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Abstract: The objective of this paper is to consider the vehicle routing problem with time windows
under two uncertainties: service and travel times. We introduce new resolution approaches for the ro-
bust problem and an efficient parallel procedure for the generation of all possible scenarios. The best
robust solution of each scenario can be achieved by using a parallel adaptive large neighborhood
search metaheuristic. Through our analysis, we expect to find the best compromise between the
reduced running time and a best good solution, which leads to four distinct combinations of paral-
lel/sequential approaches. The computational experiments are performed and tested on Solomon’s
benchmark and large randomly generated instances. Furthermore, our results can be protected
against delay in service time in a reasonable running time especially for large instances.

Keywords: parallel multithreading; robust approach; ALNS; Monte Carlo; VRPTW

MSC: 90C17; 90B06; 90C59; 68W10; 65Y05

1. Introduction

Over the past few decades, the Vehicle Routing Problem (VRP) and its variants
have been the subject of massive investigations in operations research. This fact is due
to the importance of its applications in different domains, such as logistics, supply chain
management, scheduling, inventory, finance, etc. The main purpose of the vehicle routing
problem is to find a set of least cost routes, beginning and ending at a depot, that together
cover a set of customers (see, e.g., [1–3]). In real-world applications, several operational
constraints must be taken into account, as for example considering the travel and service
times with time-window limitations [4]. Then, the considered problem becomes the Vehicle
Routing Problem with Time Windows (VRPTW) [5].

A challenging topic in solving the VRPTW problem consists of considering uncer-
tain parameters. Different approaches have been proposed in order to handle uncertain
events in a VRPTW, in demand, displacement time, and service time. From the literature,
we distinguish between stochastic and robust approaches. The stochastic variant can
be regarded as a methodology that aims at finding a near-best solution for the objective
function responding to all uncertain events that are characterized by their probability
distributions [6–8]. On the other hand, the purpose of the robust approach is to find a
solution that protects against the impact of data uncertainties, taking into consideration
several technical criteria challenges such as the worst case, best case, min-max deviation,
etc. The choice of a mathematical model of uncertain data is a crucial step to provide robust
solutions. This kind of approach was the subject of a series of papers (see, e.g., [9]). In this
context, Rouky et al. [10] introduced the uncertainties to the travel times of locomotives and
the transfer times of shuttles as a model of the Rail Shuttle Routing Problem (RSRP) at Le
Havre port. The authors proposed the Robust Ant Colony Optimization (RACO) as an effi-
cient technique to deal with the problem. In the same spirit, Wu et al. [11] proposed a robust
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model tested on a set of random instances for the vehicle routing problem with uncertain
travel time to improve the robustness of the solution, which enhances its quality compared
with the worst case in a majority of scenarios. For instance, we split the resolution methods
of this last approach into two major categories: exact and heuristic methods.

Due to the NP-hard nature of such problems, we cannot expect to use exact methods
for the resolution (see, e.g., [12,13]). Indeed, the heuristics are solution methods that yield
very good solutions in a limited time at the expense of ensuring the optimal solution.
A generic class called the metaheuristic is used to exploit the best capabilities to achieve
better solutions to solve a wide range of problems, since the mechanism to avoid getting
trapped in local minima is present. In this regard, the literature covers a considerable
number of metaheuristics conceived of to solve the VRPTW such as Simulated Anneal-
ing (SA) [14,15], Variable Neighborhood Search (VNS) [16,17], Ant Colony Optimization
Algorithm (ACO) [18,19], Genetic Algorithm (GA) [20], and Tabu Search (TS) [21–23].

The need for parallel computing becomes inevitable despite the good results obtained
with metaheuristics, due to the huge scale of the input data and the unexpected way of its
change, which makes the objective function time-consuming. However, it is important to
notice that the quality of the solution can be influenced. For instance, the major challenge
is to find a parallelization strategy that solves larger problem instances in reasonable
computing times and offers a consistently high level of performance over a wide variety of
problem characteristics. In this context, several authors have proposed parallel techniques
to tackle the combinatorial problems. Following these ideas, Bouthillier et al. [24] proposed
a multi-thread parallel cooperative multi-search method founded on a solution warehouse
strategy to deal with the deterministic VRPTW. Their method is based mainly on two
cooperating classes of heuristics, namely tabu search and the evolutionary algorithms.
In this regard, Røpke (2009) [25] applied a parallel ALNS to the traveling salesman problem
with pickup and delivery and the capacitated vehicle routing problem such that each
worker thread obtains a copy of the current solution and performs destroy and repair
operations on its local copy in order to produce the best global solution. In the same
spirit, Hemmelmayr (2014) [26]) proposed a parallel variant of the Large Neighborhood
Search (LNS) to solve the periodic location routing problem. On the same topic, Pillac [27]
presented a parallel version of the ALNS by adding a set covering post-optimization model
that combines the tours generated throughout the search to assemble a better solution.
It is worth mentioning here that the longer a heuristic is run, the better the quality of the
solution is. Our contribution in this work is to study the balance between the quality of
the solution and the corresponding execution time. Therefore, we suggest through our
investigation a compromise between the required running time and the objective function.
This can be viewed as a multi-criteria optimization problem.

Thus, the goal of this work is to study the effect of multithreading parallelization of
the resolution approach blocks on the running time and the objective function. The op-
timization problem considered here is a variant of the Robust Vehicle Routing Problem
with Time Windows (RVRPTW) including both uncertainties in travel and service times.
Our contribution to all previous works lies first on the choice of the efficient Parallel Adap-
tive Large Neighborhood Search (PALNS) metaheuristic of Ropke [25], which leads to a
reduced running time. Moreover, we used our parallel version of the Metropolis Monte
Carlo algorithm to generate all possible realizations and to transform the problem under
uncertainties to a set of deterministic sub-problems. For more detail about this splitting
process, see for instance the previous work [9] and the references therein. Based on the
efficient implementation of [25], different combinations (sequential/parallel) of the Monte
Carlo algorithm and ALNS are performed. In this way, our strategy offers to decision
makers the choice of the combination depending on their preferences and the situation
at hand.

To the best of our knowledge, this contribution is the first work to be devoted to
the study of VRPTW considering the uncertainties on travel times and service times for
different sizes of instances in terms of both the execution time and the objective value.
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The outline of this paper is organized as follows. The problem statement and mathe-
matical model is provided in the second section. The sequential robust approach used to
solve the problem is the subject of the third section. Within Section 4, we present the parallel
Monte Carlo algorithm to generate all possible scenarios and the parallel ALNS algorithm
to solve each sub-problem corresponding to each scenario. Finally, a detailed computational
and comparative study is given before the concluding remarks and perspectives.

2. Problem Statement

The mathematical formulation of the problem can be represented on a graph G =
(N, A), where N = {o, 1, ..., n} is the set of nodes and A = {(i, j) : i, j ∈ A, i 6= j} is the set
of arcs. The node o represents the depot, and each other node is affected by a customer
i. Each arc (i, j) is assigned to the travel cost cij, which, in general, is proportional to the
travel time tij or the distance dij between i and j. For the rest of this paper, we consider
only the travel time cost tij. It is worth mentioning that this travel time tij is subject to
uncertainty ∆ij. The nominal service time is denoted by Pk

i for each vehicle k and node
i within the time window [ai, bi] and depends on uncertainty δi. According to the work
of [9], we identify the uncertainty sets related to these times by:

Ut = {
∼
t ∈ R|A| /

∼
tij = tij + ∆ijεij, ∑

(i,j)∈A
εij ≤ Γ, 0 ≤ εij ≤ 1, ∀(i, j) ∈ A}

and

UP = {
∼
P ∈ R|N| /

∼
Pi = Pi + δiωi, ∑

i∈N
ωi ≤ Λ, 0 ≤ ωi ≤ 1, ∀i ∈ N}

We denote the subset of arcs that are dependent on uncertainty by Ψ with a cardinal Γ
and the subset of nodes depending on uncertainty by θ with a cardinal Λ.
The binary decision variables xk

ij take the value one if vehicle k travels between the pairs of
nodes (i, j) and zero otherwise.

We introduce the model of our problem, which tries to find a solution optimizing
the total travel time taking into account the minimization of the worst evaluation over all
scenarios:

(Min ∑
k∈V

∑
(i,j)∈A

xk
ijtij + max

{Ψ/Ψ⊂A,|Ψ|=Γ}
∑

k∈V
∑

(i,j)∈Ψ
xk

ij∆ij)

subject to:

∑
k∈V

∑
j∈N

xk
ij = 1 ∀(i ∈ N) (1)

∑
j∈N

xk
0j = 1 ∀(k ∈ V) (2)

∑
i∈N

xk
ih = ∑

j∈N
xk

hj ∀(h ∈ N) ∀(k ∈ V) (3)

∑
i∈N

xk
i0 = 1 ∀(k ∈ V) (4)

ai ≤ Pk
i ≤ bi ∀(i ∈ N) ∀(k ∈ V) (5)

Pk
i + tij + δiν

θ
i + ∆ijµ

Ψ
ij − Pk

j ≤ (1− xk
ij)M, (6)

∀(i ∈ N), ∀(j ∈ N \ {0}), ∀(k ∈ V) ∀(θ ⊂ N) | θ |= Λ, ∀(Ψ ⊂ A) | Ψ |= Γ

where M is a great value and νθ
i and µΨ

ij are two indicator functions. When i ∈ θ, νθ
i takes

the value of one. When (i, j) ∈ Ψ, µΨ
ij takes one.
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The constraint (1) stipulates that each customer must be visited once. The constraint (2)
guarantees that each tour starts from the depot. The constraint (3) ensures that the same
vehicle arrives and leaves from each node it serves. The constraint (4) ensures that each tour
ends at the depot. The constraint (5) guarantees that the service time Pk

i at any customer i
by vehicle k starts inside a specified time interval [ai, bi]. The last constraint (6) prohibits
the violation of the time windows. Then, if the vehicle arrives ahead of time at a customer i,
it must wait until the time window [ai, bi] opens, and besides, it is not allowed to arrive late.

3. Robust Optimization

In real-world applications of operations research, we cannot ignore the fact that in the
presence of uncertainties, an optimal solution could become worse or even unreachable
from a practical point of view. Therefore, the need to develop models that immunize
against those uncertainties has become indispensable.

In general, the uncertain parameters are represented by closed, convex, and bounded
uncertainty sets, which can be also estimated from the historic data. Thereby, constructing
the adequate uncertainty set has a crucial role in identifying the conservativeness of
the model.

In this section, we present briefly the most important sets of uncertainties and the
corresponding robust optimization models.

In this regard, we consider the following uncertain linear programming problem:

min c> x

s.t Ax ≤ B

For the remainder of this section, only the coefficients
∼
a ij of the matrix A are the

object of uncertainties, and their values belong to a bounded set of uncertainties called U.

Accordingly,
∼
a ij takes a value in the interval [aij −

−
a ij, aij +

−
a ij] where aij is the nominal

value and
−
a ij represents the maximum positive deviation. Therefore, we can define

∼
a ij as:

∼
a ij = aij + ζij

−
a ij

Generally, ζij is a random variable that is subject to uncertainty and varies between
−1 and one.

For instance, three types of uncertainty sets can be distinguished [28].

3.1. Box Uncertainty Set

The box uncertainty set is an uncertainty structure that takes its name from the box
formed by the interaction of perturbations. It aims at finding a conservative solution for
a robust problem where the value of all uncertain coefficient perturbations is less than a
perturbation bound Ψi (see, e.g., [29]). Its uncertainty set can be described as follows:

UA = {∼a ij = aij + ζij
−
a ij
∣∣ | ζij |≤ Ψi, ∀i}

The robust counterpart of the problem is given by the following:

min c> x

s.t ∑
j

aijxj + Ψi∑
j

−
a ijyj ≤ bi ∀ i

−yj ≤ xj ≤ yj ∀ j

y ≥ 0

It is worth pointing out that the problem becomes more conservative as the value of
Ψi increases.
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3.2. Ellipsoidal Uncertainty Set

The ellipsoidal uncertainty set comes to avoid over conservativeness and to limit the
uncertainty space by eliminating a subset of uncertainty. The level of robustness can be
controlled by modifying the value of the parameter Ω, which defines the borders of the
set [30]. This uncertainty set can be given as:

UA = {∼a ij = aij + ζij
−
a ij
∣∣∑

j
ζ2

ij ≤ Ω2
i , ∀i}

The robust counterpart model is expressed in the following way:

min c> x

s.t ∑
j

aijxj + ∑
j

−
a ijyj + Ωi

√√√√∑
j

−
a

2

ijz2
ij ≤ bi ∀ i

−yij ≤ xj − zij ≤ yij ∀ j

y ≥ 0

The inconvenience of this robust counterpart model lies in the generation of a convex
nonlinear programming problem, with a greater computational requirement in contrast to
linear models.

3.3. Polyhedral Uncertainty Set

The polyhedral uncertainty set corresponds to the most frequent case of uncertainty
sets defined as the set of solutions, which are protected against all situations in which at
most Γi coefficients of the ith constraints are perturbed. In this case, the robust counterpart
is equivalent to a linear optimization problem.

UA = {∼a ij = aij + ζij
−
a ij
∣∣∑

j
| ζij |≤ Γi, ∀i}

The robust counterpart of the problem can be defined as below:

min c> x

s.t ∑
j

aijxj + max
{Si∪{ti}|Si⊆Ji ,|Si |=|Γi |,ti∈Ji\Si}

{∑
j∈Si

−
a ijyj + (Γi− | Γi |)

−
a ityt} ≤ bi ∀ i

−yj ≤ xj ≤ yj ∀ j

y ≥ 0

where Ji represents the set of coefficients aij of the ith constraint, which are uncertain.
We define for each i a parameter Γi that varies in the interval [0, | Ji |]. The solution of this
model is immunized against all cases where coefficients up to | Γi | will change, and one
coefficient ait changes by (Γi− | Γi |)ait as reported by [31].

4. The Robust Approach for the VRPTW with Uncertain Travel and Service Times

In this section, we present the robust resolution approach proposed by [9] to deal
with the VRPTW under uncertain travel and service times. We assume that the uncertainty
in travel times and service times is directed by two parameters Γ and Λ, which belong
respectively to the intervals [0, | N | + | V |] and [0, | N |]. Those parameters are called
budgets of uncertainty and are defined to control the number of travel times and service
times, which are allowed to vary from their nominal values. Thus, the major challenge
of this approach is to derive, for each scenario (Λ, Γ) considered, a robust solution that
protects against time window violation or reduces the waiting times.
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In order to explain the robust approach, we define some notations to be used in
this approach:

RΛ,Γ
N : A possible realization

Sbest: The best robust solution

SN : The solution found at the Nth realization

TotalCost(.): The total traveled time of a solution

WorstEvalΓ(.): The worst evaluation of a solution

Trk = (c1 = 0, c2, ..., cn = 0): The tour of the vehicle k

σl = (c1, c2, ..., cl): A path of the tour Trk

ArcSetΓ,l : A set of arcs within the Γ larger deviations of travel time

NodeSetΛ,l : A set of nodes within the Λ larger deviations of service time

ξ(σl) = {c1, c2, ..., ch}: All of the nodes that constitute σl

Arc(σl) = {γ1 = (c1, c2), γ2 = (c2, c3), ..., γl−1 = (cl−1, cl)}: The set of the arcs that
constitute the path σl

_k
(sl): The maximum date of arrival of the vehicle k at customer cl

To understand the idea behind this approach, we propose a simplified presentation in
four steps summarized in Algorithm 1:

Algorithm 1. The robust approach algorithm.

Parameters: Set Solutions, set realizations

Outputs: Solution solution

realizations←− MonteCarlo()

for each realization ∈ realizations do

solution←− ALNS(realization)

solutions.add(solution)

end for

for each solution ∈ solutions do

if checkRobustness(solution) 6= True then

solutions.remove(solution)

return NULL

end if

if WorstEvalΓ(solution) 6= True then

solutions.remove(solution)

return NULL

end if

end for

solution←− MinObjective(solutions)

return solution

In the first step, the robust algorithm generates a set of realizations using the Metropo-
lis Monte Carlo sampling. Each realization RΛ,Γ

N corresponds to a possible scenario in
which Γ travel times of a subset of arcs (Ψ ⊂ A) achieves their maximum values tij + ∆ij,
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and Λ service times related to a subset of vehicles (θ ⊂ V) take their maximum values
Pi + δi; whereas the other arcs and nodes take respectively their tij and Pi nominal values.

The objective of the second step is to obtain for each realization RΛ,Γ
N a feasible solution

SolN that satisfies the related sub-problem. For this purpose, we apply the Adaptive Large
Neighborhood Search (ALNS) metaheuristic [32], which presents an adaptive specialization
of the notion of local search, so-called large neighborhoods. It aims to enhance an incumbent
solution by diversifying the search process on large neighborhoods. This can be done by
applying a pair of destroy and repair operators to the solution and then accepting or
rejecting the new solution. In this context, we use three different destroy operators, which
contribute to ruin a part of the current solution, namely: the proximity operator, the route
portion operator, and the longest detour operator. Then, we recreate a complete solution
using the greedy insertion heuristic. The destroy and repair neighborhoods are selected by
a roulette wheel mechanism that uses the search history of each operator to favor the best
performing one.

The third step depicts a mechanism conceived of to verify the feasibility of the solution
achieved by using the ALNS approach in the preceding step, by examining the time
windows associated with each visited customer. The last step is devoted to the evaluation
of the robustness of the solution, according to the worst case criterion. In practice, we
evaluate the solution SN on the worst of possible cases, which relates to the realization
where the Γ travel times of this solution reach at the same time their maximum values.
The pseudocodes of those methods are shown in Algorithms 2 and 3, respectively.

Algorithm 2. Check for robustness.

f easible← true
for k← 1 to | V | do

for l ← 2 to | ξ(Trk) | do
calculate ArcSetΓ,l and NodeSetΛ,l−1

for λ← 1 to l − 1 do
if l > Γ + 1 and γλ 6∈ ArcSetΓ,l then

tγλ
← tγλ

else
tγλ
← tγλ

+ ∆γλ

end if
end for
for i← 1 to l − 1 do

if l > Λ and ci 6∈ NodeSetΛ,l−1 then
Pci ← Pci + δci

end if
end for

_k
(sl)← 0
for i← 2 to l do

_k
(sl)← max(

_k
(sl) + tγi−1 + Pci−1 , aci )

end for

if
_k
(sl) > bcl then
feasible takes false, and the algorithm ends

end if
end for

end for
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Algorithm 3. Evaluation on the worst case.

WorstEvalΓ(SN)← 0

put in descending order all the arcs of γ(SN) according to their maximum deviations.

for i← 1 to Γ do

WorstEvalΓ(SN)←WorstEvalΓ(SN) + tγi + ∆γi

end for

for i← Γ + 1 to γ(SN) do

WorstEvalΓ(SN)←WorstEvalΓ(SN) + tγi

end for

return WorstEvalΓ(SN)

For a detailed description of this robust approach, we refer the reader to the study
of [9] and the references therein.

5. The Parallel Robust Approach for the VRPTW with Uncertain Travel and
Service Times

In this section, we provide a detailed exposition of the multi-threading parallel ap-
proach used in this paper. We start by giving some insights into the motivation before
handling the complete description of the proposed approach.

The first challenge of such an approach is to derive the best robust solution that
responds to to all uncertainties with a reduced running time. However, the sequential
robust approach suffers from lengthy computational times; partly because the generation
of scenarios is time-consuming, as well as the research of the solution block. Unlike those
blocks, the check of robustness and the evaluation of the worst case blocks are not time-
consuming, generally because they are restricted to evaluating the obtained solution.

Table 1 confirms our assertion that the Monte Carlo and the ALNS blocks take consid-
erable time compared to the other blocks. This can be explained by the fact that the first
phase is responsible for generating all the possible scenarios in which Γ displacement times
take their maximum values and Λ service times take their maximum values. The ALNS
block is also time-consuming, since it chooses at each iteration a neighborhood to explore,
based on a score that reflects its past performance. This is possible by the application of
several destroy and repair operators. Oppositely, the other blocks are not time-consuming,
considering that the first mechanism verifies the feasibility of our solution by investigating
the related time windows of each visited customer, and the second mechanism is dedi-
cated to the evaluation of the robustness of the solution based on the worst case robust
criterion. As an alternative to overcome this impediment, we propose a multithreading
parallelization of the costly blocks as detailed in the next subsections.

Table 1. The execution time of the sequential robust approach blocks in ms.

Instance Size Monte Carlo ALNS Check of Robustness Worst Case Evaluation
Block/Iteration Block/Iteration Block/Iteration Block/Iteration

1000_100_100 210 258 46 30
1500_100_100 325 409 85 52
2000_100_100 478 632 217 96
2500_100_100 621 867 377 163
3000_100_100 1042 1436 510 294
3500_100_100 1893 2229 682 325
4000_100_100 2365 3538 793 549
4500_100_100 2901 4428 907 703
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5.1. The Parallel Monte Carlo Sampling

The parallel Metropolis Monte Carlo algorithm described below is a scenario gener-
ation technique that uses a defined number of worker threads to generate in a parallel
way a predefined number n of independent identically distributed scenarios. In practice,
each worker thread produces a realization RΛ,Γ

l that corresponds to a deterministic VRPTW
problem, in which Γ displacement times and Λ service times reach simultaneously their
maximum values. The pseudocodes of this parallel method is shown in Algorithm 4:

Algorithm 4. Parallel Monte Carlo.

Input: Λ, Γ, n

Output: scenarios

for l ← 1 to n in parallel do

for k← 1 to Γ do

Select randomly two clients i and j
∼
tij ← tij + ∆ij

end for

for k← 1 to Λ do

Select randomly a client i
∼
Pi ← Pi + δi

end for

Generate a scenario RΛ,Γ
l

t(RΛ,Γ
l )←

∼
t (RΛ,Γ

l )

P(RΛ,Γ
l )←

∼
P(RΛ,Γ

l )

Add RΛ,Γ
l to scenarios

end for

return scenarios

5.2. The Parallel ALNS

In this subsection, we present the Parallel Adaptive Large Neighborhood Search
(PALNS) method developed by [25]. This method can be presented in three phases
(see Figure 1).

At the first level, we generate an initial feasible solution by using the greedy insertion
metaheuristic [33]. The main idea behind this method is to select the best feasible insertion
place in the incumbent route for each non-inserted node taking into account two major
factors: the increase in total cost of the current route after the insertion and the delay of the
service start time of the customer succeeding the newly inserted customer.

The second phase is related to a set of destroy and repair operators designed to
enhance the incumbent solution. In this context, each worker thread deals with a copy of
the current solution and executes destroy and repair methods on this local copy in order to
improve it.

The third phase collects the routes of different local solutions that each thread has
obtained, for the purpose of combining it into a new better temporary global solution and
sending it to be improved. At this stage, we will accept or reject the generated solution,
based on a hill climbing acceptance criterion. It is worth mentioning that only the current
and global best solutions are shared between worker threads, in order to update them as
necessary by repeating the process until a stop criterion is met.

We should point out here that the ALNS uses a flexible layer with a set of destruction
heuristics (proximity operator, route portion operator, and longest detour operator) and an
insertion heuristic (the greedy insertion) and applies them by a roulette wheel selection



Symmetry 2021, 13, 36 10 of 16

that highlights the corresponding performance obtained during the search. On the other
hand, the LNS heuristic does not use this scoring mechanism.

For a completed description of the used PALNS, we refer the reader to the study
of [25] and the references therein.

Thread Thread Thread Thread Thread

Solution
Local

Solution
Local

Solution
Local

Solution
Local

Solution
Local

Initial Solution

Best Global solution

Parallel

Destroy/Repair

Local Solution
of each thread

Block

Figure 1. The parallel adaptive large neighborhood search.

6. Computational Experiments

In this section, we summarize a few of the results obtained by evaluating different
robust approaches conceived of to solve the vehicle routing problem with time windows
with uncertain service and travel times.

We explore the effect of applying the thread parallelism to the Monte Carlo and ALNS
blocks, on the execution time and the objective value. This leads to four different robust
combinations: the sequential approach that uses sequential Monte Carlo and sequential
ALNS (MC sequential and ALNS sequential), the approach employing sequential Monte
Carlo and parallel ALNS (MC sequential and ALNS parallel), the approach that uses
parallel Monte Carlo and sequential ALNS (MC parallel and ALNS sequential), and the
parallel approach combining parallel Monte Carlo and parallel ALNS (MC parallel and
ALNS parallel). We should note here that the sequential approach (MC sequential and
ALNS sequential) coincides with the only method from the literature [9] that deals with
the considered problem.

It is important to mention that the notion of thread parallelism used in our context
can be defined as the capability of a processing unit to execute multiple processes contem-
poraneously or with time slicing. By means of a thread, the smallest unit of processing can
be performed in an operating system in order to accelerate the execution time and manage
the code over time. In our study, we use four threads in order to establish the comparison
between the different approaches. The choice of four threads is not restrictive, and we
can use as many threads as possible. Our assumption is that using more threads leads to
the improvement of the average execution time, but it slightly decreases the quality of the
obtained solution. For more details, see, e.g., [25].

The robust approaches studied in this paper were tested on a classical set of instances
in reference to Solomon’s benchmark (1987) [33] and Gehring and Homberger’s bench-
mark [34]:
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• Set R contains problems with randomized customers.

• Set C contains problems with clustered customers.

• Set RC contains problems with both clustered and randomized customers.

In order to simulate the uncertainty of RVRPTW by discrete scenarios, the uncertain
travel time and uncertain service time are generated at random, so that they go from 0 to 10.
We denote the used instances as follows: Gr_Γ_Λ, where Γ and Λ present respectively the
number of travel times and service times considered uncertain and Gr refers to the instance
of Solomon and Gehring and Homberger’s benchmark or the size of larger instances.

For small instances (Solomon and Homberger’s instances), we chose 15,600 iterations
as a stop criterion in order to diversify the research, which may ameliorate the quality of
our solution, because the solution has a greater chance to escape from a local minimum.
As far as we are aware, the maximal number of iterations for instances is falling in the
literature. With a view toward examining the capability of our approaches for tackling that
problem, we judge it based on the average performance over 10 multiple independent runs.

For the set of instances larger than 1000, we generate random representative instances
in such a manner that the travel time between each pair of nodes is between 0 and 100,
and the same for the service time. The time interval has a capacity of 200 between the start
and the end of the service at each customer. We forced a stop condition of about 20 min,
which allows a good comparison between the proposed methods in terms of the number of
reached iterations for the same time interval. Then, we present the measurements achieved
for a single run.

The proposed algorithms were implemented in Java 7, compiled with Intel compiler
Celeron 1.80 GHz core i5 with 8 GB RAM.

6.1. Execution Time

Table 2 presents a comparison of the execution time for each instance group between
different robust approaches with the maximal number of iterations of 15,600. As expected,
the results show that the approaches containing the parallel ALNS succeeded by those
containing parallel Monte Carlo lead to the improvement of the average execution time
compared to other sequential approaches. This can be explained by the fact that the ALNS
block succeeded by the Monte Carlo block consumes most of the execution time compared
to other blocks.

In the same spirit, we report in Table 3 a comparison of different approaches according
to the number of reached iterations when the stopping limit time is about 20 min for
the group of instances 2500–4500. The approach containing more parallel blocks attained
more iterations for the same time interval since it reduced the execution time of the
consuming blocks.

Table 4 depicts the improvement results in execution time for Solomon’s instances.
The conclusion from this table is clear: the running time is much faster for the approaches
using parallel ALNS succeeded by those employing the parallel Monte Carlo algorithm.

Table 2. The execution time of different robust approaches in seconds for 15,600 iterations.

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

100_10_10 832.24 701.03 725.45 574.24
200_25_25 1007.41 853.11 883.25 669.33
400_25_25 1331.47 1037.98 1101.12 770.91
600_50_50 1402.50 1160.24 1230.64 858.38
800_50_50 1545.39 1302.85 1331.68 979.14
1000_100_100 2687.50 2062.25 2165.74 1340.49
1500_100_100 4519.79 3267.98 3665.37 2413.56
2000_100_100 5606.81 3953.18 4389.74 2736.11
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Table 3. Number of iterations reached in 20 min.

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

2500_100_100 3038 4275 3879 5681
3000_100_100 2163 3572 2794 4141
3500_100_100 1375 2992 1985 3709
4000_100_100 912 2401 1386 3124
4500_100_100 594 1994 1078 2300

Table 4. Solomon’s instance: Comparison of the runtimes in seconds of different robust approaches.

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

R101_10_10 433 267 378 212
C101_10_10 491 320 434 263
RC101_10_10 468 286 407 225

R201_10_10 487 301 425 239
C201_10_10 563 367 497 301
RC201_10_10 553 338 482 267

R121_25_25 580 277 512 309
C121_25_25 653 442 583 372
RC121_25_25 605 406 539 340

R221_25_25 673 438 595 360
C221_25_25 784 531 700 447
RC221_25_25 707 475 629 397

R141_25_25 668 423 586 341
C141_25_25 775 538 696 459
RC141_ 25_25 747 504 666 423

R241_25_25 937 629 823 479
C241_25_25 981 683 877 589
RC241_25_25 957 646 854 543

R161_50_50 741 541 675 475
C161_50_50 907 682 832 607
RC161_50_50 825 607 753 535

R261_50_50 923 730 909 640
C261_50_50 1089 814 999 726
RC261_50_50 1051 774 958 681

R181_50_50 923 698 848 623
C181_50_50 942 732 874 664
RC181_ 50_50 929 706 855 632

R281_50_50 1136 860 1044 768
C281_50_50 1249 971 1157 879
RC281_50_50 1223 925 1123 829

R1101_ 100_100 1179 764 1040 625
C1101_100_100 1213 817 1081 685
RC1101_100_100 1204 800 1069 665

R2101_100_100 1757 1140 1552 935
C2101_100_100 1815 1224 1618 1027
RC2101_100_100 1775 1181 1577 983

6.2. Objective Function

Table 5 presents the objective function of different robust approaches for the group of
instances 2500–4500. When the size of the instance increases, the cost function of the ap-
proaches containing parallel and sequential ALNS solution converges. Then, we compute
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the mean absolute percent deviation (MAPD), which is the absolute difference between
the cost function of the approach containing the sequential ALNS and the parallel ALNS
divided by the magnitude of the objective function in the approach with sequential ALNS.
This indicator (MAPD) goes from 13.05% for the instance of size 1000 to 3.96% for the in-
stance of size 4500. We can conclude that incorporating the parallel ALNS in the approaches
is efficient for large instances.

Table 6 depicts the results of the objective value for some of Solomon’s instances.
We observe that the ALNS controls the solution quality. Then, the approaches that contain
a sequential ALNS yield better results than those that contain parallel ALNS. The ALNS
is responsible for finding the solution of each scenario, in contrast with the Monte Carlo
algorithm, which is limited to generating the possible scenarios. When we increase the
instance size, the quality of the solution of the parallel approach becomes more interesting.

Table 5. Comparison of different approaches according to the objective function.

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

1000_100_100 18,612 21,031 18,642 21,075
1500_100_100 25,961 28,557 25,904 28,516
2000_100_100 36,420 38,969 36,408 38,943
2500_100_100 44,981 48,129 44,998 48,161
3000_100_100 52,817 55,986 52,836 56,014
3500_100_100 60,356 63,977 60,321 63,937
4000_100_100 67,675 71,059 67,642 70,986
4500_100_100 75,306 78,318 75,329 78,371

Table 6. Solomon’s instance: comparison of the objective value of different robust approaches.

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

R101_10_10 1918.56 2225.52 1926.14 2249.69
C101_10_10 870.46 1009.73 883.01 1025.84
RC101_10_10 1882.76 2145.48 1897.04 2183.92

R201_10_10 1434.99 1663.44 1415.09 1663.24
C201_10_10 666.54 779.27 663.52 761.51
RC201_10_10 1663.38 1895.82 1679.45 1900.11

R121_25_25 5696.41 6379.52 5709.64 6659.85
C121_25_25 3115.86 3519.95 3115.86 3504.38
RC121_25_25 3915.01 4384.80 3919.63 3492.62

R221_25_25 5385.14 6031.35 5385.14 6024.07
C221_25_25 2490.94 2813.70 2496.91 2813.70
RC221_25_25 3657.12 4095.84 3657.12 4106.49

R141_25_25 10,939.12 11,485.95 10,951.24 11,485.95
C141_25_25 8138.18 8463.52 8127.63 8480.31
RC141_25_25 10,673.61 11,099.92 10,697.27 11,080.79

R241_25_25 10,442.34 10,859.68 10,463.29 10,843.81
C241_25_25 4932.06 5129.28 4863.65 5129.28
RC241_25_25 20,917.12 21,690.92 7181.07 21,709.56

R161_50_50 24,277.04 24,714.02 24,277.04 24,703.48
C161_50_50 15,511.06 15,945.30 15,523.45 15,940.06
RC161_50_50 21,917.15 22,245.75 21,937.13 22,291.10

R261_50_50 22,070.80 22,445.19 22,121.72 22,457.14
C261_50_50 10,617.60 10,871.80 10,632.96 10,886.71
RC261_50_50 16,167.74 16,458.00 16,186.14 16,430.92
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Table 6. Cont.

Instance MC Sequential MC Sequential MC Parallel MC Parallel
and ALNS Sequential and ALNS Parallel and ALNS Sequential and ALNS Parallel

R181_50_50 39,011.14 39,479.13 38,979.56 39,431.41
C181_50_50 28,491.39 29,117.85 28,491.39 29,117.83
RC181_50_50 35,821.46 36,358.31 35,853.12 36,347.02

R281_50_50 32,289.08 32,870.20 32,271.22 32,870.20
C281_50_50 14,213.43 14,483.04 14,219.34 14,497.15
RC281_50_50 28,307.07 28,788.21 28,307.07 28,805.09

R1101_100_100 60,506.88 62,805.22 60,493.16 62,805.22
C1101_100_100 52,251.98 53,766.83 52,257.48 53,742.30
RC1101_100_100 53,322.91 55,188.27 43,318.10 55,188.27

R2101_100_100 48,103.23 49,449.88 48,103.23 48,463.23
C2101_100_100 20,735.79 21,357.05 20,700.14 21,357.05
RC2101_100_100 43,853.65 44,905.47 43,853.65 44,884.35

7. Conclusions

In this work, we study the robust vehicle routing problem with time windows where
travel times and service times are both the subject of uncertainty. For this purpose, we
opt for the robust technique proposed by [9] to deal with the problem. As far as the
adopted approach derives the best robust solution that responds to all uncertainties, it
still suffer from lengthy computational times; partly because the generation of scenarios,
as well as the research of the solution block are time-consuming. As an alternative to
remedy this problem, we introduce a procedure for the thread parallelism in the Monte
Carlo block, and we use the parallel ALNS proposed by [25]. This leads to four different
robust approaches combining the (sequential/parallel) Monte Carlo algorithm and the
(sequential/parallel) ALNS.

The considered approaches are tested on Solomon’s benchmark instance of VRPTW
and lager instances generated randomly. Accordingly, we can offer a decision-making
solution that provides great protection against delays in a reasonable running time. How-
ever, we should note that the related counterpart of using the parallel ALNS, which is the
objective value, can be influenced, since the parallel ALNS slightly reduces the quality of
the solution, especially for small instances.

In future works, we intend to include a pre-processing step based on different cluster-
ing techniques such as K-means, K-medoids, density-based spatial, etc., in order to ensure
the commitment of the solutions. These techniques will not change the structure of the
suggested approach drastically, and our assumption is that they will enhance the solution
quality obtained with the parallel ALNS.
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