved form
factors in nonlocal models ensures the convergence of quark loop integrals, which make
nlNJL predictions more stable against changes in model parameters in comparison with
models that include sharp cutoff regularizations. At the same time, the assumption of a
separable interaction makes these nlNJL-like schemes capable of retaining much of the
simplicity of the local NJL model, in comparison with more rigorous analytical approaches
to nonperturbative QCD. While for many physical quantities the results are similar for
both local and nonlocal approaches, there are some cases in which significant qualitative
differences show up. One of them is the entanglement between chiral restoration and
deconfinement critical temperatures. This feature is observed from LQCD results and
arises naturally in the framework of nlPNJL models (see Sections 2.4 and 4.4), while local
models predict in general a splitting between critical temperatures. Another example is the
dependence of the pion decay constant, fπ , on the value of the explicit chiral symmetry
breaking parameter mc (or, equivalently, on the pion mass). As shown in Figure 4 (right),
the results from nlNJL models show a much better agreement with LQCD results than
those obtained within local NJL schemes. In addition, special attention should be deserved
to the effects of an external strong magnetic field on phase transitions and meson properties.
As shown in Section 5.4, nlNJL models predict the existence of inverse magnetic catalysis,
according to which the chiral restoration transition temperature behaves as a decreasing
function of the external magnetic field. It is worth pointing out that this effect, which has
been found by LQCD calculations, arises naturally in the context of nlNJL approaches due
to the magnetic field dependence of nonlocal form factors. In the local NJL, the inverse
magnetic catalysis can be obtained only after the inclusion of some ad-hoc mechanism,
such as the assumption of an explicit dependence of the coupling constants on the magnetic
field. With no ad-hoc adjustments, a good agreement between nlNJL models and lattice
QCD results for the behavior of critical temperatures is found, as shown in Figure 36.
Moreover, the predictions of nlNJL models for the behavior of the π0 mass as a function of
the magnetic field also show excellent agreement with LQCD data, as shown in Figure 37.
It is seen that, in general, there are significant differences between local and nonlocal model
predictions for the magnetic field dependence of various π0 properties (see Figure 38).

We also find it important to state some remarks on µ − T phase diagrams. For
almost all studied parameterizations, nonlocal models predict the existence of a critical
end point separating crossover-like and first order transition critical temperatures. This
is in accordance with the general belief from most approaches to effective models for
low energy strong interactions. From the phase diagrams in Figures 8, 17 and 26, it can
be seen that, in general, the CEP location is found to lie within a range of temperatures
between 120 and 170 MeV and (quark) chemical potentials from 150 to 250 MeV. The
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precise position depends on the model parameterization and the form of the Polyakov loop
potential, which accounts for confinement features and is a major source of uncertainty for
both local and nonlocal NJL-like approaches. It is worth remarking that, as discussed in
Sections 5.1 and 5.3, nlNJL models allow for the presence of two-flavor superconducting
states and mixed phases, as well as inhomogeneous phase regions. In particular, as
discussed in Section 5.2, several works show that the existence of mixed and/or quark
matter phases in the deep core of compact stars is compatible with present observational
constraints. Regarding inhomogeneous (or crystalline) phases, it is worth mentioning that
local two-flavor NJL models predict the existence of a so-called Lifshitz point—which in the
chiral limit coincides with the tricritical point—whereas in the nlNJL models studied here
the would-be Lifshitz point appears to be hidden into the hadronic phase in which chiral
symmetry is spontaneously broken (see Figure 32). Depending on the parameterization,
one can find instead a triple point, in which hadronic, quark matter and inhomogeneous
phases meet.

As a general conclusion, it could be stated that nonlocal NJL-like models provide a
scenario in which several of the traditional problems of the NJL model are overcome, whilst
much of the simplicity and predictive power of the standard local approach is retained.
Moreover, the general good agreement with lattice QCD results for both zero and finite
temperature indicates that the nlNJL model approach serves as a successful tool to deal
with the description of nonperturbative QCD features, and can be used to get predictions
for the behavior of hadronic and quark matter systems at finite densities and/or in the
presence of external fields.
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Appendix A. Basic Notation and Conventions

Throughout this article, we use Euclidean space-time coordinates xµ = (~x, x4), where
x4 = ix0. Then, the associated gradient four-vector is ∂µ = (~∇, ∂4). The scalar product of
two Euclidean four-vectors V and W is denoted by

V ·W = VµWµ = ~V · ~W + V4W4 . (A1)

The Euclidean Dirac matrices are defined as γµ = (~γ, γ4), where γ4 = iγ0. They
satisfy the commutation relations {γµ, γν} = −2δµν. The Dirac matrix γ5 is given by
γ5 = −γ1γ2γ3γ4. Given a four-vector Vµ, the “slash” notation is defined as

/V = ~γ · ~V + γ4V4 . (A2)

For the Fourier transform, we use

f (x) =
∫ d4 p

(2π4)
exp(ip · x) f (p) f (p) =

∫
d4x exp(−ip · x) f (x) (A3)
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which is consistent with pµ = −i∂µ. For finite-temperature calculations within the Matsub-
ara formalism, we use the transformations

f (τ) = T
∞

∑
n=−∞

exp(iωnτ) f (ωn) f (ωn) =
∫ 1/T

0
dτ exp(−iωnτ) f (τ) (A4)

where τ = it = x4. Here, ωn are the Matsubara frequencies, i.e., ωn = (2n + 1)πT for
fermions and ωn = 2nπT for bosons.
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