
symmetryS S

Article

m-Polar Generalization of Fuzzy T-Ordering Relations:
An Approach to Group Decision Making

Azadeh Zahedi Khameneh 1,* and Adem Kilicman 1,2

����������
�������

Citation: Zahedi Khameneh, A.;

Kilicman, A. M-Polar Generalization

of Fuzzy T-Ordering Relations: An

Approach to Group Decision Making.

Symmetry 2021, 13, 51.

https://doi.org/10.3390/sym13010051

Received: 23 November 2020

Accepted: 9 December 2020

Published: 30 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Institute for Mathematical Research, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
akilic@upm.edu.my

2 Department of Mathematics, Faculty of Science, Universiti Putra Malaysia,
Serdang 43400, Selangor, Malaysia

* Correspondence: zk.azadeh@upm.edu.my or azadeh503@gmail.com

Abstract: Recently, T-orderings, defined based on a t-norm T and infimum operator (for infinite
case) or minimum operator (for finite case), have been applied as a generalization of the notion
of crisp orderings to fuzzy setting. When this concept is extending to m-polar fuzzy data, it is
questioned whether the generalized definition can be expanded for any aggregation function, not
necessarily the minimum operator, or not. To answer this question, the present study focuses
on constructing m-polar T-orderings based on aggregation functions A, in particular, m-polar T-
preorderings (which are reflexive and transitive m-polar fuzzy relations w.r.t T and A) and m-polar
T-equivalences (which are symmetric m-polar T-preorderings). Moreover, the construction results for
generating crisp preference relations based on m-polar T-orderings are obtained. Two algorithms for
solving ranking problem in decision-making are proposed and validated by an illustrative example.

Keywords: m-polar fuzzy relations; T-orderings; m-polar T-preorder; m-polar T-equivalence; group
decision making

1. Introduction

In any decision situation, the pairwise comparison of alternatives for expressing the
preferences is the essential part of extending an ordering model between objects. In real-
world problems, this comparison information is usually expressed by linguistic variables
or fuzzy preferences as they are known from their first appearance in 1971 (c.f. [1]).
By adding the concept of membership degree to the binary relations, the class of fuzzy
relations, introduced by Zadeh [1], provides more realistic environments for expressing of
preferences over the set of alternatives that can be qualitative (linguistic) or quantitative
(numeric).

Studies on fuzzy relations properties and fuzzy orderings have been received increas-
ing attention [2–9]. Different researchers have attempted to generalize the basic concepts,
such as reflexivity, symmetry, and transitivity for fuzzy relations; however, there is not a
unique way for such development in fuzzy logic. While the notions of fuzzy reflexivity,
fuzzy symmetry, and fuzzy antisymmetry depend only on the degrees of relations, the
concept of fuzzy transitivity was defined by means of a binary operation ∗ : [0, 1]2 → [0, 1],
especially where ∗ is a t-norm T. Accordingly, different variants of fuzzy orderings, such
as T-preorder, T-partial order, and T-equivalence relations, were introduced for fuzzy
binary relations. Later, Bodenhofer [10,11] discussed the axioms of fuzzy reflexivity and
fuzzy antisymmetry being too strong conditions for fuzzification of the crisp case. The new
concepts of E-reflexivity, T-antisymmetry, and T − E-antisymmetry, where T is a t-norm
and E is a T-equivalence relation, with less requirements were then developed.

In Boolean logic, there is a close relationship between implication and ordering. If
P and Q are two statements, then P � Q iff P → Q is a tautology. Accordingly, an
equivalence relation can be defined over the set of statements where P ∼ Q iff P ↔ Q.
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By using t-norms, the implication relations can be defined as operators associated with a
t-norm T over the two-valued and multi-valued statements or in a general case for fuzzy
sets. It was also proved that, for any implication operator, associated with the t-norm T, a
fuzzy T-preordering and a fuzzy T-equivalence can be formulated based on T. This helps
researchers to construct fuzzy orderings from degrees of inclusion and equality of fuzzy
sets (c.f. [11–14] for more information). However, the relation of fuzzy sets inclusion used
in literature, characterized based on the operators of fuzzy joint and fuzzy implication,
represents only a single way of different possible ways to define fuzzy orderings based on
t-norms. In particular, when we restrict ourselves to the case dealing with finite records
of fuzzy information, the fuzzy joint is represented as a minimum operator that can be
considered as a conjunctive aggregation function.

In most real-world group decision-making problems, we deal with multi-polar or
multi-index information that arises from multi-source or multi-parameter data. In 1994,
Zhang [15] initiated the concept of bipolar fuzzy sets whose membership degrees are
in [−1, 1] instead of [0, 1] to model situations where objects can be considered to have a
certain property and its counter. This framework is successfully applied when both positive
and negative sides of information are given or when objects have positive or negative
influence on each other. By extending the range of fuzzy sets from [0, 1] into the [0, 1]m that
is [0, 1]× · · · × [0, 1] m-times, the concept of m-polar fuzzy set was introduced in [16,17] to
cope with the problem of multi-polarity, where objects may have a relationship with each
other in different directions based on various features of a given property. As a result, it
is a very natural question regarding how the concept of T-orderings can be developed to
m-polar fuzzy sets.

This paper contributes to generalizing the approach of construction fuzzy T-orderings
for m-polar fuzzy data by extending the fuzzy joint operator to any aggregation func-
tions. This generalized approach shows the close link between domination relationship
of aggregation operators over t-norm T and the existence of m-polar T-orderings. The
obtained results do not only present the construction methods, but they are also illustrated
to show the efficiency of this new class of m-polar T-orderings for solving decision-making
problems. In this regard, the rest of the present paper is organized as the following:
Section 2 gives basic information that is needed to get the main results of the paper. Next,
in Section 3, the implication operator is developed to m-polar fuzzy sets in order to gen-
erate new classes of m-polar T-preorderings and m-polar T-equivalences. By using a-cut
relations, in Section 4, we discuss some construction methods to create crisp orderings
from the proposed m-polar T-orderings. Two score function-based algorithms are designed
for solving the problem of ranking in decision-making and then illustrated by a numerical
example in Section 5. Lastly, the Conclusions section is presented.

2. Basic Definitions and Properties

In this section, we recall some theoretical background needed to develop the main
results of this paper. Note that, throughout this paper, we use the following notations:
I ⊂ R as the closed unit interval [0, 1] and Im = [0, 1]m = [0, 1]× · · · × [0, 1], m-times, as
the set of all m-dimensional real vectors whose components are in the interval I.

2.1. Aggregation Functions

In literature (c.f. [18–20]), an aggregation function of dimension n ∈ N is an n-ary
function A(n) : [0, 1]n → [0, 1] satisfying:

A1. A(x) = x, for n = 1 and any x ∈ [0, 1];

A2. A(n)(x1, · · · , xn) ≤ A(n)(y1, · · · , yn) if (x1, · · · , xn) ≤ (y1, · · · , yn);

A3. A(n)(0, 0, · · · , 0) = 0 and A(n)(1, 1, · · · , 1) = 1.

An extended aggregation function is the function A :
⋃

n∈N[0, 1]n → [0, 1] whose
restriction A|In := A(n) to In is the n-ary aggregation function A(n) for any n ∈ N.
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The aggregation function A has a neutral element e ∈ [0, 1] if A(x1, · · · , xi−1, e, xi+1, · · · ,
xn) = A(x1, · · · , xi−1, xi+1, · · · , xn). An element a ∈ [0, 1] is called an annihilator element
(absorbing element or zero element) of A if A(x1, · · · , xi−1, a, xi+1, · · · , xn) = a. Moreover,
A has no zero divisors if it has the zero element a and A(x1, · · · , xn) = a implies that xs = a
for some 1 ≤ s ≤ n.

The aggregation function A is called conjunctive if A(x1, · · · , xn) ≤ min(x1, · · · , xn),
called disjunctive if A(x1, · · · , xn) ≥ max(x1, · · · , xn) and called average (idempotent)
whenever min(x1, · · · , xn) ≤ A(x1, · · · , xn) ≤ max(x1, · · · , xn) for every (x1, · · · , xn) ∈
In. In the general case, the conjunctive and disjunctive aggregation functions do not need
to have neutral elements. However, if they have them, these elements are, respectively,
e = 1 and e = 0. Moreover, if an aggregation function A has the neutral element e = 1, then
it is necessarily conjunctive and, if it has the neutral element e = 0, then it is necessarily
disjunctive.

Definition 1 ([21]). Let A : [0, 1]m → [0, 1] and B : [0, 1]n → [0, 1] be two aggregation functions
where m, n ∈ N. We say function A dominates function B, denoted by A� B, if

A(B(x11, · · · , x1n), · · · , B(xm1, · · · , amn)) ≥ B(A(x11, · · · , xm1), · · · , A(x1n, · · · , amn)), (1)

where xij ∈ [0, 1].

Note that, if A� B, then Bd � Ad.

Triangular Norms and Conorms

Triangular norms T : [0, 1]2 → [0, 1] and conorms S : [0, 1]2 → [0, 1], or t-norms and
t-conorms in brief, are well-known examples of conjunctive and disjunctive aggregation
operators which are associative and commutative with the neutral elements e = 1 and
e = 0, respectively (c.f. [22]).

There are four basic t-norms: TD(x1, x2) = min{x1, x2} if x1 = 1 or x2 = 1 and otherwise
is zero, TM(x1, x2) = min(x1, x2), TP(x1, x2) = x1x2 and TL(x1, x2) = max(x1 + x2 − 1, 0)
such that TD ≤ TL ≤ TP ≤ TM. In fact, the drastic product TD and the minimum op-
erator TM are the smallest and the greatest t-norms, respectively, and TM is the only t-
norm that is idempotent at any x ∈ [0, 1]. On the other hand, the dual of these operators,
i.e., SD(x1, x2) = max{x1, x2} if x1 = 0 or x2 = 0 and otherwise is one, SM(x1, x2) =
max(x1, x2), SP(x1, x2) = x1 + x2 − x1x2 and SL(x1, x2) = min(x1 + x2, 1) are t-conorms
such that SM ≤ SP ≤ SL ≤ SD.

It is shown in literature (c.f. [22], Section 6.3) that the domination relation� on the set
of all t-norms is reflexive (i.e., T � T) and antisymmetric (i.e., T1 � T2, T2 � T1 ⇒ T1 = T2);
however, the transitivity property is still an open problem. It is also proved that, for any two
t-norms T1 and T2, if T1 � T2, then T1 ≥ T2, while the converse does not hold in general.

The t-norms T and the t-conorms S are, in fact, different membership functions from
model conjunction (i.e., the logical AND) and disjunction (i.e., the logical OR) in fuzzy logic.
However, besides these, it is needed to interpret the concept of implication in fuzzy logic.
Therefore, by using t-norms and t-conorms, a particular class of implication operators was
formulated based on the classical concept of implication in set theory as follows.

Definition 2 ([12,13]). Let T be a left-continuous t-norm. The residuum or implication operation
−→
T : [0, 1]2 → [0, 1] with respect to the t-norm T is defined as

−→
T (x, y) = sup{α ∈ I : T(α, x) ≤ y} (2)

for any x, y ∈ [0, 1].

Proposition 1 ([12,13]). For any left-continuous t-norm T, the following is held:
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1. x ≤ y if and only if
−→
T (x, y) = 1, so

−→
T (x, x) = 1;

2. T(x, y) ≤ z if and only if
−→
T (y, z) ≥ x;

3. T(
−→
T (x, y),

−→
T (y, z)) ≤ −→T (x, z);

4.
−→
T (1, x) = x;

5. T(x,
−→
T (x, y)) ≤ y;

6. y ≤ −→T (x, T(x, y)).

The concept of logical equivalence was also extended from the Boolean case to the
fuzzy case as below.

Definition 3 ([11]). Let T be a left-continuous t-norm. The biimplication relation of T, known as
biimplication operator

←→
T : [0, 1]2 → [0, 1], is defined by

←→
T (x, y) = T(

−→
T (x, y),

−→
T (y, x)) (3)

for any x, y ∈ [0, 1].

Proposition 2 ([11]). For any left-continuous t-norm T the following is held.

1. x = y if and only if
←→
T (x, y) = 1;

2.
←→
T (x, y) =

←→
T (y, x);

3.
←→
T (x, y) = min(

−→
T (x, y),

−→
T (y, x));

4.
←→
T (x, y) =

−→
T (max(x, y), min(x, y));

5. T(
←→
T (x, y),

←→
T (y, z)) ≤ ←→T (x, z);

6.
←→
T : [0, 1]2 → [0, 1] is a fuzzy T-equivalence relation.

2.2. Fuzzy Orderings

Crisp binary relations, especially orders, are applied to explain the relationships
between objects or to compare different objects. However, in real decision situations, we
usually deal with the degree of preference not the simple case of yes or no comparison. By
adding the membership degree to this Boolean information, binary relations are presented
in the fuzzy logic-based framework that are called fuzzy binary relations (or FR in brief).
In the sense of Zadeh [1], a fuzzy binary relation R from X to Y is a fuzzy subset of
X×Y characterized by the membership function R : X×Y → [0, 1], where, for each pair
(x, y) ∈ X×Y, the value R(x, y) shows the strength of the relationship between x and y.

In the case of X = Y, various properties of fuzzy relations including reflexivity
(i.e., R(x, x) = 1; ∀x ∈ X), symmetry (i.e., R(x, y) = R(y, x); ∀x, y ∈ X), antisymme-
try (i.e., min{R(x, y), R(y, x)} = 0; ∀x, y ∈ X such that x 6= y), transitivity (i.e., R(x, z) ≥
maxy

[
min(R(x, y), R(y, z)); y ∈ X

]
; ∀x, y, z ∈ X) and completeness (i.e.,

max{R(x, y), R(y, x)} = 1; ∀x, y ∈ X) were also introduced in [1]. Accordingly, the follow-
ing fuzzy orderings were defined.

The fuzzy relation R is:

• fuzzy ordering if it is reflexive;
• fuzzy preordering if it is reflexive and transitive;
• fuzzy total or linear preordering if it is strongly complete and transitive;
• fuzzy partial ordering or fuzzy weak preference ordering if it is reflexive, antisymmet-

ric and transitive;
• fuzzy strict preference ordering if it is antisymmetric and transitive;
• similarity relation or fuzzy equivalence relation if it is reflexive, symmetric, and

transitive.

Since in fuzzy logic there is not a unique way to express any concept, in contrast to the
crisp case, by generalization, the t-norm TM and the t-conorm SM into any t-norm T and
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t-conorm S or maybe into any binary operation ∗, the above definitions were developed as
below.

Definition 4. Let ∗ : [0, 1]2 → [0, 1] be a binary operation. The fuzzy relation R is

• α-reflexive if ∀x ∈ X : R(x, x) ≥ α, where α ∈ (0, 1] ([12]);
• totally ∗-connected or ∗-complete if ∀x, y ∈ X : ∗(R(x, y), R(y, x)) = 1 (If ∗ is any t-conorm

S, it is called S-connected) ([8,23,24]);
• ∗-antisymmetric if ∀x, y ∈ X such that x 6= y: ∗(R(x, y), R(y, x)) = 0 (If ∗ is any t-norm

T, it is called T-antisymmetric) ([8,23,24]);
• ∗-transitive if ∀x, y, z ∈ X : ∗(R(x, y), R(y, z) ≤ R(x, z) (([2,8,23,24])).

Accordingly, fuzzy T-orderings or in general case fuzzy ∗-orderings can be defined
as below.

Definition 5 ([8]). Let ∗ be a binary operation. A reflexive and ∗-transitive fuzzy relation is
called fuzzy preordering w.r.t ∗ or fuzzy ∗-preordering. A fuzzy ∗-preorder relation which is also
symmetric is called fuzzy ∗-equivalence relation.

In the direction of generalization of the fuzzy orderings, some researchers pointed out
that the above definitions are a straightforward extension of the associated concepts in a
crisp case without taking the deeper algebraic background into account. Since the concept
of equality in the above definitions is indeed the crisp concept and not a fuzzy equality, the
class of ∗-orderings (or T-orderings where T is a t-norm) are just half-way fuzzification of
crisp orderings. Therefore, the following definitions were suggested.

Definition 6 ([10,11]). Let T be a t-norm and E be a fuzzy T-equivalence relation. The fuzzy
binary relation R is called T-E-ordering if and only if it is

1. E-reflexive, i.e., E(x, y) ≤ R(x, y) for all x, y ∈ X;
2. T-E-antisymmetric, i.e., T(R(x, y), R(y, x)) ≤ E(x, y) for all x, y ∈ X;
3. T-transitive.

Valverde [14] showed that there is a link between the implication and biimplication
operators and fuzzy T-orderings which can help us to construct a fuzzy T-preorder R
and a fuzzy T-equivalence E from fuzzy data. The background idea of constructing these
T-orderings is followed from measuring the degrees of T-inclusion and T-similarity of
fuzzy sets.

Theorem 1 ([14]). For an arbitrary left-continuous t-norm T, the fuzzy relation R on X is T-
preorder if and only if there exists a family of {µj}j∈J of fuzzy subsets of X such that

R(x, y) = inf
j

−→
T (µj(x), µj(y)) (4)

for all x, y ∈ X.

Theorem 2 ([14]). For an arbitrary left-continuous t-norm T, the fuzzy relation R on X is T-
equivalence if and only if there exists a family of {µj}j∈J of fuzzy subsets of X such that

E(x, y) = inf
j

−→
T (max(µj(x), µj(y)), min(µj(x), µj(y))) (5)

for all x, y ∈ X.

m-Polar Fuzzy Relations

By expanding the range of membership function from the unit interval [0, 1] into
the mth power of [0, 1], i.e., [0, 1]m = [0, 1] × · · · × [0, 1] where 0 = (0, 0, · · · , 0) and
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1 = (1, 1, · · · , 1) are, respectively, the least and greatest elements, the traditional fuzzy set,
dealing with uni-polar data, is extended into the new concept of m-polar fuzzy set which
can deal with multi-polar information.

Definition 7 ([16]). An m-polar fuzzy set µ on the universe X is a mapping µ : X → [0, 1]m such
that µ(x) = (π1 ◦ µ(x), · · · , πm ◦ µ(x)) for any x ∈ X.

Note that πs ◦ µ : X → [0, 1] is the sth degree of membership function µ where πs :
[0, 1]m → [0, 1] is the sth projection mapping. The set [0, 1]m is considered as a poset with
order “≤” such that for any x, y ∈ [0, 1]m where x = (x1, · · · , xm) and y = (y1, · · · , ym),
x ≤ y if πs(x) ≤ πs(y) for each s ∈ S = {1, · · · , m}.

For any two m-polar fuzzy subsets µ and ν of the universe X, the union and intersec-
tion are computed as the following:

• (µ ∨ ν)(x) = (max(π1 ◦ µ(x), π1 ◦ ν(x)), · · · , max(πm ◦ µ(x), πm ◦ ν(x)))
• (µ ∧ ν)(x) = (min(π1 ◦ µ(x), π1 ◦ ν(x)), · · · , min(πm ◦ µ(x), πm ◦ ν(x)))

where x ∈ X.
The concept of m-polar fuzzy relation is also developed as below.

Definition 8 ([25]). An m-polar fuzzy relation R on the universe X is defined by a mapping
R : X × X → [0, 1]m such that R(x, y) = (π1 ◦ R(x, y), · · · , πm ◦ R(x, y)) for any x, y ∈ X
where for each 1 ≤ s ≤ m, the value πs ◦ R(x, y) shows the sth degree of relationship between x
and y.

Let R be an m-polar fuzzy relation on X. Analogously to the fuzzy relations, if the
m-tuple a = (a1, · · · , am) ∈ (0, 1]m is a given threshold vector on membership degrees,
then Ra = {(x, y) ∈ X2 : πs ◦ R(x, y) ≥ as : s = 1, 2, · · · , m} is a non-fuzzy (crisp) binary
relation on X that is called a-level relation generated by R. Clearly, for any two given
threshold vectors a, b ∈ (0, 1]m such that a = (a1, · · · , am), b = (b1, · · · , bm) and a ≥ b, we
have Ra ⊆ Rb.

The aggregating process of n fuzzy relations R1, · · · , Rn involves an n-ary aggrega-
tion function F that assigns to the given fuzzy relations R1, · · · , Rn a new fuzzy relation
RF = F(R1, · · · , Rn), called an aggregated fuzzy relation. Aggregation functions on prod-
ucts of lattices/posets and m-polar fuzzy relations have been also studied in [26,27], where
the aggregating over a profile (R1, · · · , Rn) of m-polar fuzzy relations by aggregation
function F is defined by

F((π1 ◦ R1, · · · , πm ◦ R1), · · · , (π1 ◦ Rn, · · · , πm ◦ Rn)) = (F(π1 ◦ R1, · · · , π1 ◦ Rn),

· · · , F(πm ◦ R1, · · · , πm ◦ Rn)) (6)

3. Generating m-Polar T-Orders from m-Polar Fuzzy Data

This section discusses a method to construct an m-polar fuzzy T-preorder, where T is
a left continuous t-norm, based on an aggregation function A and then provides an m-polar
fuzzy T-equivalence. Let us first recall Theorem 1 which says that, if a family of fuzzy
subsets of a universe X is given, then it is always possible to derive a T-preorder on X with
respect to the t-norm T as below:

R(x, y) = inf
j

−→
T (µj(x), µj(y))

where the fuzzy inclusion relation INClT(µ, ν) = infx∈X
−→
T (µ(x), ν(x)) has the fundamen-

tal role to define it. In real decision-making applications, the numbers of decision makers
and decision parameters/criteria are usually finite. This means that we have mostly finite
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records of fuzzy information. In this case, the fuzzy T-preordering R, defined in Theorem 1,
is computed by

R(x, y) =
K

min
j=1

−→
T (µj(x), µj(y))

where the inf operator is replaced by the min operator that can be considered as a logic AND
or conjunction belonging to a bigger class known as aggregation functions. It is, therefore, a
very natural question whether the aggregating of

−→
T
(
µ1(x), µ1(y)

)
, · · · ,

−→
T
(
µK(x), µK(y)

)
by any aggregation function A still provides a T-preordering on X or not?

Adding multi-polarity to the uni-polar scale of fuzzy sets that is known as m-polar
fuzzy sets allows experts to deal with inputs from different categories or sources in decision
situations. Since the two operators

−→
T and

←→
T play a basic role to construct T-preorderings

and T-equivalences on the set X, to cope with the above question in the m-polar fuzzy
framework, we need first to generalize these operators to obtain an m-polar-based repre-
sentation of them.

Definition 9. Let T be a left-continuous t-norm. The m-polar implication operation
−→
T : ([0, 1]m)2 →

[0, 1]m with respect to T is defined as

−→
T (x, y) = (

−→
T (π1(x), π1(y)), · · · ,

−→
T (πm(x), πm(y))) (7)

for any x, y ∈ [0, 1]m such that x = (x1, · · · , xm), y = (y1, · · · , ym) and
−→
T (πs(x), πs(y)) =

sup{α ∈ I : T(α, xs) ≤ ys} for any 1 ≤ s ≤ m.

By adopting the properties of implication operator, discussed in [12,13], for the m-
polar case, the following properties are immediately obtained for m-polar implication
operation given in Definition 9.

Lemma 1. Consider the left-continuous t-norm T and an m-polar fuzzy subset µ : X → [0, 1]m of
X. For any x, y, z ∈ X and 1 ≤ s ≤ m, the following assertions hold:

1. πs ◦ µ(x) ≤ πs ◦ µ(y) ⇐⇒ −→
T (πs ◦ µ(x), πs ◦ µ(y)) = 1;

2. T(πs ◦ µ(x), πs ◦ µ(y)) ≤ πs ◦ µ(z) ⇐⇒ πs ◦ µ(x) ≤ −→T (πs ◦ µ(y), πs ◦ µ(z));
3. T(

−→
T (πs ◦ µ(x), πs ◦ µ(y)),

−→
T (πs ◦ µ(y), πs ◦ µ(z)) ≤ −→T (πs ◦ µ(x), πs ◦ µ(z));

4.
−→
T (πs ◦ µ(x), πs ◦ µ(y)) ≤ −→T (T(πs ◦ µ(x), πs ◦ µ(z)), T(πs ◦ µ(y), πs ◦ µ(z)));

5.
−→
T (1, πs ◦ µ(x)) = πs ◦ µ(x) and

−→
T (πs ◦ µ(x), 1) = 1;

6.
−→
T (0, πs ◦ µ(x)) = 1 and

−→
T (πs ◦ µ(x), 0) = 0 if πs ◦ µ(x) 6= 0 and T without zero

divisors, and otherwise is one;
7. T(πs ◦ µ(x),

−→
T (πs ◦ µ(x), πs ◦ µ(y))) ≤ πs ◦ µ(y);

8. πs ◦ µ(y) ≤ −→T (πs ◦ µ(x), T(πs ◦ µ(x), πs ◦ µ(y))).

Proof.

• To prove 1, first let
−→
T (πs ◦ µ(x), πs ◦ µ(y)) = 1 which means T(α, πs ◦ µ(x)) ≤

πs ◦ µ(y) for all α < 1. Since T is a left-continuous t-norm, then πs ◦ µ(x) = T(1, πs ◦
µ(x)) = T(sup{α : α < 1}, πs ◦ µ(x)) = sup{T(α, πs ◦ µ(x)) : α < 1} ≤ πs ◦ µ(y).
The other side is immediately obtained because, for any α ∈ [0, 1], T(α, πs ◦ µ(x)) ≤
πs ◦ µ(x) ≤ πs ◦ µ(y).

• For 2, first suppose that T(πs ◦ µ(x), πs ◦ µ(y)) ≤ πs ◦ µ(z). Thus, πs ◦ µ(x) ≤
sup{α ∈ [0, 1] : T(α, πs ◦ µ(y)) ≤ πs ◦ µ(z)} = −→T (πs ◦ µ(y), πs ◦ µ(z)). Conversely,
let πs ◦ µ(x) ≤ −→T (πs ◦ µ(y), πs ◦ µ(z)) = w. Then, by Definition 9, T(w, πs ◦ µ(y)) ≤
πs ◦ µ(z). Thus, T(πs ◦ µ(x), πs ◦ µ(y)) ≤ T(w, πs ◦ µ(y)) ≤ πs ◦ µ(z).

• In 3, we have: T(
−→
T (πs ◦ µ(x), πs ◦ µ(y)),

−→
T (πs ◦ µ(y), πs ◦ µ(z)) = T(sup{α ∈

[0, 1] : T(α, πs ◦ µ(x)) ≤ πs ◦ µ(y)}, sup{β ∈ [0, 1] : T(β, πs ◦ µ(y)) ≤ πs ◦ µ(z)}) =
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sup{T(α, β) : T(α, πs ◦ µ(x)) ≤ πs ◦ µ(y)&T(β, πs ◦ µ(y)) ≤ πs ◦ µ(z)} ≤ −→T (πs ◦
µ(x), πs ◦µ(z)) since, for such α, β ∈ [0, 1], we have: T(T(α, β), πs ◦µ(x)) = T(β, T(9α, πs ◦
µ(x))) ≤ T(β, πs ◦ µ(y)) ≤ πs ◦ µ(z) which implies T(α, β) ≤ sup{γ ∈ [0, 1] :
T(γ, πs ◦ µ(x)) ≤ πs ◦ µ(z)}.

• To show 4, let α ∈ [0, 1] such that T(α, πs ◦ µ(x)) ≤ πs ◦ µ(y). Then, because of the
non-decreasing and associativity of T, we have: T(T(α, πs ◦ µ(x)), πs ◦ µ(z)) ≤ T(πs ◦
µ(y), πs ◦ µ(z)) or equivalently T(α, T(πs ◦ µ(x), πs ◦ µ(z))) ≤ T(πs ◦ µ(y), πs ◦ µ(z)).
Thus, sup{α ∈ [0, 1] : T(α, πs ◦ µ(x)) ≤ πs ◦ µ(y)} ≤ sup{β ∈ [0, 1] : T(β, T(πs ◦
µ(x), πs ◦ µ(z))) ≤ T(πs ◦ µ(y), πs ◦ µ(z))}. Therefore,

−→
T (πs ◦ µ(x), πs ◦ µ(y)) ≤

−→
T (T(πs ◦ µ(x), πs ◦ µ(z)), T(πs ◦ µ(y), πs ◦ µ(z))).

• The items 5, 6, 7, and 8 are clearly obtained based on Definition 9.

Corollary 1. Let T be a left-continuous t-norm and µ : X → [0, 1]m be an m-polar fuzzy subset of
X. Then, for any x, y, z ∈ X:

1. µ(x) ≤ µ(y) ⇐⇒ −→
T (µ(x), µ(y)) = 1;

2. T(µ(x), µ(y)) ≤ µ(z) ⇐⇒ µ(x) ≤ −→T (µ(y), µ(z));
3. T(

−→
T (µ(x), µ(y)),

−→
T (µ(y), µ(z)) ≤ −→T (◦µ(x), µ(z));

4.
−→
T (µ(x), µ(y)) ≤ −→T (T(µ(x), µ(z)), T(µ(z), µ(y)));

5.
−→
T (1, µ(x)) = µ(x) and

−→
T (µ(x), 1) = 1;

6.
−→
T (0, µ(x)) = 1.

−→
T (µ(x), 0) = 0 if µ(x) 6= 0, otherwise it is 1;

7. T(µ(x),
−→
T (µ(x), µ(y))) ≤ µ(y);

8. µ(y) ≤ −→T (µ(x), T(µ(x), µ(y))).

Motivated by Theorem 1, the next result gives a method to generate an m-polar fuzzy
T-preorder relation on X with respect to the t-norm T and the aggregation function A.
This change enables us to measure the strength of fuzzy relationship between each pair of
elements x and y at any direction s; 1 ≤ s ≤ m, based on all implication degrees from x to
y, not necessarily the minimum one.

Theorem 3. Consider a left-continuous t-norm T and an aggregation function A such that A� T.
Let X be a universal set and {µj : 1 ≤ j ≤ K} be a finite family of m-polar fuzzy subsets of
X. The m-polar fuzzy relation R : X × X → [0, 1]m such that, for any x, y ∈ X, the degree
R(x, y) = (π1 ◦ R(x, y), · · · , πm ◦ R(x, y)) is defined by

πs ◦ R(x, y) = A[
−→
T (πs ◦ µ1(x), πs ◦ µ1(y)), · · · ,

−→
T (πs ◦ µK(x), πs ◦ µK(y))] : s = 1, · · · , m (8)

is an m-polar T-preorder on X.

Proof. Let {µj : 1 ≤ j ≤ K} be a finite family of m-polar fuzzy sets on X. Suppose that
T is left continuous t-norm and A is an aggregation function such that A � T. For any
1 ≤ j ≤ K; 1 ≤ s ≤ m and x ∈ X, the reflexivity of m-polar fuzzy relation R follows from
boundary property A(1, · · · , 1) = 1 and the fact that T(1, πs ◦ µj(x)) ≤ πs ◦ µj(x). To
prove T-transitivity for R, take x, y, z ∈ X and 1 ≤ s ≤ m. Then, by Lemma 1, item (3),
we have
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T[πs ◦ R(x, y), πs ◦ R(y, z)] = T[A1≤j≤K(
−→
T (πs ◦ µj(x), πs ◦ µj(y))), A1≤j≤K(

−→
T (πs ◦ µj(y), πs ◦ µj(z)))]

≤ A1≤j≤K[T(
−→
T (πs ◦ µj(x), πs ◦ µj(y)),

−→
T (πs ◦ µj(y), πs ◦ µj(z)))]

= A1≤j≤K[sup
{

T(αj, β j) : T(αj, πs ◦ µj(x)) ≤ πs ◦ µj(y), T(β j, πs ◦ µj(y)) ≤ πs ◦ µj(z)
}
]

≤ A1≤j≤K(
−→
T (πs ◦ µj(x), πs ◦ µj(z))) = R(x, z)

since A is monotone and, for any 1 ≤ j ≤ K, we have T(T(αj, β j), πs ◦ µj(x)) ≤ πs ◦ µj(z),

or equivalently T(αj, β j) ≤
−→
T (πs ◦ µj(x), πs ◦ µj(z)).

Example 1. Let T be the t-norms TL, TP, and TM. For any x, y ∈ X and 1 ≤ s ≤ m, the following
are the associated m-polar fuzzy T-preorderings generated by Equation (8):

1. If T := TL and A := WAM (weighted arithmetic mean) with weighting vector w =

(w1, · · · , wK) where for any 1 ≤ j ≤ K: wj ∈ [0, 1] and ∑K
j=1 wj = 1. Then, πs ◦ R(x, y) =

∑K
j=1 wj ·min(1− πs ◦ µj(x) + πs ◦ µj(y), 1).

2. If T := TP and A := WGM (weighted geometric mean) with weighting vector w =

(w1, · · · , wK) where for any 1 ≤ j ≤ K: wj ∈ [0, 1], and ∑K
j=1 wj = 1. Then, πs ◦R(x, y) =

∏j(
πs◦µj(y)
πs◦µj(x) )

wj , where πs ◦ µj(x) 6= 0 and πs ◦ µj(x) > πs ◦ µj(y); otherwise, it is one.

3. If T := TM and A := Min. Then, πs ◦ R(x, y) = 1, if πs ◦ µj(x) ≤ πs ◦ µj(y) for all
1 ≤ j ≤ K; otherwise, πs ◦ R(x, y) = minj{πs ◦ µj(y) : πs ◦ µj(y) < πs ◦ µj(x)}.

Proposition 3. Consider the left-continuous t-norms T1, T2 and T; and the aggregation functions
A1, A2 and A such that A1 � T1, A2 � T2, and A� T. For the m-polar fuzzy preorder relations
R1, R2 and R with respect to T1, T2 and T, respectively, the following assertions hold.

1. If A1 ≤ A2, then R1 ⊆ R2.
2. If T1 ≤ T2, then R1 ⊇ R2.
3. If for any 1 ≤ j ≤ K and 1 ≤ s ≤ m we have πs ◦ µj(x) ≤ πs ◦ µj(y), then R(x, y) = 1.

The converse will be held if A is conjunction.
4. For any crisp point x ∈ X such that πs ◦ µj(x) = 1 for any 1 ≤ j ≤ K and 1 ≤ s ≤ m,

the πs ◦ R(y, x) = 1 and πs ◦ R(x, y) = A(πs ◦ µ1(y), · · · , πs ◦ µK(y)) for any y ∈ X.
5. If πs ◦ µj(x) ≤ πs ◦ µj(y) for any 1 ≤ j ≤ K and 1 ≤ s ≤ m, then πs ◦ R(z, x) ≤

πs ◦ R(z, y) and πs ◦ R(y, z) ≤ πs ◦ R(x, z) for all z ∈ X.
6. If A is disjunction, then T

(
πs ◦ µj(x), πs ◦ µj(y)

)
≤ πs ◦ µj(z) ⇒ πs ◦ µj(x) ≤ πs ◦

R(y, z) for any 1 ≤ j ≤ K, 1 ≤ s ≤ m and x, y, z ∈ X.

Proof. Items (1) and (2) are immediately followed from Theorem 3. Items (3) and (4) are
obvious by Lemma 1.
To prove item (5), let πs ◦ µj(x) ≤ πs ◦ µj(y) for any 1 ≤ j ≤ K and 1 ≤ s ≤ m.

Then, A[
−→
T (πs ◦µj(z), πs ◦µj(x))] ≤ A[

−→
T (πs ◦µj(z), πs ◦µj(y))] and A[

−→
T (πs ◦µj(y), πs ◦

µj(z))] ≤ A[
−→
T (πs ◦ µj(x), πs ◦ µj(z))] are followed from the fact that {β ∈ [0, 1] : T(β, πs ◦

µj(z)) ≤ πs ◦ µj(x)} ⊆ {α ∈ [0, 1] : T(α, πs ◦ µj(z)) ≤ πs ◦ µj(y)} and monotonicity of A.
Therefore, respectively, πs ◦ R(z, x) ≤ πs ◦ R(z, y) and πs ◦ R(y, z) ≤ πs ◦ R(x, z).
For item (6), let T

(
πs ◦ µj(x), πs ◦ µj(y)

)
≤ πs ◦ µj(z) for all 1 ≤ j ≤ K and 1 ≤

s ≤ m. Then, by Lemma 1, we have πs ◦ µj(x) ≤ −→T (πs ◦ µj(y), πs ◦ µj(z)). Therefore,

πs ◦ R(y, z) = A1≤j≤K[
−→
T (πs ◦ µj(y), πs ◦ µj(z))] ≥ A1≤j≤K[πs ◦ µj(x)] ≥ πs ◦ µj(x) since

A is a disjunction aggregation function.

Theorem 4. Let T be a left continuous t-norm and A be a conjunctive aggregation function such
that A � T. Consider the finite set X with cardinality K. An m-polar fuzzy relation R′ on X
is reflexive if and only if there exists a family {µj : 1 ≤ j ≤ K} of m-polar fuzzy subsets of X
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generating the m-polar fuzzy relation R by πs ◦ R(x, y) = Aj[
−→
T (πs ◦ µj(x), πs ◦ µj(y))] such

that R ⊆ R′.

Proof. Let the left continuous t-norm T be given. Let us suppose first that the m-polar
fuzzy relation R′ is reflexive. Take the conjunction aggregation function A� T. For any
x, y ∈ X and 1 ≤ s ≤ m, we have

Az∈X [
−→
T (πs ◦ R′(z, y), πs ◦ R′(z, x))] ≤ minz∈X [

−→
T (πs ◦ R′(z, y), πs ◦ R′(z, x))]

≤ −→T (πs ◦ R′(y, y), πs ◦ R′(y, x))

=
−→
T (1, πs ◦ R′(y, x)) = πs ◦ R′(y, x)

Then, πs ◦ R(y, x) = Az∈X [
−→
T (πs ◦ µz(y), πs ◦ µz(x))] ≤ πs ◦ R′(y, x) if we put X = J =

{1, 2, · · · , K}, πs ◦ R′(z, x) = πs ◦ µz(x) and πs ◦ R′(z, y) = πs ◦ µz(y). Therefore, R ⊆ R′.
Conversely, let R, R′ : X× X → [0, 1]m be two m-polar fuzzy relations on X such that

R ⊆ R′ and R is the T-preordering defined in Theorem 3 by a family {µj : 1 ≤ j ≤ K}
of m-polar fuzzy subsets of X. The reflexivity of R′ is implied immediately by reflexivity
of R.

Theorem 5. Let T be left continuous t-norm and A be a disjunctive aggregation function such
that A� T. Consider the finite set X with cardinality K. An m-polar fuzzy relation R′′ on X is
T-transitive if and only if there exists a family {µj : 1 ≤ j ≤ K} of m-polar fuzzy subsets of X

generating the m-polar fuzzy relation R by πs ◦ R(x, y) = Aj[
−→
T (πs ◦ µj(x), πs ◦ µj(y))] such

that R′′ ⊆ R.

Proof. Let the m-polar fuzzy relation R′′ be T-transitive. For any 1 ≤ s ≤ m and x, y, z ∈ X,
we have T

(
πs ◦ R′′(z, x), πs ◦ R′′(x, y)

)
≤ πs ◦ R′′(z, y), thus πs ◦ R′′(x, y) ≤ −→T (πs ◦

R′′(z, x), πs ◦ R′′(z, y)). This implies that πs ◦ R′′(x, y) ≤ Az∈X [
−→
T (πs ◦ R′′(z, x), πs ◦

R′′(z, y))] since A ≥ Max. Now, it is sufficient to put X = J = {1, 2, · · · , K} and take
πs ◦ R′′(z, x) = πs ◦ µz(x) , πs ◦ R′′(z, y) = πs ◦ µz(y).

Proposition 4. Consider conjunction A and t-norm T, both of them without zero divisors. The
relation R defined in Theorem 3 by the family {µj : 1 ≤ j ≤ K} of m-polar fuzzy sets is m-polar
T-antisymmetric if and only if for any 1 ≤ s ≤ m there exists µi such that, for any x, y ∈ X, either
πs ◦ µi(x) = 0 or πs ◦ µi(y) = 0, but not both.

Proof. Take x, y ∈ X, and, for any 1 ≤ s ≤ m, there exists 1 ≤ i ≤ K such that ei-
ther πs ◦ µi(x) = 0 or πs ◦ µi(y) = 0, but not both. Therefore, either

−→
T (πs ◦ µi(y), πs ◦

µi(x)) = 0 or
−→
T (πs ◦ µi(x), πs ◦ µi(y)) = 0, respectively. Thus, either πs ◦ R(y, x) =

0 or πs ◦ R(x, y) = 0 since A is a conjunction. Thus, T(R(x, y), R(y, x)) = (T(π1 ◦
R(x, y), π1 ◦ R(y, x)), · · · , T(πm ◦ R(x, y), πm ◦ R(y, x))) = (0, · · · , 0) ∈ [0, 1]m since T has
no zero divisors. This means that R is an m-polar fuzzy T-antisymmetric. Conversely, let
T(R(x, y), R(y, x)) = (0, · · · , 0). Then, for any 1 ≤ s ≤ m, we have T(πs ◦ R(x, y), πs ◦
R(y, x)) = 0, which implies that πs ◦ R(x, y) = 0 or πs ◦ R(y, x) = 0 since T has no zero
divisors. Without loss of generality, let πs ◦ R(x, y) = 0. Thus, there exists 1 ≤ i ≤ K such
that
−→
T (πs ◦ µi(x), πs ◦ µi(y)) = 0 and then πs ◦ µi(y) = 0 since both conjunction A and

t-norm T have no zero divisors.

Remark 1. Note that, under the conditions of Proposition 4, the property of T-antisymmetry is
equivalent to A-antisymmetry and min-antisymmetry.

Theorem 6. Let R be the m-polar fuzzy T-preordering on X defined in Theorem 3. Then, the ag-
gregated fuzzy relation RF over the components of R, where RF(x, y) = F(π1 ◦ R(x, y), · · · , πm ◦
R(x, y)) for any x, y ∈ X, by the aggregation function F is a fuzzy T-preorder on X if F� T.
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Proof. Take x ∈ X. The reflexivity of RF is followed from RF(x, x) = F(π1 ◦R(x, x), · · · , πm ◦
R(x, x)) = F(1, · · · , 1) = 1. To show T-transitivity, let x, y, z ∈ X. Then,

T(RF(x, y), RF(y, z)) = T(F(π1 ◦ R(x, y), · · · , πm ◦ R(x, y)), F(π1 ◦ R(y, z), · · · , πm ◦ R(y, z)))

≤ F(T(π1 ◦ R(x, y), π1 ◦ R(y, z)), · · · , T(πm ◦ R(x, y), πm ◦ R(y, z)))

≤ F(π1 ◦ R(x, z), · · · , πm ◦ R(x, z)) = RF(x, z)

because of the monotonicity of F. This completes the proof.

Clearly, if R is an m-polar fuzzy T-preordering on X w.r.t aggregation function A, as
defined in Theorem 3, then RA is a fuzzy T-preorder on X. In particular, if T := TM, then
the aggregation functions A and F must be the minimum operator where the aggregated
fuzzy relation Rmin defined by Rmin(x, y) = minm

s=1
(

infj[
−→
T (πs ◦ µj(x), πs ◦ µj(y))]

)
for

x, y ∈ X is min-transitive.

m-Polar T-Equivalences

In literature, there exists a fundamental representation theorem for T-equivalences
with respect to left-continuous t-norms (c.f. Theorem 2), which shows that such relations
can be generated from families of fuzzy sets by means of biimplications (see also Propo-
sition 2, items 3, 4, and 6). This section is dedicated to developing an analogous result
for constructing m-polar fuzzy equivalences by means of B-composition of m-polar fuzzy
T-preorders introduced in Theorem 3, where B is an aggregation function.

Theorem 7. Consider the left-continuous t-norm T and aggregation function A � T. Let
X be a universal set and {µj : 1 ≤ j ≤ K} be a finite family of m-polar fuzzy subsets of X
generating the m-polar T-preorder relation R w.r.t A. If B is a symmetric aggregation function
such that B � T, then an m-polar fuzzy relation E : X × X → [0, 1]m defined by E(x, y) =
(π1 ◦ E(x, y), · · · , πm ◦ E(x, y)) for any x, y ∈ X such that, for each 1 ≤ s ≤ m,

πs ◦ E(x, y) = B
(
πs ◦ R(x, y), πs ◦ R(y, x)

)
(9)

is an m-polar T-equivalence relation on X.

Proof. m-polar fuzzy reflexivity and symmetry of E are clear. The m-polar fuzzy T-
transitivity is followed from T-transitivity of m-polar fuzzy relation R. Take x, y, z ∈ X and
1 ≤ s ≤ m, then

πs ◦ E(x, z) = B(πs ◦ R(x, z), πs ◦ R(z, x))

≥ B(T(πs ◦ R(x, y), πs ◦ R(y, z)), T(πs ◦ R(z, y), πs ◦ R(y, x)))

≥ T(B(πs ◦ R(x, y), πs ◦ R(y, x)), B(πs ◦ R(y, z), πs ◦ R(z, y)))

= T(πs ◦ E(x, y), πs ◦ E(y, z))

since B� T.

Example 2. Let T be the t-norms TL, TP, and TM. For any x, y ∈ X and 1 ≤ s ≤ m, the following
are the associated m-polar fuzzy T-equivalences generated by Equation (9):

1. If T := TL, A := WAM and B := AM, then πs ◦ E(x, y) = 1
2 ∑K

j=1 wj ·
[

min(1 −
πs ◦ µj(x) + πs ◦ µj(y), 1) + min(1− πs ◦ µj(y) + πs ◦ µj(x), 1)

]
where, for 1 ≤ j ≤ K:

wj ∈ [0, 1] and ∑K
j=1 wj = 1.

2. If T := TP and A := WGM with weighting vector w = (w1, · · · , wm) where for any
1 ≤ j ≤ K: wj ∈ [0, 1] and ∑K

j=1 wj = 1 and B := GM. Then, πs ◦ E(x, y) =
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√
∏j[min(

πs◦µj(y)
πs◦µj(x) , 1)]wj ·min(

πs◦µj(x)
πs◦µj(y)

, 1)]wj , where πs ◦ µj(x) 6= 0 and πs ◦ µj(y) 6= 0;

otherwise, it is one.
3. If T := TM and A, B := Min. Then, πs ◦ E(x, y) = minK

j=1{πs ◦ µj(x)} if πs ◦ µj(x) ≤
πs ◦µj(y) for all 1 ≤ j ≤ K; πs ◦ E(x, y) = minK

j=1{πs ◦µj(y)} if πs ◦µj(y) ≤ πs ◦µj(x)
for all 1 ≤ j ≤ K; otherwise, πs ◦ R(x, y) = min(minj{πs ◦ µj(y) : πs ◦ µj(y) <
πs ◦ µj(x)}, minj{πs ◦ µj(x) : πs ◦ µj(x) < πs ◦ µj(y)}).

Proposition 5. Consider the left-continuous t-norms T1, T2 and T; and the aggregation functions
A1, A2, A and symmetric ones B1, B2, B such that A1, B1 � T1, A2, B2 � T2 and A, B� T. For
the m-polar fuzzy equivalences E1, E2 and E with respect to T1, A1, B1; T2, A2, B2; and T, A, B,
respectively, the following assertions hold.

1. If B1 ≤ B2, then E1 ⊆ E2.
2. If A1 ≤ A2, then E1 ⊆ E2.
3. If T1 ≤ T2, then E1 ⊇ E2.
4. If for any 1 ≤ i ≤ K, πs ◦ µi(x) = πs ◦ µi(y) for all s = 1, · · · , m; then, πs ◦ E(x, y) = 1.

The converse holds if B is a conjunction.

Proof. It is obtained easily by Theorem 7 and Proposition 3.

Theorem 8. Suppose T be a left-continuous t-norm. Consider the m-polar fuzzy T-equivalence E
w.r.t B. Then, the aggregated fuzzy relation EF by an aggregation function F where EF(x, y) =
F(π1 ◦ E(x, y), · · · , πm ◦ E(x, y)) for any x, y ∈ X is a fuzzy T-equivalence on X.

Proof. Analogous to the proof of Theorem 6.

Theorem 9. The m-polar fuzzy relation R given in Theorem 3 is a T-E-ordering where E is the
T-equivalence relation defined by Equation (9) and B is a conjunction with the neutral element
e = 1.

Proof. Trivially, R is supposed to be T-transitive by Theorem 3. For any 1 ≤ s ≤ m, we
have πs ◦ E(x, y) = B(πs ◦ R(x, y), πs ◦ R(y, x)) ≤ πs ◦ R(x, y) since B is conjunction. This
means that R is an m-polar E-reflexive relation. To prove T-E-antisymmetry of R, we
first show that B � T implies B ≥ T by putting x = y = 1 in the following inequality
T(B(u, y), B(x, v)) ≤ B(T(u, x), T(y, v)) : x, y, u, v ∈ [0, 1]. Then, it is immediately seen that
R is an m-polar T-E-antisymmetry. Thus, R is an m-polar T-E-ordering.

4. Constructing Crisp Orderings of the m-Polar T-Orderings

In decision sciences, the problem of ranking, dealing with definitions of preorder, and
preference relations on the set of alternatives is the main task. Decision makers define a
preorder (called partial ranking), which is a reflexive and transitive binary relation, or, in
an ideal case, a total preorder (known as complete ranking) that is a complete transitive
binary relation, on the set of alternatives/objects in order to compare the preference of
objects and then choose the optimum one.

Dealing with m-polar fuzzy data, the first step is to derive a crisp preorder based on
the m-polar fuzzy relation (called Defuzzification step) and then to develop a preference
relation of alternatives. In this section, we provide a crisp ordering over X by using the m-
polar fuzzy T-preorder relation R and the m-polar fuzzy T-equivalence relation E defined
in the previous section.

It is easy to check that, for the m-polar fuzzy T-preordering R and the m-polar fuzzy
T-equivalence E, the crisp relations “/s

R” and “∼s
R” on X given by

πs ◦ R(x, y) = 1 ⇐⇒ x/s
Ry (10)



Symmetry 2021, 13, 51 13 of 20

and

πs ◦ E(x, y) = 1 ⇐⇒ x∼s
Ry (11)

where s = 1, · · · , m; are considered as preorder and equivalence relations, respectively.
Moreover, if x/s

Ry and y/s
Rx, then πs ◦ R(x, y) = 1 and πs ◦ R(y, x) = 1 that implies x∼s

Ry
meaning that /s

R is a preference relation on X compatible with equivalence ∼s
R. Note also

that the intersection relation /R =
⋂m

s=1 /
s
R is a preorder relation on X compatible with

equivalence ∼R =
⋂m

s=1∼s
R.

However, the condition of equality to 1 makes the derived relations /s
R and ∼s

R too
strong. In many real-world examples, there exists a certain tolerance for computing the
m-polar fuzzy relations. For example, πs ◦ R(x, y) = 0.95 can be considered as almost 1
which means the relation x/s

Ry may be also taken into account for such case. Motivated
by Equations (10) and (11) and using the concept of a-cut for m-polar fuzzy set, where
a = (a1, · · · , am) ∈ [0, 1]m, a way to define crisp relations on X, known as a-cut relations,
associated with the values as ∈ [0, 1] where 1 ≤ s ≤ m, is considered as below.

Theorem 10. Let a = (a1, · · · , am) ∈ [0, 1]m be a given m-tuple threshold vector. Consider the
m-polar T-preordering R w.r.t A and the m-polar T-equivalence E w.r.t B over the X. The crisp
relation “�s,a

R ” on X defined by

x�s,a
R y ⇐⇒ πs ◦ R(x, y) ≥ as : as ∈ (0, 1] (12)

is a preference relation compatible with equivalence relation “∼s,a
R ”, where x∼s,a

R y ⇐⇒ πs ◦
E(x, y) ≥ as : as ∈ (0, 1]; if and only if T := TM.

Proof. It is clear since the only continuous idempotent t-norm T is TM.

The following results are obtained easily from Theorem 10.

Proposition 6. Let T1 and T2 be some left-continuous t-norms. Consider the m-polar T1-preordering
R1 and T2-preordering R2 w.r.t A1 and A2 and the m-polar T1-equivalence E1 and T2-equivalence
E2 w.r.t B1 and B2, respectively. Suppose that R is the m-polar TM-preordering and b =
(b1, · · · , bm) and c = (c1, · · · , cm) are the given m-tuple threshold vectors.
For any 1 ≤ s ≤ m, the following hold.

1. If A1 ≤ A2, then /s
R1
⊆ /s

R2
and ∼s

R1
⊆ ∼s

R2
.

2. If T1 ≤ T2, then /s
R1
⊇ /s

R2
and ∼s

R1
⊇ ∼s

R2
.

3. If b ≤ c, then �s,b
R ⊇ �

s,c
R and ∼s,b

R ⊇ ∼
s,c
R .

Proof. It is straightforward.

Theorem 11. Suppose that the m-tuple threshold vector a = (a1, · · · , am) ∈ [0, 1]m is given such
that for some 1 ≤ s ≤ m; as = b. Let T be a left-continuous t-norm and F be an aggregation
function. Consider the m-polar T-preordering R w.r.t A and the m-polar T-equivalence E w.r.t B.
Then, the following assertions hold.

1. For all 1 ≤ s ≤ m: if x/s
Ry then x/RF y, moreover, if x∼s

Ry then x∼RF y.
2. Let F be a disjunction. If for some 1 ≤ s ≤ m: x/s

Ry, then x/RF y. Similarly, if for some
1 ≤ s ≤ m: x∼s

Ry, then x∼RF y.
3. Let F be a conjunction. If for some 1 ≤ s ≤ m: x6s

Ry, then x6RF
y. Similarly, if for some

1 ≤ s ≤ m: x�s
Ry, then x�RF y.

4. Let F have an annihilator element at b. If x�s,a
R y, then x�b

RF
y. Similarly, if x∼s,a

R y, then
x∼b

RF
y.

5. Let F be a conjunction. If min(π1 ◦ R(x, y), · · · , πm ◦ R(x, y)) = b∗, then x�b∗
RF

y. Simi-
larly, if min(π1 ◦ E(x, y), · · · , πm ◦ E(x, y)) = c∗, then x∼c∗

RF
y.
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6. Let F be a disjunction. If max(π1 ◦ R(x, y), · · · , πm ◦ R(x, y)) = b∗, then x�b∗
RF

y. Simi-
larly, if max(π1 ◦ E(x, y), · · · , πm ◦ E(x, y)) = c∗, then x∼c∗

RF
y.

Proof. It is straightforward.

5. Application in Decision-Making

Since the m-polar T-preorder R, given in the previous section, is not always complete
(i.e., the equality max(πs ◦ R(x, y), πs ◦ R(y, x)) = 1 is not necessarily true for all x, y ∈ X
and any 1 ≤ s ≤ m), the results from the previous section do not necessarily define a
complete or linear ranking over the alternatives. One way to provide a complete ranking,
associated with the m-polar T-preorder relation R, is to use the score functions. When
we deal with multi-polar data, two procedures may be offered to obtain a ranking of
alternatives: (I) aggregating first (using Theorems 6 and 8) and then ranking with the help
of score function, and (II) aggregating and ranking at once.

If the first way is used, we start with deriving the aggregated fuzzy relation RF of the
profile (π1 ◦ R, · · · , πm ◦ R) based on an aggregation function F. After that, by using the
crisp preorderings /RF or �b

RF
, the score functions S(., /RF ) : X → Rwhere

S(y, /RF ) =| {xi : xi/RF y} | − | {xi : y/RF xi} | (13)

or S(.,�b
RF
) : X → R such that

S(y,�b
RF
) =| {xi : xi�b

RF
y} | − | {xi : y�b

RF
xi} | (14)

for any y ∈ X can be applied to obtain the rank of given objects (as proposed in Theorem 12).
The idea behind these rules is based on the entering and leaving flows to each alternative
in the crisp directed graphs (X, /RF ) or (X,�b

RF
), respectively.

Theorem 12. Consider the crisp relations /RF and �b
RF

on X.

1. The score function S(., /RF ) provides a complete preference relation on X as

y � (S)x ⇐⇒ S(y, /RF ) ≤ S(x, /RF ) (15)

2. The score function S(.,�b
RF
) provides a complete preference relation on X defined by

y � (S)x ⇐⇒ S(y,�b
RF
) ≤ S(x,�b

RF
) (16)

In Algorithm 1, we apply the proposed procedure for solving the problem of ranking
in group decision-making with m-polar fuzzy inputs.

Remark 2. In order to rank alternatives based on the m-polar fuzzy T-orderings, Algorithm 1
starts with computing the value of fuzzy relation πs ◦ R(xi, xj) for 1 ≤ s ≤ m and any xi, xj ∈ X
which shows the strength of the relationship between xi and xj at direction s. By repeating this
loop for s = 1, 2, 3, · · · , m, a list of fuzzy relations π1 ◦ R, π2 ◦ R, · · · , πm ◦ R is provided. This
helps us to construct the m-polar fuzzy relation R = (π1 ◦ R, π2 ◦ R, · · · , πm ◦ R). Then, at
Step 2, the aggregated matrix RF is derived by applying the given aggregation function F on the
profile R = (π1 ◦ R, π2 ◦ R, · · · , πm ◦ R). Each entry RFij of matrix RF shows the consensus
fuzzy relation between xi and xj. This information is then converted to the preference matrix
P(RF) = [pij]n×n in Step 3 to provide comparison results over the set of candidates. Finally, in
Steps 4 and 5, the score of each alternative is calculated to rank candidates from the best to the worst
and find the optimum choice.

If the second way is applied, the score function S(., R) : X → R defined by
S(y, R) = F

[
F(π1 ◦ R(x1, y), · · · , π1 ◦ R(xn, y), 1− π1 ◦ R(y, x1), · · · , 1− π1 ◦ R(y, xn)), · · · ,

F(πm ◦ R(x1, y), · · · , πm ◦ R(xn, y), 1− πm ◦ R(y, x1), · · · , 1− πm ◦ R(y, xn))
]

: xi 6= y
(17)
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is computed based on the aggregating of m-polar T-preorder relation R and its negation by
function F. Analogues to Theorem 12, here we have the following Theorem 13.

Algorithm 1: Ranking Alternatives by m-Polar Fuzzy T-Orderings

Input : m-polar fuzzy sets µ1, · · · , µK over the set X such that |X| = n.
Left-continuous t-norm T.
Aggregation functions A� T (for constructing T-preordering) and

F � T (for computing aggregated relation).
Threshold value b ∈ [0, 1] (if T is the minimum operator).

Output :Optimum solution.
begin

Step 1. for s = 1, 2, . . . , m do
for i = 1, 2, . . . , n do

for j = 1, 2, . . . , n do
Compute the fuzzy relation πs ◦ R(xi, xj) by Equation (8).

end
end

end
Step 2. for i = 1, 2, . . . , n do

for j = 1, 2, . . . , n do
Using Theorem 6 to derive the aggregated relation

RF(xi, xj) = F(π1 ◦ R(xi, xj), · · · , πm ◦ R(xi, xj)).
end

end
Step 3. Utilize Equation (10) (or Equation (12)) for relation RF to construct an

n× n preference matrix P(RF) = [pij]n×n related to the crisp relation /RF

(relation �b
RF

) such that pij = 1 if RF(xi, xj) = 1 (if RF(xi, xj) ≥ b), otherwise
zero.

Step 4. for i = 1, 2, . . . , n do
Calculate the score value S(xi, /RF ) (or the score value S(xi,�b

RF
)) based on

the resultant matrix from Step 3 and Equation (13) (or Equation (14)).
end
Step 5. Rank the alternatives xi based on � (S) and then select the best one(s)
(see Theorem 12).

end

Theorem 13. Consider the m-polar T-preordering relation R on X. The score function S(., R)
provides a complete preference relation on X as

y � (S)x ⇐⇒ S(y, R) ≤ S(x, R) (18)

Algorithm 2 shows how the second method can solve the ranking problem in m-polar
fuzzy group decision-making.
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Algorithm 2: Ranking Alternatives by m-Polar Fuzzy T-Orderings

Input : m-polar fuzzy sets µ1, · · · , µK over the set X such that |X| = n.
Left-continuous t-norm T.
Aggregation functions A� T and F.

Output :Optimum solution.
begin

Step 1. for s = 1, 2, . . . , m do
for i = 1, 2, . . . , n do

for j = 1, 2, . . . , n do
Compute the fuzzy relation πs ◦ R(xi, xj) by Equation (8).

end
end

end
Step 2. for i = 1, 2, . . . , n do

for s = 1, 2, . . . , m do
Derive F(πs ◦ R(x1, xi), · · · , πs ◦ R(xi−1, xi), πs ◦ R(xi+1, xi), · · · , πs ◦

R(xn, xi), 1− πs ◦ R(xi, x1), · · · , 1− πs ◦ R(xi, xi−1), 1− πs ◦
R(xi, xi+1), · · · , 1− πs ◦ R(xi, xn)).

end
end
Step 3. for i = 1, 2, . . . , n do

Utilize Equation (17) to compute the score value S(xi, R).
end
Step 4. Rank the alternatives xi based on � (S) and then select the best one(s)
(see Theorem 13).

end

Illustrative Example

In any trip, the problem of accommodation is one of the most important issues.
The best option is always selected after comparing different residences based on some
parameters, such as facilities and location of hotels and the guest’s budget. In this section,
we discuss the problem of hotel booking, which is about selecting the best hotel to stay
regarding a list of criteria, to provide a real-life example which shows the application of
our method in decision-making problems. We apply some data given in [28], obtained
from the “www.agoda.com” website, as our input (see Table 1).

Example 3. Let us suppose that a travel agency wants to book a four-star hotel in Kuala Lumpur,
Malaysia, for a customer. Let H = {h1, · · · , h10} be a short list of ten four-star hotels in Kuala
Lumpur which are selected for consideration. To choose the optimum option, these hotels are
compared with each other based on the following two parameters P = {p1 = Services and Facilities,
p2 = Food} that are the most important criteria for the customer. The comments of five guests of
these hotels, which are shown by µ1, · · · , µ5, who filled up the online questioners from five different
categories “Families with Young Children”, “Families with Elder Children”, “Couples”, “Solo
Travelers”, and “Group of Friends” are taken into consideration as the initial evaluation of these
hotels by using 2-polar fuzzy sets (see Table 1).

For t-norm T := TL and by using Equation (8) (see Theorem 3), the 2-polar TL-preordering
R1 w.r.t Min operator and the 2-polar TL-equivalence E1 w.r.t Min operator are obtained as shown
in Tables 2 and 3.

If we change the t-norm T to TM, consequently, A := F := Min, the 2-polar TM-preordering
R2 w.r.t Min operator and the 2-polar TM-equivalence E2 w.r.t Min operator are obtained as shown
in Tables 4 and 5.

By using the proposed method in Algorithm 1 for aggregation functions F := AM, the score
values S(xi, /RAM ) for 1 ≤ i ≤ 10 are computed as can be seen in Table 6.

www.agoda.com
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Thus, the new score values S(xi, /RMin) will be obtained. Moreover, in this case, by using the
cut-relation for b = 0.5 and b = 0.7, the scores S(xi,�0.5

RMin
) and S(xi,�0.7

RMin
) are computed (see

Table 6).
Now, let the given procedure in Algorithm 2 be applied to find the score values S(xi, R1) and

S(xi, R2), for 1 ≤ i ≤ 10, where F := AM and T := TL and TM. Then, the new rankings of
objects are obtained as can be seen in Table 7. However, in all methods, h10 is the optimum selection.

Table 1. Tabular representation of hotels evaluation by 2-polar fuzzy data.

H µ1 µ2 µ3 µ4 µ5

h1 (0.7,0.58) (0.72,0.59) (0.74,0.64) (0.6,0.68) (0.84,0.6)
h2 (0.55,0.71) (0.6,0.69) (0.7,0.66) (0.4,0.64) (0.74,0.64)
h3 (0.6,0.6) (0.73,0.57) (0.73,0.57) (0.8,0.62) (0.8,0.62)
h4 (0.88,0.55) (0.87,0.54) (0.73,0.61) (0.74,0.69) (0.77,0.59)
h5 (0.64,0.69) (0.8,0.66) (0.69,0.65) (0.64,0.61) (0.76,0.61)
h6 (0.66,0.67) (0.68,0.69) (0.65,0.69) (0.76,0.66) (0.72,0.66)
h7 (0.73,0.66) (0.8,0.66) (0.8,0.65) (0.53,0.66) (0.76,0.64)
h8 (0.73,0.68) (0.75,0.64) (0.8,0.67) (0.7,0.64) (0.76,0.67)
h9 (0.8,0.64) (0.85,0.49) (0.75,0.57) (0.6,0.71) (0.69,0.44)
h10 (0.86,0.83) (0.86,0.85) (0.8,0.77) (1,0.75) (0.82,0.77)

Table 2. Tabular representation of 2-polar TL-preorder R1 w.r.t Min.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 (1,1) (0.8,0.96) (0.9,0.93) (0.93,0.95) (0.92,0.93) (0.88,0.98) (0.92,0.98) (0.92,0.96) (0.85,0.84) (0.98,1)

h2 (1,0.87) (1,1) (1,0.88) (1,0.84) (0.99,0.97) (0.95,0.96) (1,0.95) (1,0.95) (0.95,0.8) (1,1)

h3 (0.8,0.98) (0.6,1) (1,1) (0.94,0.95) (0.84,0.99) (0.92,1) (0.73,1) (0.9,1) (0.8,0.82) (1,1)

h4 (0.82,0.99) (0.66,0.95) (0.72,0.93) (1,1) (0.76,0.92) (0.78,0.97) (0.79,0.97) (0.85,0.95) (0.86,0.85) (0.98,1)

h5 (0.92,0.89) (0.76,1) (0.93,0.91) (1,0.86) (1,1) (0.88,0.98) (0.89,0.97) (0.95,0.98) (0.93,0.83) (1,1)

h6 (0.84,0.9) (0.64,0.97) (0.94,0.88) (0.98,0.85) (0.88,0.95) (1,1) (0.77,0.96) (0.94,0.95) (0.84,0.78) (1,1)

h7 (0.92,0.92) (0.8,0.98) (0.87,0.91) (0.93,0.88) (0.89,0.95) (0.85,1) (1,1) (0.95,0.98) (0.93,0.8) (1,1)

h8 (0.9,0.9) (0.7,0.97) (0.87,0.9) (0.93,0.87) (0.89,0.94) (0.85,0.99) (0.83,0.97) (1,1) (0.9,0.77) (1,1)

h9 (0.87,0.94) (0.75,0.93) (0.8,0.91) (0.98,0.91) (0.84,0.9) (0.83,0.95) (0.93,0.95) (0.9,0.93) (1,1) (1,1)

h10 (0.6,0.74) (0.4,0.84) (0.74,0.72) (0.74,0.69) (0.64,0.81) (0.76,0.84) (0.53,0.81) (0.7,0.79) (0.6,0.64) (1,1)

Table 3. Tabular representation of 2-polar TL-equivalence E1 w.r.t Min.

H h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 (1,1) (0.8,0.87) (0.8,0.93) (0.82,0.95) (0.92,0.89) (0.84,0.9) (0.92,0.92) (0.9,0.9) (0.85,0.84) (0.6,0.74)

h2 (0.8,0.87) (1,1) (0.6,0.88) (0.66,0.84) (0.76,0.97) (0.64,0.96) (0.8,0.95) (0.7,0.95) (0.75,0.8) (0.4,0.84)

h3 (0.8,0.93) (0.6,0.88) (1,1) (0.72,0.93) (0.84,0.91) (0.92,0.88) (0.73,0.91) (0.87,0.9) (0.8,0.82) (0.74,0.72)

h4 (0.82,0.95) (0.66,0.84) (0.72,0.93) (1,1) (0.76,0.86) (0.78,0.85) (0.79,0.88) (0.85,0.87) (0.86,0.85) (0.74,0.69)

h5 (0.92,0.89) (0.76,0.97) (0.84,0.91) (0.76,0.86) (1,1) (0.88,0.95) (0.89,0.95) (0.89,0.94) (0.84,0.83) (0.64,0.81)

h6 (0.84,0.9) (0.64,0.96) (0.92,0.88) (0.78,0.85) (0.88,0.95) (1,1) (0.77,0.96) (0.85,0.95) (0.83,0.78) (0.76,0.84)

h7 (0.92,0.92) (0.8,0.95) (0.73,0.91) (0.79,0.88) (0.89,0.95) (0.77,0.96) (1,1) (0.83,0.97) (0.93,0.8) (0.53,0.81)

h8 (0.9,0.9) (0.7,0.95) (0.87,0.9) (0.85,0.87) (0.89,0.94) (0.85,0.95) (0.83,0.97) (1,1) (0.9,0.77) (0.7,0.79)

h9 (0.85,0.84) (0.75,0.8) (0.8,0.82) (0.86,0.85) (0.84,0.83) (0.83,0.78) (0.93,0.8) (0.9,0.77) (1,1) (0.6,0.64)

h10 (0.6,0.74) (0.4,0.84) (0.74,0.72) (0.74,0.69) (0.64,0.81) (0.76,0.84) (0.53,0.81) (0.7,0.79) (0.6,0.64) (1,1)
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Table 4. Tabular representation of 2-polar TM-preorder R2 w.r.t. Min.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 (1,1) (0.4,0.64) (0.6,0.57) (0.73,0.54) (0.64,0.61) (0.65,0.66) (0.53,0.66) (0.76,0.64) (0.69,0.44) (0.82,1)

h2 (1,0.58) (1,1) (1,0.57) (1,0.54) (0.69,0.61) (0.65,0.67) (1,0.65) (1,0.64) (0.69,0.44) (1,1)

h3 (0.6,0.58) (0.4,1) (1,1) (0.74,0.54) (0.64,0.61) (0.65,1) (0.53,1) (0.7,1) (0.6,0.44) (1,1)

h4 (0.6,0.68) (0.4,0.64) (0.6,0.57) (1,1) (0.64,0.61) (0.65,0.66) (0.53,0.66) (0.7,0.64) (0.6,0.44) (0.86,1)

h5 (0.6,0.58) (0.4,1) (0.6,0.57) (1,0.54) (1,1) (0.65,0.67) (0.53,0.66) (0.75,0.64) (0.60.44) (1,1)

h6 (0.6,0.58) (0.4,0.64) (0.6,0.57) (0.74,0.54) (0.64,0.61) (1,1) (0.53,0.64) (0.7,0.64) (0.6,0.44) (1,1)

h7 (0.7,0.58) (0.4,0.64) (0.6,0.57) (0.73,0.54) (0.64,0.61) (0.65,1) (1,1) (0.75,0.64) (0.69,0.44) (1,1)

h8 (0.6,0.58) (0.4,0.64) (0.6,0.57) (0.73,0.54) (0.64,0.61) (0.65,0.66) (0.53,0.64) (1,1) (0.6,0.44) (1,1)

h9 (0.7,0.58) (0.4,0.64) (0.6,0.6) (0.73,0.55) (0.64,0.61) (0.65,0.66) (0.53,0.66) (0.73,0.64) (1,1) (1,1)

h10 (0.6,0.58) (0.4,0.64) (0.6,0.57) (0.73,0.54) (0.64,0.61) (0.65,0.66) (0.53,0.64) (0.7,0.64) (0.6,0.44) (1,1)

Table 5. Tabular representation of 2-polar TM-preorder E2 w.r.t Min.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 (1,1) (0.4,0.58) (0.6,0.57) (0.6,0.54) (0.6,0.58) (0.6,0.58) (0.53,0.58) (0.6,0.58) (0.69,0.44) (0.6,0.58)

h2 (0.4,0.58) (1,1) (0.4,0.57) (0.4,0.54) (0.4,0.61) (0.4,0.64) (0.4,0.64) (0.4,0.64) (0.4,0.44) (0.4,0.64)

h3 (0.6,0.57) (0.4,0.57) (1,1) (0.6,0.54) (0.6,0.57) (0.6,0.57) (0.53,0.57) (0.6,0.57) (0.6,0.44) (0.6,0.57)

h4 (0.6,0.54) (0.4,0.54) (0.6,0.54) (1,1) (0.64,0.54) (0.65,0.54) (0.53,0.54) (0.7,0.54) (0.6,0.44) (0.73,0.54)

h5 (0.6,0.58) (0.4,0.61) (0.6,0.57) (0.64,0.54) (1,1) (0.64,0.61) (0.53,0.61) (0.64,0.61) (0.6,0.44) (0.64,0.61)

h6 (0.6,0.58) (0.4,0.64) (0.6,0.57) (0.65,0.54) (0.64,0.61) (1,1) (0.53,0.64) (0.65,0.64) (0.6,0.44) (0.65,0.66)

h7 (0.53,0.58) (0.4,0.64) (0.53,0.57) (0.53,0.54) (0.53,0.61) (0.53,0.64) (1,1) (0.53,0.64) (0.53,0.44) (0.53,0.64)

h8 (0.6,0.58) (0.4,0.64) (0.6,0.57) (0.7,0.54) (0.64,0.61) (0.65,0.64) (0.53,0.64) (1,1) (0.6,0.44) (0.7,0.64)

h9 (0.69,0.44) (0.4,0.44) (0.6,0.44) (0.6,0.44) (0.6,0.44) (0.6,0.44) (0.53,0.44) (0.6,0.44) (1,1) (0.6,0.44)

h10 (0.6,0.58) (0.4,0.64) (0.6,0.57) (0.73,0.54) (0.64,0.61) (0.65,0.66) (0.53,0.64) (0.7,0.64) (0.6,0.44) (1,1)

Table 6. Ranking of Hotels by Algorithm 1.

H
F := AM F := Min

T := TL, A := Min T := TM , A := Min
S(xi,/RAM ) S(xi,/RMin) S(xi,�0.5

RMin
) S(xi,�0.7

RMin
)

h1 0 0 2 −1
h2 −1 −1 −8 −1
h3 −1 −1 2 −2
h4 0 0 2 −1
h5 −1 −1 2 −1
h6 −1 −1 2 −1
h7 −1 −1 2 −1
h8 −1 −1 2 0
h9 −1 −1 −8 −1
h10 7 7 2 9

Preference Order
h2, h3, h5, h6, h7, h8, h2, h3, h5, h6, h7, h8, h2, h9 �

(S)h1, h3, h4, h5,
h3 �

(S)h1, h2, h4, h5, h6,
h9 � (S)h1, h4 �

(S)h10

h9 � (S)h1, h4 �
(S)h10

h6, h7, h8, h10
h7, h9 � (S)h8 �

(S)h10
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Table 7. Ranking of Hotels by Algorithm 2.

H T := TL, A := Min F := AM T := TM , A := Min
S(xi, R1) S(xi, R2)

h1 0.479 0.495
h2 0.44 0.399
h3 0.487 0.443
h4 0.512 0.514
h5 0.483 0.474
h6 0.508 0.528
h7 0.485 0.480
h8 0.511 0.541
h9 0.462 0.436
h10 0.634 0.692

Preference Order

h2 � (S)h9 � (S)h1 �
(S)h5 � (S)h7 � (S)

h2 � (S)h9 � (S)h3 �
(S)h5 � (S)h7 � (S)

h3 � (S)h6 � (S)h8 �
(S)h4 � (S)h10

h1 � (S)h4 � (S)h6 �
(S)h8 � (S)h10

6. Conclusions

The concept of T-orderings that is defined based on the infimum of implications
depends only on the choice of t-norm T. By restricting the study to the case dealing with
finite records of fuzzy information, the infimum is represented as minimum operator,
belonging to the family of aggregation functions. In this case, a very natural extension is to
generalize T-orderings based on any aggregation functions, such as arithmetic mean or
geometric mean.

This paper has considered the generalized T-preorderings and T-equivalences for
m-polar fuzzy sets based on m-polar implication operators and aggregation functions. The
interesting observation is the domination of an aggregation operator over the t-norm T.
In contrast to literature, which usually talked about fuzzification of crisp orderings, this
paper has discussed how crisp orderings can be obtained by direct defuzzification (or
cut-relations) of m-polar fuzzy T-orderings. As a result, two alternative ways of ranking
the m-polar fuzzy data are formulated based on new score value functions, computed
by generalized m-polar T-orderings, and illustrated by a numerical example. Some other
problems that may be handled in the future are a deeper analysis of the proposed m-polar
T-orderings and the search for necessary and sufficient conditions for the characterization
of such relations based on pre-aggregation functions.
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