
symmetryS S

Article

Automatic Malicious Code Classification System through Static
Analysis Using Machine Learning

Sungjoong Kim 1, Seongkyu Yeom 1, Haengrok Oh 2, Dongil Shin 1 and Dongkyoo Shin 1,*

����������
�������

Citation: Kim, S.; Yeom, S.; Oh, H.;

Shin, D.; Shin, D. Automatic

Malicious Code Classification System

through Static Analysis Using Machine

Learning. Symmetry 2021, 13, 35.

https://doi.org/10.3390/sym13010035

Received: 3 December 2020

Accepted: 24 December 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Computer Engineering, Sejong University, Seoul 05006, Korea; tjdwnd2004@sejong.ac.kr (S.K.);
dae02159@naver.com (S.Y.); dshin@sejong.ac.kr (D.S.)

2 Agency for Defense Development, Seoul 05661, Korea; haengrok@add.re.kr
* Correspondence: shindk@sejong.ac.kr

Abstract: The development of information and communication technology (ICT) is making daily
life more convenient by allowing access to information at anytime and anywhere and by improving
the efficiency of organizations. Unfortunately, malicious code is also proliferating and becoming
increasingly complex and sophisticated. In fact, even novices can now easily create it using hacking
tools, which is causing it to increase and spread exponentially. It has become difficult for humans
to respond to such a surge. As a result, many studies have pursued methods to automatically
analyze and classify malicious code. There are currently two methods for analyzing it: a dynamic
analysis method that executes the program directly and confirms the execution result, and a static
analysis method that analyzes the program without executing it. This paper proposes a static analysis
automation technique for malicious code that uses machine learning. This classification system was
designed by combining a method for classifying malicious code using a portable executable (PE)
structure and a method for classifying it using a PE structure. The system has 98.77% accuracy when
classifying normal and malicious files. The proposed system can be used to classify various types of
malware from PE files to shell code.

Keywords: malicious code; classification; portable executable (PE)

1. Introduction

The development of information and communication technology (ICT) is making
daily life more convenient by allowing access to information at anytime and anywhere
and by improving the efficiency of organizations [1]. However, various cyber attacks such
as information leakage and ransomware have also been increasing. Most of these cyber
attacks are caused by malicious code.

Malware is becoming increasingly complex and sophisticated as a result of evolving
computer technology. When the open source concept emerged, various types were gen-
erated, and now even novices can easily create malicious code using hacking tools. Such
code is increasing and spreading exponentially [2–4]. Approximately 20% of all malicious
code in circulation is classified as variants of existing code [5]. Thus, various types have
been developed, further increasing malware attacks and making it difficult for a person to
manually respond to such malicious code. As a result, a considerable amount of research
has been done to automatically analyze and classify it.

There are currently two methods for analyzing malicious code: a dynamic analysis
method that executes the program directly and confirms the execution result, and a static
analysis method that analyzes the program without executing it. The dynamic analysis
method monitors changes that occur as the file is executed and checks what function it
performs. Although it has the advantage of analyzing changes during the actual execution,
there is a limit in the ability to analyze all the execution paths [6]. A significant limitation is
that this method cannot analyze a malicious code that triggers underlying behavior, such
as only working at a specific point in time. Thus, it is difficult to analyze and classify it

Symmetry 2021, 13, 35. https://doi.org/10.3390/sym13010035 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2665-3339
https://doi.org/10.3390/sym13010035
https://doi.org/10.3390/sym13010035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13010035
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/1/35?type=check_update&version=2

Symmetry 2021, 13, 35 2 of 11

effectively using only a dynamic analysis automation system. Therefore, it is necessary to
pursue research and systems that utilize technologies that can automate the static analysis
of harmful code.

This paper proposes a static classification system for malicious code that combines
machine learning and deep learning. Section 2 describes malicious code classification
research, and Section 3 proposes a system architecture. Section 4 presents the results
of experimental and performance analyses, and Section 5 presents the implications and
conclusions related to the system.

2. Related Works

Various studies have been conducted regarding the analysis and classification of
malicious code. This includes extracting the application programming interface (API)
used in the program and calculating the weight based on the probability that the API will
occur in malicious code [7], converting it to the N-gram method, and extracting the entire
N-series element binary file into a string to create a general file, which is then applied to
malicious code classification [7]. Static levels of packing and obfuscation signs have been
used to calculate the level of risk and examine the structure of the binary files to investigate
the extent of the malicious code [7].

Nataraj proposed a method to visualize and classify malicious code files, using an
image gabor filter to train the classifier as an image feature extractor, along with a k-nearest
neighbors (kNN) classifier [8]. Chen suggested DroidVecDeep, which is a malicious code
detection method that uses deep learning technology to effectively detect unknown code
on the Android platform. DroidVecDeep first extracts various features and ranks them
using the mean decrease impurity. Then, it transforms the features into compact vectors
based on word2vec. Finally, it trains the classifier based on a deep learning model [9].

Naeem proposed the cross-platform malware variant classification system (CP-MVCS),
which converts binary malicious code into a grayscale image and extracts malicious func-
tions from images using combined SIFT-GIST malware (CSGM) [10].

Other studies have classified malicious code based on information extracted from the
portable executable (PE) header and section information [11,12].

3. Design and Implementation of Malicious Code Classification System

A malicious code classification system is proposed to automate a static analysis to
distinguish and classify the nature of the file itself without running it. The designed
classification system receives all of the files as input data, including the malicious code,
normal file, and source file. Figure 1 shows the structure of the whole system.

In the preprocessing stage, the PE data extraction module and the image generation
module are used to generate input data for each module used in the classification stage. In
the next classification step, each model individually judges whether it is malicious using
several algorithms. Random forest, gradient boosting, and decision tree algorithms classify
malicious codes by receiving data generated from PE data, and CNN algorithm classifies
malicious codes by receiving images generated by the image generation module as input
data. By integrating the classification results of each model, the final malicious code is
determined. Finally, this is the step of reflecting the classification results in the DB. DB
configuration consists of data information and a value that determines whether the data is
malicious.

Progress in the system is largely divided into a preprocessing step, malicious code
classification step, and step to reflect the results in a database (DB). The contents of each
step are as follows.

Symmetry 2021, 13, 35 3 of 11Symmetry 2021, 13, x FOR PEER REVIEW 3 of 12

Figure 1. Overall structure of proposed malicious code static classification system.

3.1. Preprocessing Step

The system has a learning model that has been trained with various kinds of algo-

rithms. In order to extract and process the input file to enter data into this model, it extracts

hash values from input files, extracts PE data, and performs image conversion work.

3.1.1. Hash Extraction

This step extracts the hash value of an input file, which is an eigenvalue. This is done

to determine whether the input data has been duplicated. Using the extracted hash value

as a primary key, the classification result of the newly entered data in the DB update step

is added to the DB, and the duplicated data is modified in the DB.

3.1.2. PE Data Extraction

The information needed for PE files to run in Windows exists in the header and sec-

tions of the PE structure. Therefore, information related to malignancy can be obtained

from PE structures without executing the malicious code, and the import address table

(IAT) within the PE header can be used to determine which dynamic link library (DLL) is

loaded, and which function is used in that DLL [13]. If the data has a PE structure, a total

of 55 features, including the entropy and packers, are extracted from the header and sec-

tion parts of the file. At this time, the YARA rule setting is used to find the packing infor-

mation of the file in the binary file. The YARA rule is composed of tools to identify and

classify malicious code types using their signatures. In a traditional malicious code classi-

fication system, if the patterns are compared and judged to be malicious, it is used as a

considered in the proposed system. Figure 2 shows an example of the attribute infor-

mation extracted from the data by the YARA rule.

Figure 2. Examples of features in PE structure extracted from malicious code.

Figure 1. Overall structure of proposed malicious code static classification system.

3.1. Preprocessing Step

The system has a learning model that has been trained with various kinds of algo-
rithms. In order to extract and process the input file to enter data into this model, it extracts
hash values from input files, extracts PE data, and performs image conversion work.

3.1.1. Hash Extraction

This step extracts the hash value of an input file, which is an eigenvalue. This is done
to determine whether the input data has been duplicated. Using the extracted hash value
as a primary key, the classification result of the newly entered data in the DB update step is
added to the DB, and the duplicated data is modified in the DB.

3.1.2. PE Data Extraction

The information needed for PE files to run in Windows exists in the header and
sections of the PE structure. Therefore, information related to malignancy can be obtained
from PE structures without executing the malicious code, and the import address table
(IAT) within the PE header can be used to determine which dynamic link library (DLL) is
loaded, and which function is used in that DLL [13]. If the data has a PE structure, a total of
55 features, including the entropy and packers, are extracted from the header and section
parts of the file. At this time, the YARA rule setting is used to find the packing information
of the file in the binary file. The YARA rule is composed of tools to identify and classify
malicious code types using their signatures. In a traditional malicious code classification
system, if the patterns are compared and judged to be malicious, it is used as a considered
in the proposed system. Figure 2 shows an example of the attribute information extracted
from the data by the YARA rule.

3.1.3. Image Create

Image Create is a module that visualizes the entered file for the CNN and converts it
into image data. The input data are treated as a one-dimensional vector.

Symmetry 2021, 13, 35 4 of 11

Symmetry 2021, 13, x FOR PEER REVIEW 3 of 12

Figure 1. Overall structure of proposed malicious code static classification system.

3.1. Preprocessing Step

The system has a learning model that has been trained with various kinds of algo-

rithms. In order to extract and process the input file to enter data into this model, it extracts

hash values from input files, extracts PE data, and performs image conversion work.

3.1.1. Hash Extraction

This step extracts the hash value of an input file, which is an eigenvalue. This is done

to determine whether the input data has been duplicated. Using the extracted hash value

as a primary key, the classification result of the newly entered data in the DB update step

is added to the DB, and the duplicated data is modified in the DB.

3.1.2. PE Data Extraction

The information needed for PE files to run in Windows exists in the header and sec-

tions of the PE structure. Therefore, information related to malignancy can be obtained

from PE structures without executing the malicious code, and the import address table

(IAT) within the PE header can be used to determine which dynamic link library (DLL) is

loaded, and which function is used in that DLL [13]. If the data has a PE structure, a total

of 55 features, including the entropy and packers, are extracted from the header and sec-

tion parts of the file. At this time, the YARA rule setting is used to find the packing infor-

mation of the file in the binary file. The YARA rule is composed of tools to identify and

classify malicious code types using their signatures. In a traditional malicious code classi-

fication system, if the patterns are compared and judged to be malicious, it is used as a

considered in the proposed system. Figure 2 shows an example of the attribute infor-

mation extracted from the data by the YARA rule.

Figure 2. Examples of features in PE structure extracted from malicious code. Figure 2. Examples of features in PE structure extracted from malicious code.

First, this one-dimensional vector is converted to a two-dimensional vector using the
following equation. Equation (1) is an equation that calculates the length of one side of
the image and converts it to a 2D vector. Use of Equation (1) allows to find the size and
convert it to a 2D vector based on the size found.

n = floor
(√

FileSize
)

, (1)

Second, the data converted to a 2D vector is used to generate a color image of a 3D
vector by assigning a byte value of 0–255 to each ID value for the converted vector using
the basic palette of Deluxe Paint. Figure 3 shows the results of converting the file to an
8-bit color image.

Symmetry 2021, 13, x FOR PEER REVIEW 4 of 12

3.1.3. Image Create

Image Create is a module that visualizes the entered file for the CNN and converts it

into image data. The input data are treated as a one-dimensional vector.

First, this one-dimensional vector is converted to a two-dimensional vector using the

following equation. Equation (1) is an equation that calculates the length of one side of the

image and converts it to a 2D vector. Use of Equation (1) allows to find the size and convert

it to a 2D vector based on the size found.

n = floor(√𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒), (1)

Second, the data converted to a 2D vector is used to generate a color image of a 3D

vector by assigning a byte value of 0–255 to each ID value for the converted vector using

the basic palette of Deluxe Paint. Figure 3 shows the results of converting the file to an 8-

bit color image.

Finally, to apply it to the CNN, it is necessary to change the size of the generated

images to the same size. OpenCV is used to convert the size of a generated image to a 256

× 256 image. Figure 4 shows the pseudo code for the image creation.

Figure 3. Binary file converted to 8-bit color image. Figure 3. Binary file converted to 8-bit color image.

Finally, to apply it to the CNN, it is necessary to change the size of the generated
images to the same size. OpenCV is used to convert the size of a generated image to a
256 × 256 image. Figure 4 shows the pseudo code for the image creation.

Symmetry 2021, 13, 35 5 of 11Symmetry 2021, 13, x FOR PEER REVIEW 5 of 12

Figure 4. Pseudo code for image creation.

3.2. Classification Step

The malicious code classification proceeds by using the pre-processed data. Various

experiments have been done to find a model suitable for classification. Details of these

experiments are described in Section 4.

3.2.1. Classification Using PE Structure

For modules that use PE structures, the classification of the malicious code is per-

formed using the decision tree, random forest, and gradient boosting algorithms, which

have excellent performances. Rather than using all the properties of the PE structure, an

automated feature selection method is used to score the importance and then classify us-

ing the feature with the highest importance score. Table 1 lists 12 attributes extracted from

54 attributes.

Table 1. Twelve features extracted out of 54 attributes using automatic feature selection.

 Attribute Importance Value

1 ImageBase 0.233

2 MajorSubsystemVersion 0.137

3 Machine 0.097

4 DllCharacteristics 0.075

5 Characteristics 0.047

6 Subsystem 0.039

7 MinorSubsystemVersion 0.031

8 LoadConfigurationSize 0.031

9 VersionInformationSize 0.022

10 MajorOperatingSystemVersion 0.021

11 SectionsMaxEntropy 0.020

12 SectionAlignment 0.019

Figure 4. Pseudo code for image creation.

3.2. Classification Step

The malicious code classification proceeds by using the pre-processed data. Various
experiments have been done to find a model suitable for classification. Details of these
experiments are described in Section 4.

3.2.1. Classification Using PE Structure

For modules that use PE structures, the classification of the malicious code is per-
formed using the decision tree, random forest, and gradient boosting algorithms, which
have excellent performances. Rather than using all the properties of the PE structure, an
automated feature selection method is used to score the importance and then classify using
the feature with the highest importance score. Table 1 lists 12 attributes extracted from
54 attributes.

Table 1. Twelve features extracted out of 54 attributes using automatic feature selection.

Attribute Importance Value

1 ImageBase 0.233
2 MajorSubsystemVersion 0.137
3 Machine 0.097
4 DllCharacteristics 0.075
5 Characteristics 0.047
6 Subsystem 0.039
7 MinorSubsystemVersion 0.031
8 LoadConfigurationSize 0.031
9 VersionInformationSize 0.022
10 MajorOperatingSystemVersion 0.021
11 SectionsMaxEntropy 0.020
12 SectionAlignment 0.019

3.2.2. Classification Using Image

The image module uses AlexNet [14] to proceed with the classification. The detailed
layers and parameters of the classifier are given in Table 2.

Symmetry 2021, 13, 35 6 of 11

Table 2. Parameters of proposed AlexNet (CNN).

Layer Step Parameter Value Output

0 Input FILE 224 × 224 × 3

1

Conv1 Filter n 32 74 × 74 × 32
Filter Size 5 × 5

Filter stride 3
Channel 3

Max_Pool1 Filter Size 3 × 3 37 × 37 × 32
Filter stride 2 13 × 13 × 28

2

Conv2 Filter n 128
Filter Size 5 × 5

Filter stride 3
Channel 32

Max_Pool2 Filter Size 3 × 3 11 × 11 × 128
Filter stride 1

3

Conv3 Filter n 192 5 × 5 × 192
Filter Size 5 × 5

Filter stride 2
Channel 128

Max_Pool3 Filter Size 3 × 3 3 × 3 × 192
Filter stride 1

4

Max_Conv4 Filter n 256 2 × 2 × 156
Filter Size 3 × 3

Filter stride 1
Channel 192

5 FC1 128

6 FC2 2

3.2.3. Final Classification Result

The result is selected based on the maximum frequency among the classification results
of the four models, and a determination is finally made about whether it is malicious code.
If the frequency is the same, the classification is conducted again. If the result of the
reclassification is the same, the result is considered malicious code, because it is more
dangerous to view normally if it is considered as malicious code. Figure 5 shows the
pseudo code of the decision module. In Figure 5, good and bad indicate the number of
normal and malicious codes.

3.3. Database Application Step

This module corrects the weight value in the database as a result of classifying whether
or not the code is malicious. When the weight value reaches a specific value in the DB,
there is an advantage that the classification speed is increased by distinguishing whether a
malicious or non-malicious DB value is seen without passing through the model in the next
classification. If the file is not registered with the DB, it is first registered with the DB before
starting the operation. Figure 6 shows the operational process of the DB update module.

Symmetry 2021, 13, 35 7 of 11

Symmetry 2021, 13, x FOR PEER REVIEW 7 of 12

Figure 5. Pseudo code for decision module.

3.3. Database Application Step

This module corrects the weight value in the database as a result of classifying

whether or not the code is malicious. When the weight value reaches a specific value in

the DB, there is an advantage that the classification speed is increased by distinguishing

whether a malicious or non-malicious DB value is seen without passing through the

model in the next classification. If the file is not registered with the DB, it is first registered

with the DB before starting the operation. Figure 6 shows the operational process of the

DB update module.

Figure 5. Pseudo code for decision module.

Symmetry 2021, 13, x FOR PEER REVIEW 8 of 12

Figure 6. Operation process of DB update module.

Figure 6. Operation process of DB update module.

Symmetry 2021, 13, 35 8 of 11

4. Experiment

In order to select an algorithm for the classification of malicious code, experiments
were performed to classify various malicious code samples for each module. The three
experiments listed in the following subsections were performed.

4.1. Module Using PE Structure

The binary classification used random malware from VX Heaven [15]. This included
data from a typical Windows portable program with approximately 1000 files extracted
from 10,000 files. In order to find an algorithm suitable for the classification of malicious
code, experiments were done with five algorithms. The algorithm was carried out using
the sklearn [16] library. The first algorithm was AdaBoost, which was repeated 50 times
based on a decision tree. The second algorithm was random forest, with no 10 depth
limit using bootstrap gradient boosting without prior probability. The third algorithm
was a decision tree with the maximum depth limited to 10. The fourth algorithm was
logistic regression, and the last algorithm was Gaussian Naive-Bayes(GNB) with 50 booster
repeats. In addition, experiments were conducted to classify groups of malicious code. The
verification method was learned with 80% of the data, and the cross verification method
used the remaining 20% of the data. Figure 7 shows the detailed results of the malicious
code classification experiment on a module using PE information. The blue bar is the
result accuracy of the binary classification and the orange bar is the result accuracy of the
malicious code classification.

Symmetry 2021, 13, x FOR PEER REVIEW 9 of 12

4. Experiment

In order to select an algorithm for the classification of malicious code, experiments

were performed to classify various malicious code samples for each module. The three

experiments listed in the following subsections were performed.

4.1. Module Using PE Structure

The binary classification used random malware from VX Heaven [15]. This included

data from a typical Windows portable program with approximately 1000 files extracted

from 10,000 files. In order to find an algorithm suitable for the classification of malicious

code, experiments were done with five algorithms. The algorithm was carried out using

the sklearn [16] library. The first algorithm was AdaBoost, which was repeated 50 times

based on a decision tree. The second algorithm was random forest, with no 10 depth limit

using bootstrap gradient boosting without prior probability. The third algorithm was a

decision tree with the maximum depth limited to 10. The fourth algorithm was logistic

regression, and the last algorithm was Gaussian Naive-Bayes(GNB) with 50 booster re-

peats. In addition, experiments were conducted to classify groups of malicious code. The

verification method was learned with 80% of the data, and the cross verification method

used the remaining 20% of the data. Figure 7 shows the detailed results of the malicious

code classification experiment on a module using PE information. The blue bar is the re-

sult accuracy of the binary classification and the orange bar is the result accuracy of the

malicious code classification.

Figure 7. Results of malware classification experiment for modules using PE information.

4.2. Module Using Image

The performance of the classifier was tested using the Microsoft Malware Classifica-

tion Challenge (Big 2015) dataset [17]. Of the nine existing classes and 10,868 items in the

training data, a bytecode file with the PE header removed was used, with 20% used to

verify the training and 80% for random split. To check the performance of various pre-

treatment methods, an experiment was conducted by organizing the data into black and

white, and color images through Deluxe Paint mapping, and then the color images with

three bytes were grouped together into a single pixel. The experiment was conducted us-

ing TensorFlow [18]. The learning results are shown in Figure 8.

Figure 7. Results of malware classification experiment for modules using PE information.

4.2. Module Using Image

The performance of the classifier was tested using the Microsoft Malware Classification
Challenge (Big 2015) dataset [17]. Of the nine existing classes and 10,868 items in the
training data, a bytecode file with the PE header removed was used, with 20% used to
verify the training and 80% for random split. To check the performance of various pre-
treatment methods, an experiment was conducted by organizing the data into black and
white, and color images through Deluxe Paint mapping, and then the color images with
three bytes were grouped together into a single pixel. The experiment was conducted using
TensorFlow [18]. The learning results are shown in Figure 8.

Symmetry 2021, 13, 35 9 of 11

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 12

Three experiments for each data set showed similar accuracy in tests with training

data, but re-verification using untrained test data showed that the accuracy with a black

and white image was approximately 3% lower than with the two color images. The loss

rate showed that black and white images were chosen more appropriately than color im-

ages, and the overall learning speed was higher.

Figure 8. Experimental results for image data.

4.3. Proposed Classification System Performance Experiment

In order to evaluate the performance of the designed malicious code classification

system, normal and malicious file classification experiments were conducted. Malicious

files were randomly selected from approximately 23,000 files from VX Heaven data, with

the normal files consisting of approximately 1100 DLLs and executables from Windows.

The experimental results showed an accuracy of approximately 98.77%. The detailed ac-

curacy results are listed in Table 3. As the learning progressed, the classification time de-

creased, while maintaining the accuracy of the DB.

Table 3. Performance evaluation of the proposed system.

Answer

Positive Negative

Experiment
Positive 1066 138

Negative 159 22,958

5. Conclusions

As the proliferation of malicious code increases and it becomes ever more intelligent,

there is insufficient manpower to analyze all of it and respond manually. To overcome

this problem, this paper proposed a system that automatically and statically analyzes the

Figure 8. Experimental results for image data.

Three experiments for each data set showed similar accuracy in tests with training
data, but re-verification using untrained test data showed that the accuracy with a black
and white image was approximately 3% lower than with the two color images. The loss rate
showed that black and white images were chosen more appropriately than color images,
and the overall learning speed was higher.

4.3. Proposed Classification System Performance Experiment

In order to evaluate the performance of the designed malicious code classification
system, normal and malicious file classification experiments were conducted. Malicious
files were randomly selected from approximately 23,000 files from VX Heaven data, with
the normal files consisting of approximately 1100 DLLs and executables from Windows.
The experimental results showed an accuracy of approximately 98.77%. The detailed
accuracy results are listed in Table 3. As the learning progressed, the classification time
decreased, while maintaining the accuracy of the DB.

Table 3. Performance evaluation of the proposed system.

Answer

Positive Negative

Experiment Positive 1066 138

Negative 159 22,958

5. Conclusions

As the proliferation of malicious code increases and it becomes ever more intelligent,
there is insufficient manpower to analyze all of it and respond manually. To overcome this
problem, this paper proposed a system that automatically and statically analyzes the code
to determine if it is malicious. Various characteristic factors are extracted, such as the hash

Symmetry 2021, 13, 35 10 of 11

value, PE metadata, and packer information, and classified using various machine learning
algorithms. This is similar to the existing automatic signature-based classification, which is
an automatic analysis tool, but differs because the system is used as a consideration, not
a pattern to judge whether the code is malicious. In addition, the file itself is visualized
through a visualization method and entered into a CNN model. Thus, both PE files and
shell-like files are classified.

In the future, this method can be improved through experiments and research to
classify various types of malicious code information, instead of just determining the
existence of malicious code. In addition, using the designed system, we plan to develop
a classification system, as well as a system that is capable of detecting the reception and
transmission of a file in real time during network transmission.

Author Contributions: Conceptualization, S.K., S.Y. and D.S. (Dongkyoo Shin); Funding acquisition,
D.S. (Dongkyoo Shin); Methodology, S.K., S.Y., H.O., D.S. (Dongil Shin) and D.S. (Dongkyoo Shin);
Software, S.K., S.Y. and D.S. (Dongkyoo Shin); Supervision, D.S. (Dongkyoo Shin); Validation, H.O.
and D.S. (Dongil Shin); Writing—original draft, S.K. and S.Y.; Writing—review & editing, D.S.
(Dongkyoo Shin). All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Defense Acquisition Program Administration, and
in part by the Agency for Defense Development under Contract UD190016ED.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Romero, J.A. Sustainable advantages of business value of information technology. In Encyclopedia of Information Science and

Technology, 4th ed.; IGI Global: Towson, MD, USA, 2018; pp. 923–929.
2. Ha, J.H.; Lee, T.J. Research on text mining based malware analysis technology using string information. J. Internet Comput. Serv.

2020, 21, 45–55.
3. Westrum, R. Vulnerable technologies: Accident, crime and terrorism. Interdiscip. Sci. Rev. 1986, 11, 386–391. [CrossRef]
4. Upchurch, J.; Zhou, X. Malware provenance: Code reuse detection in malicious software at scale. In Proceedings of the 2016

11th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, Puerto Rico, 18–21 October 2016; pp.
101–109.

5. Jeong, K.S.; Bae, S.; Kim, H. Evaluation criteria for suitable authentication method for IoT service provider in industry 4.0
environment. J. Soc. Korea Ind. Syst. Eng. 2017, 40, 116–122. [CrossRef]

6. Kang, B.J.; Han, K.S.; Im, E.G. Malicious code trends and detection technologies. Commun. Korean Inst. Inf. Sci. Eng. 2012, 30,
44–53.

7. Islam, R.; Tian, R.; Batten, L.; Versteeg, S. Classification of malware based on string and function feature selection. In Proceedings
of the 2010 Second Cybercrime and Trustworthy Computing Workshop, Ballarat, VIC, Australia, 19–20 July 2010; pp. 9–17.

8. Nataraj, L.; Yegneswaran, V.; Porras, P.; Zhang, J. A comparative assessment of malware classification using binary texture
analysis and dynamic analysis. In Proceedings of the AISec, New York, NY, USA, 21 October 2011; pp. 21–30.

9. Chen, T.; Mao, Q.; Lv, M.; Cheng, H.; Li, Y. DroidVecDeep: Android malware detection based on Word2Vec and deep belief
network. KSII Trans. Internet Inf. Syst. 2019, 13, 2180–2197.

10. Naeem, H.; Guo, B.; Ullah, F.; Naeem, R.M. A cross-platform malware variant classification based on image representation. KSII
Trans. Internet Inf. Syst. 2019, 13, 3756–3777.

11. Lee, W.; Kim, H. A study on generic unpacking using entropy of opcode address. J. Digit. Contents Soc. 2014, 15, 373–380.
[CrossRef]

12. Jeong, G.; Choo, E.; Lee, J.; Bat-Erdene, M.; Lee, H. Generic unpacking using entropy analysis. In Proceedings of the 2010 5th
International Conference on Malicious and Unwanted Software, Nancy, Lorraine, 19–20 October 2010; pp. 98–105.

13. Woo, C.; Ha, K. A development of malware detection tool based on signature patterns. J. Korea Soc. Comput. Inf. 2005, 10, 127–135.
14. Shijo, P.V.; Salim, A.J.P.C.S. Intergrated static and dynamic analysis for malware detection. Procedia Comput. Sci. 2015, 46, 804–811.

[CrossRef]
15. VX Heaven. Vx Heaven Virus Collection 2010-05-18. Available online: http://vxheaven.org/ (accessed on 9 November 2018).

http://dx.doi.org/10.1179/isr.1986.11.4.386
http://dx.doi.org/10.11627/jkise.2017.40.3.116
http://dx.doi.org/10.9728/dcs.2014.15.3.373
http://dx.doi.org/10.1016/j.procs.2015.02.149
http://vxheaven.org/

Symmetry 2021, 13, 35 11 of 11

16. Scikit-Learn. Available online: https://scikit-learn.org/ (accessed on 28 December 2020).
17. Microsoft Malware Classification Challenge (Big 2015). Available online: https://www.kaggle.com/c/malware-classification/

(accessed on 9 November 2018).
18. Tensorflow. Available online: https://tensorflow.org/ (accessed on 28 December 2020).

https://scikit-learn.org/
https://www.kaggle.com/c/malware-classification/
https://tensorflow.org/

	Introduction
	Related Works
	Design and Implementation of Malicious Code Classification System
	Preprocessing Step
	Hash Extraction
	PE Data Extraction
	Image Create

	Classification Step
	Classification Using PE Structure
	Classification Using Image
	Final Classification Result

	Database Application Step

	Experiment
	Module Using PE Structure
	Module Using Image
	Proposed Classification System Performance Experiment

	Conclusions
	References

