## **Supplementary Materials**

## A Chirality Chain in Phenylglycine, Phenylpropionic Acid, and Ibuprofen

Henri Brunner,\*1 Takashi Tsuno\*2, and Gábor Balázs1

<sup>1</sup>Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg, Germany

<sup>2</sup>Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan

| Contents                                                                                                                                                                                                                                                                                                                                                                               | _          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>Table S1.</b> $\alpha$ -Phenylglycine ( <i>S</i> )-NH <sub>3</sub> CH(Ph)COO and its derivatives ( <i>S</i> )-NH <sub>3</sub> CH(Ph)COO(H/R/M) protonated, esterified, and coordinated at the carboxylic group (structures with <i>R</i> factors >10% excluded).                                                                                                                    | Page<br>S3 |
| <b>DFT Calculation Details</b> and <b>Table S2.</b> ( <i>S</i> )- $\alpha$ -Phenylglycine: Relative energy as a function of the rotation angle $\psi = O_{cis}$ -C'-C $_{\alpha}$ -N and the pyramidalization angle $\theta = O_{trans}$ -C'-C $_{\alpha}$ -O <sub>cis</sub> , calculated at the B3LYP/def2-TZVP level, including dispersion (GD3BJ) and solvent effects (PCM; water). | S4         |
| <b>Table S3.</b> $\alpha$ -Phenylpropionic acid ( <i>S</i> )-CH <sub>3</sub> CH(Ph)COOH and its derivatives ( <i>S</i> )-CH <sub>3</sub> CH(Ph)COO(R/M) esterified and coordinated at the carboxylic group (structures with <i>R</i> factors >10% excluded).                                                                                                                           | S5         |
| <b>Table S4.</b> Ibuprofen ( <i>S</i> )-CH <sub>3</sub> CH(C <sub>6</sub> H <sub>4</sub> Bu <sup><i>i</i></sup> -4)COOH and its derivatives ( <i>S</i> )- $\alpha$ - CH <sub>3</sub> CH(C <sub>6</sub> H <sub>4</sub> Bu<br>4)COO(R/M) esterified and coordinated at the carboxylic group<br>(structures with <i>R</i> factors >10% excluded).                                         | s7         |
| X-ray structure analysis                                                                                                                                                                                                                                                                                                                                                               | S9         |
| <b>Table S5.</b> Crystallographic data for $(R)/(S)$ -, $(R)$ -, and $(S)$ - $\alpha$ -phenylglycine, $(R)/(S)$ -, $(R)$ -, and $(S)$ -methyl $\alpha$ -phenylglycinate hydrochloride, and $(R)$ -ethyl $\alpha$ -phenylglycinate hydrochloride                                                                                                                                        | S10        |
| <b>Figure S1</b> . ORTEP drawing of conglomerate $(R)/(S)$ - $\alpha$ -phenylglycine: CCDC1981269.                                                                                                                                                                                                                                                                                     | S12        |
| Figure S2. ORTEP drawing of $(R)$ - $\alpha$ -phenylglycine: CCDC1981270.                                                                                                                                                                                                                                                                                                              | S12        |
| Figure S3. ORTEP drawing of $(S)$ - $\alpha$ -phenylglycine. CCDC1981271.                                                                                                                                                                                                                                                                                                              | S13        |
| <b>Figure S4.</b> ORTEP drawing of racemate $(R)/(S)$ -methyl $\alpha$ -phenylglycinate hydrochloride: CCDC1981272.                                                                                                                                                                                                                                                                    | S13        |
| <b>Figure S5.</b> ORTEP drawing of ( <i>R</i> )-methyl $\alpha$ -phenylglycinate hydrochloride: CCDC1981273.                                                                                                                                                                                                                                                                           | S14        |
| <b>Figure S6.</b> ORTEP drawing of (S)-methyl $\alpha$ -phenylglycinate hydrochloride: CCDC1981274.                                                                                                                                                                                                                                                                                    | S14        |
| <b>Figure S7.</b> ORTEP drawing of ( <i>R</i> )-ethyl $\alpha$ -phenylglycinate hydrochloride: CCDC2049622.                                                                                                                                                                                                                                                                            | S15        |

| En- | CSD symbol <sup>[a]</sup>     | gine group (                     | Chirality cl        | nain               |                         | Comments                                                            |
|-----|-------------------------------|----------------------------------|---------------------|--------------------|-------------------------|---------------------------------------------------------------------|
| trv |                               | Config                           | Ocis-C'-Ca-N        | Otrans-C'-Ca-Oaia  | Space                   | Acid. ester or metal fragment                                       |
| u y |                               | at C <sub>a</sub> <sup>[b]</sup> | rotation            | nvramidal          | groun                   | co-crystallization partners                                         |
|     |                               | ut Ca                            | angle $w/^{0}$      | angle $A/^{\circ}$ | Sroup                   | eo erystamzation partiters                                          |
|     |                               |                                  | ungie <i>\phi</i> / | ungie              |                         |                                                                     |
| 1   | FAPMOZ(1)                     | ( <i>S</i> )                     | -34.17              | -177.16            | <i>P</i> 2 <sub>1</sub> | 18-crown-6-ether(CO <sub>2</sub> H) <sub>4</sub> , H <sub>2</sub> O |
| 2   | BANZEX                        | ( <i>S</i> )                     | -32.13              | -176.53            | $P2_1$                  | Me ester, 1-[2-carboxy-6-CF <sub>3</sub> -                          |
|     |                               |                                  |                     |                    |                         | phenyl]-1 <i>H</i> -pyrrole-2-CO <sub>2</sub> H                     |
| 3   | RENKUQ(1)                     | <i>(S)</i>                       | -30.72              | -179.55            | $P2_1$                  | $H_2SO_4$                                                           |
| 4   | CCDC1981273 <sup>[c]</sup>    | ( <i>S</i> )                     | -30.77              | -177.79            | $P2_1$                  | Me ester, HCl                                                       |
| 5   | CCDC1981269(1) <sup>[d]</sup> | ( <i>S</i> )                     | -27.05              | -178.70            | $P2_1$                  | -                                                                   |
| 6   | IROVEQ(1)                     | ( <i>S</i> )                     | -25.58              | -177.58            | $P2_1$                  | HNO <sub>3</sub>                                                    |
| 7   | RENKUQ(2)                     | ( <i>S</i> )                     | -24.88              | -179.55            | $P2_1$                  | $H_2SO_4$                                                           |
| 8   | IROVEQ(2)                     | ( <i>S</i> )                     | -24.01              | -180.35            | $P2_1$                  | HNO <sub>3</sub>                                                    |
| 9   | HAZGIZ                        | ( <i>S</i> )                     | -23.25              | -177.05            | Pbca                    | HCl                                                                 |
| 10  | FAPMIT                        | ( <i>S</i> )                     | -22.19              | -178.61            | $P3_{1}$                | 18-crown-6-ether(CO <sub>2</sub> H) <sub>4</sub> , H <sub>2</sub> O |
| 11  | QEPXEP(1)                     | ( <i>S</i> )                     | -21.72              | -178.74            | $P2_1$                  | Bn ester, TsOH                                                      |
| 12  | FAPMOZ(2)                     | ( <i>S</i> )                     | -21.71              | -176.60            | $P2_1$                  | 18-crown-6-ether(CO <sub>2</sub> H) <sub>4</sub> , H <sub>2</sub> O |
| 13  | FIVGEW                        | ( <i>S</i> )                     | -21.56              | -178.14            | $P2_1/c$                | -                                                                   |
| 14  | PIDYEH                        | ( <i>S</i> )                     | -19.48              | -180.11            | $P2_1/n$                | <sup><i>i</i></sup> Pr ester, HCl                                   |
| 15  | GACVIP(1)                     | ( <i>S</i> )                     | -18.77              | -173.15            | $P2_1$                  | HClO <sub>4</sub> , AcOH, crown ether                               |
| 16  | XALDAP <sup>[e]</sup>         | ( <i>S</i> )                     | -18.67              | -178.85            | $P2_{1}2_{1}2_{1}$      | HCl                                                                 |
| 17  | CCDC1981269(2) <sup>[d]</sup> | ( <i>S</i> )                     | -17.04              | -178.12            | $P2_1$                  | -                                                                   |
| 18  | CABVUX                        | ( <i>S</i> )                     | -16.08              | -178.98            | $P2_{1}2_{1}2_{1}$      | HClO <sub>4</sub>                                                   |
| 19  | CCDC2049622(1)                | ( <i>S</i> )                     | -16.07              | -179.19            | $P2_1$                  | Et ester, HCl                                                       |
| 20  | DOXWAO                        | ( <i>S</i> )                     | -16.02              | -181.59            | $P2_1$                  | Me ester, HPF <sub>6</sub> , benzo-18-                              |
|     |                               |                                  |                     |                    |                         | crown-6-ether                                                       |
| 21  | WIHJII                        | ( <i>S</i> )                     | -15.58              | -178.94            | $P2_{1}2_{1}2_{1}$      | HBr                                                                 |
| 22  | BALNEK <sup>[f]</sup>         | (S)                              | -13.44              | -177.66            | $P2_1/c$                | MsOH                                                                |
| 23  | XALCOC                        | (S)                              | -12.32              | -178.81            | $P2_{1}2_{1}2_{1}$      | D-campher-SO <sub>3</sub> H                                         |
| 24  | TEHYUA                        | (S)                              | -12.14              | -178.17            | $P2_{1}2_{1}2_{1}$      | $C_4H_2O_4$ , $H_2O$                                                |
| 25  | CCDC1981272 <sup>[g]</sup>    | (S)                              | -11.65              | -179.42            | $P2_1/c$                | Me ester, HCl                                                       |
| 26  | FITPUT(1)                     | (S)                              | -11.46              | -178.82            | $P2_{1}2_{1}2_{1}$      | Me ester, HClO <sub>4</sub> , H <sub>2</sub> O,                     |
|     |                               |                                  |                     |                    |                         | binaphthyl-18-crown-6-ether                                         |
| 27  | CCDC2049622(2)                | (S)                              | -9.45               | -179.44            | $P2_1$                  | Et ester, HCl                                                       |
| 28  | GACVIP(2)                     | (S)                              | -8.93               | -179.89            | $P2_1$                  | HClO <sub>4</sub> , AcOH, crown ether                               |
| 29  | QEPXEP(2)                     | (S)                              | -8.92               | -180.79            | $P2_{1}$                | Bn ester,TsOH                                                       |
| 30  | FITPUT(2)                     | (S)                              | -8.10               | -181.79            | $P2_{1}2_{1}2_{1}$      | Me ester, $HClO_4$ , $H_2O$ ,                                       |
|     |                               |                                  |                     |                    |                         | binaphthyl-18-crown-6-ether                                         |
| 31  | TXHBNP                        | (S)                              | -6.26               | -180.02            | $P2_{1}2_{1}2_{1}$      | HPF <sub>6</sub> , CHCl <sub>3</sub> , binaphthyl-18-               |
|     |                               |                                  |                     |                    |                         | crown-6-ether                                                       |
| 32  | XALCOC01                      | (S)                              | -6.04               | -179.72            | $P2_{1}2_{1}2_{1}$      | D-campher-SO <sub>3</sub> H                                         |
| 33  | XALCUI                        | (S)                              | -3.95               | -177.26            | <i>C</i> 2              | D-campher-SO <sub>3</sub> H                                         |
|     |                               |                                  | 17.00               | 150 50             |                         |                                                                     |
|     | Average                       |                                  | -17.88              | -1/8./0            |                         |                                                                     |

**Table S1.**  $\alpha$ -Phenylglycine (*S*)-NH<sub>3</sub>CH(Ph)COO and its derivatives (*S*)-NH<sub>3</sub>CH(Ph)COO(H/R/M) protonated, esterified, and coordinated at the carboxylic group (structures with *R* factors >10% excluded).

<sup>[a]</sup>Parenthesis () indicate independent molecules in the unit cell. <sup>[b]</sup>Rotation and pyramidalization angles of (*R*)-compounds inverted. <sup>[c]</sup>Average of (*R*<sub>C</sub>)- and (*S*<sub>C</sub>)-methyl  $\alpha$ -phenylglycinate hydrochloride: CCDC1981273 and 1981274. <sup>[d]</sup>Average of conglomerate (*S*<sub>C</sub>)/(*R*<sub>C</sub>)-, (*S*<sub>C</sub>)-, and (*R*<sub>C</sub>)- $\alpha$ -phenylglycine: CCDC1981269, 1981270, and 1981271. <sup>[e]</sup>Average of XALDAP, NILXUB. <sup>[f]</sup>Average of BALNEK, UMUXAD. <sup>[g]</sup>Racemate of (*S*<sub>C</sub>)/(*R*<sub>C</sub>)-methyl  $\alpha$ -phenylglycinate hydrochloride: CCDC1981274.

**DFT Calculation details:** The DFT calculations were performed with the Gaussian 09 program, using the B3LYP functional together with the def2-TZVP basis set. Solvents effects were taken into account by the polarizable continuum model (CPM), using the dielectric constant of water. London dispersion energy effects were considered according to the model proposed by Grimme et al. together with the Becke and Johnson damping. For the relative energies the SCF energies, without corrections for the zero point vibration energies, were used. In the geometry optimizations only the N-C<sub> $\alpha$ </sub>-C'-O<sub>cis</sub> torsion angle was constrained to certain values. All other parameters were freely optimized. The references are cited in the paper.

| <b>Table S2.</b> (S)- $\alpha$ -Phenylglycine: Relative energy as a function of the rotation angle $\psi =$                                                                            | Ocis- |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| C'-C <sub><math>\alpha</math></sub> -N and the pyramidalization angle $\theta$ = O <sub>trans</sub> -C'-C <sub><math>\alpha</math></sub> -O <sub>cis</sub> , calculated at the B3LYP/d | def2- |
| TZVP level, including dispersion (GD3BJ) and solvent effects (PCM; water).                                                                                                             |       |

|                 | w/°         | relative energy | $	heta/\circ$ |  |
|-----------------|-------------|-----------------|---------------|--|
| File            | <i>,,</i> , | (kJ/mol)        |               |  |
| PhG-S-02_00.xyz | 0.0         | 0.13            | -180.81       |  |
| PhG-S-02_01.xyz | -2.5        | 0.04            | -180.48       |  |
| PhG-S-02_02.xyz | -5.0        | 0.00            | -180.10       |  |
| PhG-S-02_03.xyz | -7.5        | 0.00            | -179.66       |  |
| PhG-S-02_04.xyz | -10.0       | 0.04            | -179.24       |  |
| PhG-S-02_05.xyz | -12.5       | 0.13            | -178.86       |  |
| PhG-S-02_06.xyz | -15.0       | 0.33            | -178.53       |  |
| PhG-S-02_07.xyz | -17.5       | 0.67            | -178.24       |  |
| PhG-S-02_08.xyz | -20.0       | 1.09            | -177.96       |  |
| PhG-S-02_09.xyz | -22.5       | 1.59            | -177.68       |  |
| PhG-S-02_10.xyz | -25.0       | 2.26            | -177.41       |  |
| PhG-S-02_11.xyz | -27.5       | 3.05            | -177.21       |  |
| PhG-S-02_12.xyz | -30.0       | 3.97            | -177.04       |  |
| PhG-S-02_13.xyz | -32.5       | 5.02            | -176.92       |  |
| PhG-S-02_14.xyz | -35.0       | 6.14            | -176.83       |  |
| PhG-S-02_15.xyz | -37.5       | 7.40            | -176.79       |  |
| PhG-S-02_16.xyz | -40.0       | 8.78            | -176.83       |  |
| PhG-S-02_17.xyz | -42.5       | 10.20           | -176.91       |  |
| PhG-S-02_18.xyz | -45.0       | 11.75           | -177.01       |  |
| PhG-S-02_19.xyz | -47.5       | 13.38           | -177.17       |  |
| PhG-S-02_20.xyz | -50.0       | 15.05           | -177.37       |  |
| PhG-S-02_21.xyz | -52.5       | 16.72           | -177.60       |  |
| PhG-S-02_22.xyz | -55.0       | 18.39           | -177.83       |  |
| PhG-S-02_23.xyz | -57.5       | 20.06           | -178.11       |  |
| PhG-S-02_24.xyz | -60.0       | 21.65           | -178.45       |  |
| PhG-S-02_25.xyz | -62.5       | 23.20           | -178.81       |  |
| PhG-S-02_26.xyz | -65.0       | 24.66           | -179.21       |  |
| PhG-S-02_27.xyz | -67.5       | 26.04           | -179.64       |  |
| PhG-S-02_28.xyz | -70.0       | 27.30           | -179.96       |  |
| PhG-S-02_29.xyz | -72.5       | 28.42           | -180.45       |  |
| PhG-S-02_30.xyz | -75.0       | 29.43           | -180.83       |  |
| PhG-S-02_31.xyz | -77.5       | 30.26           | -181.24       |  |
| PhG-S-02_32.xyz | -80.0       | 30.93           | -181.71       |  |
| PhG-S-02_33.xyz | -82.5       | 31.43           | -182.17       |  |
| PhG-S-02_34.xyz | -85.0       | 31.81           | -182.58       |  |
| PhG-S-02_35.xyz | -87.5       | 31.98           | -182.95       |  |
| PhG-S-02_36.xyz | -90.0       | 31.98           | -183.36       |  |
| PhG free 01     | -6.2        | 0               | -179.85       |  |

|          |                                                                  | Group (structures with A factors >10% excluded). |                                                                  |                                           |                    | 0                                                                                                                  |
|----------|------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------|
|          | CSD symbol <sup>14</sup>                                         | ~ ~                                              | Chirality cha                                                    | in<br>a ar a a                            | ~                  | Comments                                                                                                           |
| En-      |                                                                  | Config.                                          | $O_{cis}$ -C'-C <sub><math>\alpha</math></sub> - C <sub>Me</sub> | $O_{trans}$ -C'- $C_{\alpha}$ - $O_{cis}$ | Space              | Acid, ester or metal fragment,                                                                                     |
| try      |                                                                  | at $C_{\alpha}^{[b]}$                            | rotation                                                         | pyramidal                                 | group              | co-crystallization partners                                                                                        |
|          |                                                                  |                                                  | angle $\psi$ / °                                                 | angle $\theta / \circ$                    |                    |                                                                                                                    |
|          |                                                                  |                                                  |                                                                  |                                           |                    |                                                                                                                    |
| 1        | VATZOI(1) <sup>[c]</sup>                                         | (S)                                              | -84.20                                                           | -180.41                                   | $P2_1$             | Th complex                                                                                                         |
| 2        | RFZVAW(1)                                                        | (S)                                              | -82.14                                                           | -180.63                                   | P1                 | Ester H <sub>2</sub> O                                                                                             |
| 2        | $VAT7UO(1)^{[d]}$                                                | (S)                                              | 81.35                                                            | 181.46                                    | $P_{2}$            | Eu complex                                                                                                         |
| 3        | $VATZUO(1)^{c}$                                                  | (3)                                              | -01.33                                                           | -101.40                                   | 1 2]<br>D2         | En complex                                                                                                         |
| 4        | $VAIZUU(2)^{[c]}$                                                | (3)                                              | -//.88                                                           | -1/9.85                                   | $PZ_1$             | Eu complex                                                                                                         |
| 2        | $VAIZOI(2)^{[v]}$                                                | (S)                                              | -//./6                                                           | -1/9./2                                   | $P2_1$             | 1 b complex                                                                                                        |
| 6        | GOGPIC <sup>[e]</sup>                                            | ( <i>S</i> )                                     | -57.93                                                           | -179.41                                   | $P2_{1}$           | GOGPEY(inv)                                                                                                        |
| 7        | REZVAW(2)                                                        | (S)                                              | -57.20                                                           | -179.37                                   | P1                 | Ester, H <sub>2</sub> O                                                                                            |
| 8        | VATZOI(3) <sup>[c]</sup>                                         | (S)                                              | -52.85                                                           | -175.44                                   | $P2_1$             | Tb complex                                                                                                         |
| 9        | VATZUO(3) <sup>[d]</sup>                                         | (S)                                              | -52.69                                                           | -174.09                                   | $P2_1$             | Eu complex                                                                                                         |
| 10       | ENOBIT                                                           | (S)                                              | -52.27                                                           | -180.06                                   | <i>C</i> 2         | BnNH <sub>2</sub>                                                                                                  |
| 11       | HEPJOB                                                           | ŝ                                                | -50.47                                                           | -186.43                                   | $P2_1$             | Ester                                                                                                              |
| 12       | NMACEP02 <sup>[f]</sup>                                          | (S)                                              | -50.12                                                           | -178.43                                   | $P_{2_1}^{2_1}$    | (R)-Ph(Me)CHNH <sub>2</sub>                                                                                        |
| 12       | VATZOI(4)[c]                                                     | (S)                                              | 15 75                                                            | 175.75                                    | $P_{2}^{1}$        | Th complex                                                                                                         |
| 13       | $VATZUO(4)^{[d]}$                                                | (3)                                              |                                                                  | -175.75                                   | 1 2]<br>D2         | For a second sec                                                                                                   |
| 14       | $VAIZUU(4)^{1}$                                                  | (3)                                              | -45.55                                                           | -1/0.00                                   | $P2_1$             | Eu complex                                                                                                         |
| 15       | IWIMAC                                                           | (S)                                              | -44.55                                                           | -179.42                                   | $P2_1/c$           | (R)-Ph(Me)CHNH <sub>2</sub>                                                                                        |
| 16       | YEHGUO(1)                                                        | ( <i>S</i> )                                     | -43.32                                                           | -181.16                                   | $P2_{1}2_{1}2$     | (R)-3-MeC <sub>6</sub> H <sub>3</sub> CH(Me)NH <sub>2</sub> Co-<br>(NH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> |
| 17       | RONDAA(1)                                                        | (S)                                              | -43.05                                                           | -179.02                                   | <i>C</i> 2         | isonicotinamide                                                                                                    |
| 18       | BELIAG(1)                                                        | (S)                                              | -42.25                                                           | -175 51                                   | $P_{1}^{2}$        | Ester                                                                                                              |
| 10       | $VATZUO(5)^{[d]}$                                                | (S)                                              | -40.08                                                           | -176.21                                   | $P2_1$             | Fu complex                                                                                                         |
| 20       | TUDVOI                                                           | $(\mathbf{S})$                                   | -40.08                                                           | -1/0.21                                   | $I \ge 1$          | Concernier                                                                                                         |
| 20       |                                                                  | (3)                                              | -39.43                                                           | -181.38                                   | $P3_2$             | Co complex                                                                                                         |
| 21       |                                                                  | (S)                                              | -39.32                                                           | -1/8.91                                   | C2                 | Ester                                                                                                              |
| 22       | $VATZUO(6)^{[d]}$                                                | (S)                                              | -39.18                                                           | -180.71                                   | $P2_{1}$           | Eu complex                                                                                                         |
| 23       | ROLFOO                                                           | (S)                                              | -39.06                                                           | -179.70                                   | C2/c               | isonicotinamide                                                                                                    |
| 24       | $VATZOI(5)^{[c]}$                                                | (S)                                              | -38.59                                                           | -181.97                                   | $P2_1$             | Tb complex                                                                                                         |
| 25       | NMACEP01                                                         | (S)                                              | -37.21                                                           | -177.05                                   | $P2_{1}2_{1}2_{1}$ | (R)-Ph(Me)CHNH <sub>2</sub>                                                                                        |
| 26       | YEHGUO(2)                                                        | (S)                                              | -36.44                                                           | -183.77                                   | $P2_{1}2_{1}2_{1}$ | (R)-3-MeC <sub>6</sub> H <sub>3</sub> CH(Me)NH <sub>2</sub> Co-                                                    |
| 27       |                                                                  | (6)                                              | 25.96                                                            | 177.00                                    | D <b>2</b>         | (INI12C112)2                                                                                                       |
| 27       | $VAIZUU(/)^{[a]}$                                                | (3)                                              | -35.86                                                           | -1//.99                                   | $P2_1$             | Eu complex                                                                                                         |
| 28       | VATZOI(6) <sup>[e]</sup>                                         | (S)                                              | -35.42                                                           | -178.35                                   | $P2_1$             | Tb complex                                                                                                         |
| 29       | VATZUO(8) <sup>[d]</sup>                                         | (S)                                              | -34.76                                                           | -178.32                                   | $P2_1$             | Eu complex                                                                                                         |
| 30       | YOWTEJ(1)                                                        | (S)                                              | -34.76                                                           | -174.87                                   | P1                 | Ester                                                                                                              |
| 31       | VATZOI(7) <sup>[c]</sup>                                         | (S)                                              | -34.58                                                           | -179.25                                   | $P2_1$             | Tb complex                                                                                                         |
| 32       | YAGPUS                                                           | (S)                                              | -33.37                                                           | -177.93                                   | $P2_{1}2_{1}2_{1}$ | Ester                                                                                                              |
| 33       | YOMRUO                                                           | (S)                                              | -32.81                                                           | -185.15                                   | $P2_1$             | (2S,3R)-[CH(OH)CH <sub>2</sub> NHOH] <sub>2</sub>                                                                  |
| 34       | PMACEP01                                                         | ŝ                                                | -32.43                                                           | -178 18                                   | $P2_1$             | (S)-Ph(Me)CHNH <sub>2</sub>                                                                                        |
| 35       | $VATZOI(8)^{[c]}$                                                | (S)                                              | -31.63                                                           | -177 77                                   | $P2_1$             | Th complex                                                                                                         |
| 36       | $\mathbf{RELIEK}(1)$                                             | (S)                                              | 31.05                                                            | 177.18                                    | $P_{1}^{2}$        | Ester CHCl                                                                                                         |
| 27       | AEDIEI                                                           | $(\mathbf{S})$                                   | -31.00                                                           | -177.10                                   | $I Z_1$            | (D) D(C)                                                                                                           |
| 3/       | $\begin{array}{c} \text{AFINEJ} \\ \text{DELIEV}(2) \end{array}$ | (3)                                              | -30.85                                                           | -1//./3                                   | $PZ_1$             | ( <i>R</i> )-PhOly                                                                                                 |
| 38       | BELJEK(2)                                                        | (5)                                              | -30.20                                                           | -1/6.03                                   | $P2_1$             | Ester, CHCl <sub>3</sub>                                                                                           |
| 39       | KAPVAY                                                           | (S)                                              | -29.13                                                           | -178.18                                   | $P2_1$             | (1S,2R)-1-Ammonioindan-2-ol                                                                                        |
| 40       | VATZUO(9) <sup>[a]</sup>                                         | (S)                                              | -28.34                                                           | -178.79                                   | $P2_1$             | Eu complex                                                                                                         |
| 41       | $VATZOI(9)^{[c]}$                                                | (S)                                              | -27.71                                                           | -179.19                                   | $P2_1$             | Tb complex                                                                                                         |
| 42       | TUMLIZ(1)                                                        | (S)                                              | -27.00                                                           | -178.59                                   | $P2_1$             | Ester                                                                                                              |
| 43       | RONDAA(2)                                                        | (S)                                              | -26.90                                                           | -179.03                                   | <i>C</i> 2         | isonicotinamide                                                                                                    |
| 44       | VATZOI(10) <sup>[c]</sup>                                        | (S)                                              | -26.53                                                           | -179.81                                   | $P2_1$             | Tb complex                                                                                                         |
| 45       | VATZUO(10) <sup>[d]</sup>                                        | ŝ                                                | -26.09                                                           | -180.91                                   | $P2_1$             | Eu complex                                                                                                         |
| 46       | $BFLI\Delta G(2)$                                                | (S)                                              | -24 70                                                           | -178 54                                   | $P_1^{-1}$         | Fster                                                                                                              |
| 10<br>17 | $\frac{DEL(AO(2))}{DEL(AO(2))}$                                  | $(\mathbf{S})$                                   | -27.70<br>24.20                                                  | 170.29                                    | $D^{1}$            | Ester                                                                                                              |
| 4/<br>10 | $\frac{DELJAU(3)}{TIIMI I7(3)}$                                  | (B)<br>(B)                                       | -24.27<br>22.44                                                  | -1/7.30                                   | Γ 21<br>D2         | Ester                                                                                                              |
| 48       | $I \cup IVILIZ(2)$                                               | (S)                                              | -22.44                                                           | -100.20                                   | $\Gamma Z_1$       |                                                                                                                    |
| 49       |                                                                  | $(\mathbf{S})$                                   | -22.11                                                           | -1/8.19                                   | $PZ_1$             | 1 b complex                                                                                                        |
| 50       | VATZUO(11) <sup>[a]</sup>                                        | (S)                                              | -21.59                                                           | -178.33                                   | $P2_{1}$           | Eu complex                                                                                                         |
| 51       | NOTKIQ(1)                                                        | (S)                                              | -21.51                                                           | -179.59                                   | $P2_1$             | Acridine                                                                                                           |
| 52       | OKIQEE                                                           | (S)                                              | -21.22                                                           | -178.99                                   | <i>C</i> 2         | (1S,2S)-2-Aminoindanol, H <sub>2</sub> O                                                                           |
| 53       | ROJYEU                                                           | (S)                                              | -19.28                                                           | -179.98                                   | C2/c               | Ester                                                                                                              |

**Table S3.**  $\alpha$ -Phenylpropionic acid (*S*)-H<sub>3</sub>CH(Ph)COOH and its derivatives (*S*)-CH<sub>3</sub>CH(Ph)COO(R/M) esterified and coordinated at the carboxylic group (structures with *R* factors >10% excluded).

| 54 | YOWTEJ(2)                 | (S)        | -19.17 | -173.78 | <i>P</i> 1         | Ester                                                       |
|----|---------------------------|------------|--------|---------|--------------------|-------------------------------------------------------------|
| 55 | $VATZUO(12)^{[d]}$        | (S)        | -17.28 | -177.13 | $P2_1$             | Eu complex                                                  |
| 56 | BELJEK(3)                 | (S)        | -15.95 | -179.78 | $P2_1$             | Ester, CHCl <sub>3</sub>                                    |
| 57 | VATZOI(12) <sup>[c]</sup> | (S)        | -15.19 | -178.23 | $P2_1$             | Tb complex                                                  |
| 58 | VATZUO(13) <sup>[d]</sup> | (S)        | -14.94 | -180.88 | $P2_1$             | Eu complex                                                  |
| 59 | BELJAG(4)                 | (S)        | -14.70 | -177.45 | $P2_1$             | Ester                                                       |
| 60 | VATZOI(13) <sup>[c]</sup> | (S)        | -14.54 | -181.46 | $P2_1$             | Tb complex                                                  |
| 61 | CURHEC                    | (S)        | -14.39 | -179.16 | $P2_1/c$           | Ester, HCl, H <sub>2</sub> O                                |
| 62 | NAKLUG                    | (S)        | -13.54 | -180.33 | $P2_1$             | Ester                                                       |
| 63 | GEXNEF(1)                 | (S)        | -13.41 | -179.16 | $P2_{1}2_{1}2_{1}$ | Si-Phthalocyanine                                           |
| 64 | BELJEK(4)                 | (S)        | -13.09 | -180.37 | $P2_1$             | Ester, CHCl <sub>3</sub>                                    |
| 65 | NOTKIQ(2)                 | (S)        | -12.94 | -180.04 | $P2_1$             | Acridine                                                    |
| 66 | REZVAW(3)                 | (S)        | -12.03 | -179.84 | <i>P</i> 1         | Ester, H <sub>2</sub> O                                     |
| 67 | VATZUO(14) <sup>[d]</sup> | (S)        | -8.38  | -182.10 | $P2_1$             | Eu complex                                                  |
| 68 | VATZOI(14) <sup>[c]</sup> | (S)        | -7.37  | -180.23 | $P2_1$             | Tb complex                                                  |
| 69 | BALRAH                    | (S)        | -7.11  | -177.05 | $P2_{1}2_{1}2_{1}$ | (1 <i>R</i> ,2 <i>S</i> )-PhCH(OH)CH(NH <sub>2</sub> )Ph    |
| 70 | REZVAW(4)                 | (S)        | -6.08  | -181.17 | <i>P</i> 1         | Ester, H <sub>2</sub> O                                     |
| 71 | BELJIO(1)                 | (S)        | -5.95  | -183.14 | $P2_1$             | Ir comples, CHCl <sub>3</sub> , BF <sub>4</sub>             |
| 72 | VATZUO(15) <sup>[d]</sup> | (S)        | -2.23  | -180.41 | $P2_1$             | Eu complex                                                  |
| 73 | VATZUO(16) <sup>[d]</sup> | (S)        | -1.34  | -181.77 | $P2_1$             | Eu complex                                                  |
| 74 | VATZOI(15) <sup>[c]</sup> | (S)        | 0.57   | -182.10 | $P2_1$             | Tb complex                                                  |
| 75 | BELJIO(2)                 | <i>(S)</i> | 1.13   | -179.86 | $P2_1$             | Ir comples, CHCl <sub>3</sub> , BF <sub>4</sub>             |
| 76 | VATZOI(16) <sup>[c]</sup> | (S)        | 1.51   | -183.34 | $P2_1$             | Tb complex                                                  |
| 77 | JOKRIM(1)                 | (S)        | 3.86   | -183.42 | <i>P</i> 1         | Cu complex                                                  |
| 78 | NEDVUO(1)                 | <i>(S)</i> | 4.34   | -181.64 | <i>C</i> 2         | Ni complex, Ph <sub>4</sub> B                               |
| 79 | YEHGOI(1)                 | <i>(S)</i> | 4.79   | -184.50 | <i>C</i> 2         | (R)-C <sub>6</sub> H <sub>4</sub> CH(Me)NH <sub>2</sub> Co- |
|    |                           |            |        |         |                    | $(NH_2CH_2)_2$                                              |
| 80 | YEHGOI(2)                 | (S)        | 7.35   | -182.42 | <i>C</i> 2         | (R)-C <sub>6</sub> H <sub>4</sub> CH(Me)NH <sub>2</sub> Co- |
|    |                           |            |        |         |                    | $(NH_2CH_2)_2$                                              |
| 81 | ALIBON( <mark>1</mark> )  | (S)        | 21.95  | -190.75 | $P2_1$             | Zn complex                                                  |
| 82 | NEDVUO(2)                 | <i>(S)</i> | 29.80  | -182.85 | <i>C</i> 2         | Ni complex BPh <sub>4</sub>                                 |
| 83 | ALIBON(2)                 | <i>(S)</i> | 41.41  | -186.52 | $P2_1$             | Zn complex                                                  |
| 84 | VATZOI(17) <sup>[c]</sup> | <i>(S)</i> | 74.94  | -175.97 | $P2_1$             | Tb complex                                                  |
| 85 | VATZUO(17) <sup>[d]</sup> | (S)        | 76.03  | -177.02 | $P2_1$             | Eu complex                                                  |
| 86 | GEXNEF(2)                 | (S)        | 77.17  | -178.37 | $P2_{1}2_{1}2_{1}$ | Si-Phthelocyanin                                            |
| 87 | JOKRIM(2)                 | (S)        | 81.60  | -181.80 | <i>P</i> 1         | Cu complex                                                  |
|    | Average                   |            | -22.07 | -179.72 |                    |                                                             |
|    |                           |            |        |         |                    |                                                             |

<sup>[a]</sup>Parenthesis () indicate independent molecules in the unit cell. <sup>[b]</sup>Rotation and pyramidalization angles of (*R*)-compounds inverted. <sup>[c]</sup>Average of VATZOI, VAVBAY. <sup>[d]</sup>Average of VATZUO, VAVBEC. <sup>[e]</sup>Average of GOGPEIC, GOGPEY. <sup>[f]</sup>Average of NMACEP02, NMACEP03.

|            | ited at the carboxyne                       | group (structures with A factors >10% excluded). |                 |                                           |                    |                                                     |  |
|------------|---------------------------------------------|--------------------------------------------------|-----------------|-------------------------------------------|--------------------|-----------------------------------------------------|--|
| En-        | CSD symbol <sup>[a]</sup>                   |                                                  | Chirality chain |                                           | Comments           |                                                     |  |
| try        |                                             | Config.                                          | Ocis-C'-Ca- CMe | $O_{trans}$ -C'- $C_{\alpha}$ - $O_{cis}$ | Space              | Acid, ester or metal fragment,                      |  |
|            |                                             | at $C_{\alpha}^{[b]}$                            | rotation        | pyramidal                                 | group              | co-crystallization partners                         |  |
|            |                                             |                                                  | angle w / °     | angle $\theta / \circ$                    | 0 1                | 2 1                                                 |  |
|            |                                             |                                                  |                 |                                           |                    |                                                     |  |
| 1          | I IRHIP(1)                                  | $(\mathbf{S})$                                   | -92 67          | -167.42                                   | $P_{1}$            | Ph H <sub>2</sub> O                                 |  |
| 2          | SOGLAC(1)                                   | $(\mathbf{S})$                                   | -92.07<br>87.15 | 182.62                                    | $\frac{1}{D2}$     | Niaotinomido                                        |  |
| 2          | SOULAC(1)                                   | (3)                                              | -07.13          | -102.02                                   | $r_{21}$           | Nicotinalide                                        |  |
| 3          | SOGLAC(2)                                   | $(\mathbf{S})$                                   | -80.40          | -181.20                                   | $PZ_1$             | Nicotinamide                                        |  |
| 4          | IJIJAN01(1)                                 | (S)                                              | -86.04          | -181.33                                   | $P2_1$             | 4,4-bpy                                             |  |
| 5          | IJIHOZ02(1)                                 | (S)                                              | -75.87          | -169.50                                   | P1                 | 4,4-bpy                                             |  |
| 6          | IJIHOZ02(2)                                 | (S)                                              | -70.18          | -169.92                                   | P1                 | 4,4-bpy                                             |  |
| 7          | IJIJAN01(2)                                 | (S)                                              | -65.32          | -179.12                                   | $P2_1$             | 4,4-bpy                                             |  |
| 8          | TEJLIF                                      | (S)                                              | -64.05          | -178.20                                   | Pccn               | $(4-PyCH_2)_2Ag, H_2O$                              |  |
| 9          | YIPKOA(1)                                   | (S)                                              | -63.88          | -178.53                                   | <i>C</i> 2         | 4-H <sub>2</sub> N-3-MePy, H <sub>2</sub> O         |  |
| 10         | CELFAC                                      | (S)                                              | -57.95          | -179.13                                   | $P4_3$             | PhSn                                                |  |
| 11         | KEHZON(1)                                   | $(\mathbf{S})$                                   | -57 93          | -178 16                                   | ΡĪ                 | (Ph <sub>2</sub> PR <sub>11</sub> CO) <sub>2</sub>  |  |
| 12         | VOIHIR                                      | $(\mathbf{S})$                                   | -52.33          | -179.16                                   | $P_{ca}$           | 2-Meimidayzol                                       |  |
| 12         | LOIDEE                                      | (S)                                              | -52.55          | 180.08                                    | $D_{no}2$          | (hppm), Du DE                                       |  |
| 13         |                                             | (3)                                              | -51.91          | -100.00                                   | $r \ln z_1$        | $(\text{Oppin})_2 \text{Ku}, \text{FT}_6$           |  |
| 14         |                                             | (3)                                              | -50.67          | -1/8.23                                   |                    | $Zn(OH_2)_2$                                        |  |
| 15         |                                             | (S)                                              | -45.20          | -1//.34                                   | $P_{2_12_12_1}$    | (S)-PhCH(Me)NH <sub>2</sub>                         |  |
| 16         | JEKNOC(1) <sup>[a]</sup>                    | (S)                                              | -43.00          | -178.49                                   | $P2_{1}$           | -                                                   |  |
| 17         | FUDHUK                                      | (S)                                              | -42.56          | -176.58                                   | C2/c               | 4,4'-Azopy-Zn                                       |  |
| 18         | XAMFOJ                                      | (S)                                              | -42.15          | -175.67                                   | <i>C</i> 2/c       | (4,4'-bpy) <sub>2</sub> Zn                          |  |
| 19         | YIPKEQ                                      | (S)                                              | -41.33          | -181.31                                   | $P2_1$             | 4-H <sub>2</sub> NPy                                |  |
| 20         | CEHZEX                                      | (S)                                              | -41.06          | -176.99                                   | $P\overline{1}$    | 4.4'-bpvZn(OH <sub>2</sub> ) <sub>2</sub>           |  |
| 21         | ZAXHEO                                      | (S)                                              | -40.90          | -176.70                                   | C2/c               | $(4-PvCNh_2)_2Zn$                                   |  |
| 22         | $\mathbf{YIPKIU}(1)$                        | $(\tilde{s})$                                    | -40 79          | -179 14                                   | $P2_1$             | $2 - H_2 N - 4 - M_e P v$                           |  |
| 22         | CELDIII                                     | (S)                                              | -39.40          | -177 59                                   | $P_{1}^{P_{1}}$    | Messn                                               |  |
| 23         | VAWID                                       | (S)                                              | -57.40          | 170.20                                    | $D_{1/2}$          | (numelidine)-Cu H-O                                 |  |
| 24         |                                             | (3)                                              | -37.34          | -179.20                                   | $r_{21/C}$         | (pyriolidile)2Cu, 112O                              |  |
| 25         |                                             | (3)                                              | -37.21          | -1/9.3/                                   | $PZ_{1}/\Pi$       | $BIICH_2INH_2$                                      |  |
| 26         | FUYCOS01                                    | (S)                                              | -3/.16          | -1/8.32                                   | PI                 | $Mg(OH_2)_6, H_2O$                                  |  |
| 27         | FUYCOS(1)                                   | (S)                                              | -37.06          | -180.11                                   | <i>P</i> 1         | $Mg(OH_2)_6, H_2O$                                  |  |
| 28         | IBPRAC <sup>[e]</sup>                       | (S)                                              | -36.99          | -177.06                                   | $P2_1/c$           | -                                                   |  |
| 29         | YIPKIU(2)                                   | (S)                                              | -36.54          | -179.11                                   | $P2_1$             | 2-H <sub>2</sub> N-4-MePy                           |  |
| 30         | XAWJEN(1)                                   | (S)                                              | -35.22          | -179.51                                   | $P\overline{1}$    | (4-MePy) <sub>2</sub> Cu(OH) <sub>2</sub>           |  |
| 31         | XEXSAX                                      | (S)                                              | -33.15          | -178.55                                   | $P\overline{1}$    | triamterene, DMSO                                   |  |
| 32         | FUYCOS(2)                                   | $(\mathbf{S})$                                   | -31.68          | -178 26                                   | $P\overline{1}$    | $M_{\sigma}(OH_2)$ $H_2O$                           |  |
| 33         | $IEKNOC(2)^{[d]}$                           | (S)                                              | -29 72          | -177.00                                   | $P_{1}$            | -                                                   |  |
| 31         | $K_{\rm ATNOI(1)}$                          | (S)                                              | 29.72           | 178 53                                    | $\frac{1}{D1}$     | No HeO                                              |  |
| 25         | $\frac{\text{KAINOJ}(1)}{\text{KEUZON}(2)}$ | (3)                                              | -29.52          | -1/0.33                                   |                    | $(\mathbf{D}_1, \mathbf{D}_2, \mathbf{C}_2)$        |  |
| 35         | KEHZON(2)                                   | (3)                                              | -28.93          | -181.43                                   |                    | $(Ph_3PRuCO)_2$                                     |  |
| 36         | ROQMAN                                      | $(\mathbf{S})$                                   | -28.27          | -180.61                                   | $P2_{1}2_{1}2_{1}$ | (S)-2-(2-oxopyrrolidin-1-yl)-                       |  |
|            |                                             |                                                  |                 |                                           | _                  | butanamide                                          |  |
| 37         | ZONSIH                                      | (S)                                              | -27.58          | -179.52                                   | P1                 | 4,7-Ph <sub>2</sub> -1,10-phenRe(CO) <sub>3</sub> , |  |
|            |                                             |                                                  |                 |                                           |                    | $CH_2Cl_2$                                          |  |
| 38         | QAHYEE                                      | (S)                                              | -26.57          | -178.63                                   | $P2_1$             | (1R,2S)-1-H <sub>2</sub> N-benz(f)indan-2-          |  |
|            |                                             |                                                  |                 |                                           |                    | ОН                                                  |  |
| 39         | HUPPAJ(1)                                   | (S)                                              | -26.57          | -176.40                                   | $P\overline{1}$    | 4,4-bpy                                             |  |
| 40         | KATNOJ(2)                                   | $(\mathbf{S})$                                   | -25.12          | -178 90                                   | <i>P</i> 1         | Na $H_2O$                                           |  |
| 41         | RIPHOA                                      | $(\mathbf{S})$                                   | -24 74          | -179.16                                   | $P_{1,2,1}^{1}$    | 1.10-nhenRe(CO)                                     |  |
| 41<br>12   | VIPKOA(2)                                   | (S)                                              | -24.74          | 178 10                                    | $C^2$              | A HaN 3 MePy HaO                                    |  |
| -⊤∠<br>//2 | $\frac{1}{11100} \frac{1}{10}$              | (S)                                              | -27.70          | 170.15                                    | $D\overline{1}$    | 1 11210-3-10101 y, 1120                             |  |
| 43         | $\Pi \cup \Gamma \Gamma AJ(2)$              | (J)<br>(D)                                       | -24.08          | -1/0.13                                   |                    | +,+-opy                                             |  |
| 44         | IAWSOB                                      | (3)                                              | -24.51          | -1/9.55                                   | P1                 | 2-NH <sub>2</sub> pyrimidine                        |  |
| 45         | KASVEG                                      | (S)                                              | -24.15          | -179.23                                   | P1                 | Na, $H_2O$                                          |  |
| 46         | PUFZUO <sup>[g]</sup>                       | (S)                                              | -23.02          | -177.02                                   | $P2_1/n$           | Ph <sub>3</sub> Sn                                  |  |
| 47         | IJIJAN01(3)                                 | (S)                                              | -22.43          | -177.44                                   | $P2_1$             | 4,4-bpy                                             |  |
| 48         | MUJFUV(1)                                   | (S)                                              | -20.95          | -178.02                                   | $P\overline{1}$    | (Nicotinamide) <sub>2</sub> Zn                      |  |
| 49         | WIKSEP(1)                                   | ÌS                                               | -20.73          | -178.65                                   | $P\overline{1}$    | (DMF <sub>2</sub> Fe) <sub>2</sub>                  |  |
| 50         | IJIJAN01(4)                                 | (S)                                              | -20.42          | -179.28                                   | $P_{2_{1}}^{-}$    | 4.4-bpv                                             |  |
| 51         |                                             | (S)                                              | _20.12          | -180.64                                   | $\overline{P1}$    | $(2 - NH_2 P_3) - 7n$                               |  |
| 51         |                                             | (0)                                              | -20.20          | -100.04                                   | 1 1                | (2-181121 y J2ZII                                   |  |

**Table S4.** Ibuprofen (*S*)-CH<sub>3</sub>CH(C<sub>6</sub>H<sub>4</sub>Bu<sup>*i*</sup>-4)COOH and its derivatives (*S*)-CH<sub>3</sub>CH(C<sub>6</sub>H<sub>4</sub>Bu<sup>*i*</sup>-4)COO(R/M) esterified and coordinated at the carboxylic group (structures with *R* factors >10% excluded).

| 52 | IJIHOZ02(3)           | (S)        | -19.45 | -179.65                            | P1                 | 4,4-bpy                                                                           |
|----|-----------------------|------------|--------|------------------------------------|--------------------|-----------------------------------------------------------------------------------|
| 53 | WIKSAL(1)             | (S)        | -18.45 | -179.44                            | $P\overline{1}$    | $(DMF_2Fe)_2$                                                                     |
| 54 | FEHGIL                | (S)        | -18.32 | -180.08                            | P2/c               | $(Me_2NCH_2CH_2NH_2)_2Cu(OH_2)$                                                   |
| 55 | IJIHOZ02(4)           | (S)        | -17.67 | -181.45                            | P1                 | 4,4-bpy                                                                           |
| 56 | MUJFUV(2)             | (S)        | -15.81 | -177.95                            | $P\overline{1}$    | (Nicotinamide) <sub>2</sub> Zn                                                    |
| 57 | WIKSAL(2)             | (S)        | -15.71 | -180.64                            | $P\overline{1}$    | $(DMF_2Fe)_2$                                                                     |
| 58 | KIPPAD(1)             | (S)        | -15.50 | -183.81                            | $P\overline{1}$    | 4-H <sub>2</sub> NCOPy                                                            |
| 59 | XAWJEN(2)             | (S)        | -15.12 | -179.04                            | $P\overline{1}$    | $(4-MePy)_2Cu(OH)_2$                                                              |
| 60 | ZIXZUD                | (S)        | -15.11 | -179.15                            | $P2_1$             | Ester                                                                             |
| 61 | XAWJOX(1)             | (S)        | -14.02 | -179.33                            | $P\overline{1}$    | $(3-MePy)_2Cu(OH)_2$                                                              |
| 62 | KIPPAD(2)             | (S)        | -13.40 | -186.40                            | $P\overline{1}$    | 4-H <sub>2</sub> NCOPy                                                            |
| 63 | WIKSEP(2)             | (S)        | -13.33 | -180.19                            | $P\overline{1}$    | $(DMF_2Fe)_2$                                                                     |
| 64 | VUCHOR <sup>[h]</sup> | (S)        | -11.10 | -179.07                            | $P2_{1}2_{1}2_{1}$ | (R)-PhCH(Me)NH <sub>2</sub>                                                       |
| 65 | XAWJOX(2)             | (S)        | -8.09  | -179.62                            | $P\overline{1}$    | (3-MePy) <sub>2</sub> Cu(OH) <sub>2</sub>                                         |
| 66 | UCOBUK(1)             | (S)        | -7.14  | -180.84                            | $P\overline{1}$    | $Sr(OH_2)_2$                                                                      |
| 67 | ENAYID                | (S)        | -3.74  | -183.88                            | $P2_1/c$           | 2-(H2NCH2CH2)indol                                                                |
| 68 | $SODDIZ(1)^{[i]}$     | (S)        | -1.41  | -181.26                            | $Pca2_1$           | Nicotinamide                                                                      |
| 69 | SOGLAC(3)             | <i>(S)</i> | -1.37  | -180.24                            | $P2_1$             | Nicotinamide                                                                      |
| 70 | YIPKUG                | (S)        | -1.29  | -181.68                            | $P2_1/n$           | $2,6-(H_2N)_2Py$                                                                  |
| 71 | SOGLAC(4)             | (S)        | -0.18  | -181.60                            | $P2_{1}$           | Nicotinamide                                                                      |
| 72 | UCOBUK(2)             | <i>(S)</i> | 0.33   | -181.10                            | $P\overline{1}$    | $Sr(OH_2)_2$                                                                      |
| 73 | ENAYEZ                | (S)        | 0.45   | -182.86                            | $P2_1/c$           | 4-HOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> |
| 74 | DORHUP(2)             | <i>(S)</i> | 1.60   | -186.90                            | $P\overline{1}$    | $(2-NH_2Py)_2Zn$                                                                  |
| 75 | OWIGEH                | (S)        | 2.41   | -180.03                            | $P\overline{1}$    | (4-PyCH <sub>2</sub> ) <sub>2</sub>                                               |
| 76 | $SODDIZ(2)^{[i]}$     | (S)        | 3.74   | -178.19                            | $Pca2_1$           | Nicotinamide                                                                      |
| 77 | IBPRAC04              | (S)        | 7.96   | <mark>-228.42<sup>[j]</sup></mark> | $P2_1/c$           | -                                                                                 |
| 78 | CUGPIF                | (S)        | 14.86  | -189.20                            | $P2_1/c$           | (HOCH <sub>2</sub> ) <sub>3</sub> CNH <sub>2</sub>                                |
| 79 | ENAYOJ                | (S)        | 20.12  | -176.52                            | $P\overline{1}$    | 1-H <sub>2</sub> NCH <sub>2</sub> Nap                                             |
| 80 | LIBHIP(2)             | (S)        | 71.63  | -179.27                            | $P2_{1}$           | Pb, H <sub>2</sub> O                                                              |
|    | Average               |            | -27.97 | <mark>-179.83</mark>               |                    |                                                                                   |

<sup>[a]</sup>Parenthesis () indicate independent molecules in the unit cell. <sup>[b]</sup>Rotation and pyramidalization angles of (*R*)-compounds inverted. <sup>[c]</sup>Average of VAKVEK, VUCHIL. <sup>[d]</sup>Average of JEKNOC, JEKNOC10~12. <sup>[e]</sup>Average of IBPRAC, IBPRAC01, 05~7, 09,10, 16~19. <sup>[f]</sup>Average of KAVSVEG, KAVSVEG01~04. <sup>[g]</sup>Average of PUFZUO, PUFZUO01. <sup>[h]</sup>Average of VUVHOR, VUVHOR01. <sup>[i]</sup>Average of SODDIZ, SODDIZ01. <sup>[i]</sup>Excluded from averaging.

## X-ray structure analysis

(R/S)-, (R)-, and (S)- $\alpha$ -Phenylglycine, and (R)-methyl  $\alpha$ -phenylglycinate hydrochloride were purchased from TCI Ltd. (S)-methyl  $\alpha$ -phenylglycinate hydrochloride was purchased from Wako pure chemical Ltd. (R)-Ethyl  $\alpha$ -phenylglycinate hydrochloride was obtained according to a published procedure [1]. Single crystals of (R/S)-, (R)-, and (S)- $\alpha$ -phenylglycine and (R)and (S)-methyl  $\alpha$ -phenylglycinate hydrochloride suitable for X-ray diffraction analyses were obtained by crystallization from 5% NaCl aqueous solutions. (R/S)-, (R)-, and (S)- $\alpha$ phenylglycine crystallized as colorless thin rods, while (R)- and (S)-methyl  $\alpha$ -phenylglycinate hydrochloride crystallized as colourless plates. Single crystals of (R/S)-methyl  $\alpha$ phenylglycinate hydrochloride were obtained as colorless blocks from a 1:1 mixture of (R)and (S)-methyl  $\alpha$ -phenylglycinate hydrochloride in 5% NaCl aqueous solution. Single crystals of (R)-ethyl  $\alpha$ -phenylglycinate hydrochloride were suitable for X-ray diffraction analyses were obtained by crystallization from ethanol/diethyl ether. The purities were analyzed with a 500 MHz <sup>1</sup>H NMR spectrometer (Bruker Avance III). All diffraction data were collected with a 173 K Rigaku XtaLAB mini2 benchtop X-ray crystallography system, equipped with a Mo rotating-anode X-ray generator with monochromated Mo- $K_{\alpha}$  radiation ( $\lambda = 0.71073$  Å) and were processed using the CrysAlisPro program [2]. The structures were solved by SHELXT [3], and refined with the full-matrix least-squares technique  $F^2$  with SHELXL [4]. Nonhydrogen atoms were refined with anisotropic displacement and almost all of the hydrogen atoms were located at the calculated positions and refined as riding models. The crystal data and the details of the data collection and refinement of (R/S)-, (R)-, and (S)- $\alpha$ -phenylglycine, (R/S)-, (R)-, and (S)-methyl  $\alpha$ -phenylglycinate hydrochloride, and  $(R_{\rm C})$ -ethyl  $\alpha$ phenylglycinate hydrochloride are summarized in Table S5 and can be obtained as CIFs from the Cambridge Crystallographic Data Centre (CCDC). Deposition numbers of (R/S)-, (R)-, and (S)- $\alpha$ -phenylglycine, (R/S)-, (R)-, and (S)-methyl  $\alpha$ -phenylglycinate hydrochloride, and (R)-ethyl α-phenylglycinate hydrochloride are CCDC1981269-1981274, and 2049622 (Table S5), respectively. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

## References

- Juárez, J.; Gnecco, D.; Galindo, A.; Enríquez, R.G.; Marazano, C.; Reynolds, W.F. Synthesis of α-phenyl-1-(*R*)-(-)-piperidineacetic esters. *Tetrahedron: Asymmetry*, 1997, 8, 203-206.
- 2. Rigaku OD. CrysAlisPRO. Rigaku Corporation, Tokyo, Japan, 2018.
- 3. Sheldrick, G.M. SHELXT Integrated space-group and crystal-structure determination. *Acta Crystallogr. Sect. A*, **2015**, *A71*, 3-8.
- 4. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, C71, 3-8.

| Compound                                         | ( <i>R</i> )/( <i>S</i> )-α-<br>Phenylglycine | ( <i>R</i> )-α-<br>Phenylglycine | (S)-α-<br>Phenylglycine | $(R)/(S)$ -Methyl $\alpha$ -<br>phenylglycinate | ( <i>R</i> )-Methyl α-<br>phenylglycinate | (S)-Methyl α-<br>phenylglycinate |
|--------------------------------------------------|-----------------------------------------------|----------------------------------|-------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|
|                                                  | /                                             | //>                              | /                       | hydrochloride                                   | hydrochloride                             | hydrochloride                    |
| Radiation source (A)                             | ΜοΚα (0.71073)                                | ΜοΚα (0.71073)                   | ΜοΚα (0.71073)          | ΜοΚα (0.71073)                                  | ΜοΚα (0.71073)                            | ΜοΚα (0.71073)                   |
| Empirical formula                                | $2(C_8H_{10}NO_2)$                            | $2(C_8H_{10}NO_2)$               | $2(C_8H_{10}NO_2)$      | $C_9H_{12}NO_2$ , Cl                            | $C_9H_{12}NO_2, Cl$                       | $C_9H_{12}NO_2, Cl$              |
| Formula weight                                   | 303.33                                        | 303.33                           | 303.33                  | 201.65                                          | 201.65                                    | 201.65                           |
| Crystal system                                   | monoclinic                                    | monoclinic                       | monoclinic              | monoclinic                                      | monoclinic                                | monoclinic                       |
| Space group                                      | <i>P</i> 2 <sub>1</sub>                       | <i>P</i> 2 <sub>1</sub>          | <i>P</i> 2 <sub>1</sub> | $P2_1/c$                                        | <i>P</i> 2 <sub>1</sub>                   | <i>P</i> 2 <sub>1</sub>          |
| <i>a</i> (Å)                                     | 9.7130(4)                                     | 9.7104(7)                        | 9.7225(15)              | 11.4654(3)                                      | 9.1423(12)                                | 9.1508(6)                        |
| <i>b</i> (Å)                                     | 5.1510(4)                                     | 5.1544(6)                        | 5.1571(8)               | 5.3359(2)                                       | 5.1954(6)                                 | 5.2102(3)                        |
| <i>c</i> (Å)                                     | 15.0780(9)                                    | 15.0826(19)                      | 15.086(3)               | 16.5779(5)                                      | 11.4409(13)                               | 11.4474(9)                       |
| α (°)                                            | 90                                            | 90                               | 90                      | 90                                              | 90                                        | 90                               |
| $\beta$ (°)                                      | 89.956(4)                                     | 90.101(10)                       | 90.078(16)              | 101.170(3)                                      | 97.696(11)                                | 97.707(7)                        |
| $\gamma(^{\circ})$                               | 90                                            | 90                               | 90                      | 90                                              | 90                                        | 90                               |
| $V(\text{\AA})^3$                                | 754.38(8)                                     | 754.90(14)                       | 756.4(2)                | 994.99(6)                                       | 538.52(11)                                | 540.85(6)                        |
| Ζ                                                | 2                                             | 2                                | 2                       | 4                                               | 2                                         | 2                                |
| $\rho_{\text{calcd}}$ (Mg/m <sup>3</sup> )       | 1.335                                         | 1.334                            | 1.327                   | 1.346                                           | 1.244                                     | 1.238                            |
| Abs coeff (mm <sup>-1</sup> )                    | 0.097                                         | 0.097                            | 0.096                   | 0.351                                           | 0.324                                     | 0.323                            |
| Abs correct                                      | multi-scan                                    | multi-scan                       | multi-scan              | multi-scan                                      | multi-scan                                | multi-scan                       |
| Transmiss max/min                                | 1.0000/0.66075                                | 1.0000/0.61224                   | 1.0000 /0.71945         | 1.0000 /0.97309                                 | 1.00000/0.48311                           | 1.00000/0.68995                  |
| F (000)                                          | 322                                           | 322                              | 320                     | 424                                             | 212                                       | 212                              |
| Crystal size (mm)                                | 0.431 x 0.096 x 0.083                         | 0.75 x 0.087 x 0.025             | 0.75 x 0.025 x 0.015    | 0.194 x 0.206 x 0.465                           | 0.105 x 0.275 x 0.800                     | 0.103 x 0.204 x 0.51             |
| $\theta$ range (°)                               | 2.0990 - 29.1610                              | 2.097 - 30.373                   | 2.095 - 30.615          | 1.810 - 30.445                                  | 1.796 - 30.369                            | 1.795 - 30.352                   |
| Rflns/unique                                     | 7994/3745                                     | 4395/2994                        | 6033 / 3746             | 10294/2914                                      | 7927/3086                                 | 5389/2810                        |
| R <sub>int</sub>                                 | 0.0235                                        | 0.0184                           | 0.0477                  | 0.0194                                          | 0.0734                                    | 0.0397                           |
| Data/params                                      | 3745/273                                      | 2994/273                         | 3746/273                | 2914/120                                        | 3086/120                                  | 2810/120                         |
| Goodness of fit $F^2$                            | 1.016                                         | 0.963                            | 0.974                   | 1.076                                           | 0.993                                     | 1.156                            |
| $R_1/wR_2 (I > 2\sigma(I))$                      | 0.0547/0.1183                                 | 0.0715/0.16427                   | 0.0558 / 0.1265         | 0.0319/0.0886                                   | 0.0594/0.1404                             | 0.0553/0.1631                    |
| $R_1/wR_2$ (all data)                            | 0.0547/0.1258                                 | 0.1084/0.1850                    | 0.0883 / 0.1394         | 0.0390/0.0918                                   | 0.0698/ 0.1462                            | 0.0672/0.1693                    |
| Abs. struct. param                               | -1.7(10)                                      | -0.9(10)                         | -0.2(10)                | -                                               | -0.03(8)                                  | -0.11(6)                         |
| Largest diff. peak and hole (e $\text{Å}^{-3}$ ) | 0.277/-0.233                                  | 0.352/-0.440                     | 0.224/-0.249            | 0.302/-0.207                                    | 0.508/-0.680                              | 0.593/-0.253                     |
| CCDC No.                                         | 1981269                                       | 1981270                          | 1981271                 | 1981272                                         | 1981273                                   | 1981274                          |

**Table S5**. Crystallographic data for (R)/(S)-, (R)-, and (S)- $\alpha$ -phenylglycine, (R)/(S)-, (R)-, and (S)-methyl  $\alpha$ -phenylglycinate hydrochloride, and (R)-ethyl  $\alpha$ -phenylglycinate hydrochloride

| Compound                              | ( <i>R</i> )-Ethyl α-                                   |
|---------------------------------------|---------------------------------------------------------|
|                                       | phenylglycinate                                         |
|                                       | hydrochloride                                           |
| Radiation source (Å)                  | ΜοΚα (0.71073)                                          |
| Empirical formula                     | 2(C <sub>9</sub> H <sub>12</sub> NO <sub>2</sub> ), 2Cl |
| Formula weight                        | 431.34                                                  |
| Crystal system                        | monoclinic                                              |
| Space group                           | <i>P</i> 2 <sub>1</sub>                                 |
| <i>a</i> (Å)                          | 11.7886(7)                                              |
| <i>b</i> (Å)                          | 5.6808(3)                                               |
| <i>c</i> (Å)                          | 17.6370(12)                                             |
| $\alpha$ (°)                          | 90                                                      |
| $\beta(^{\circ})$                     | 101.645(6)                                              |
| $\gamma(^{\rm o})$                    | 90                                                      |
| $V(\text{Å})^3$                       | 538.52(11)                                              |
| Z                                     | 2                                                       |
| $ ho_{ m calcd}$ (Mg/m <sup>3</sup> ) | 1.238                                                   |
| Abs coeff ( $mm^{-1}$ )               | 0.306                                                   |
| Abs correct                           | multi-scan                                              |
| Transmiss max/min                     | 1.00000/0.92306                                         |
| F (000)                               | 456                                                     |
| Crystal size (mm)                     | 0.121 x 0.279 x 0.704                                   |
| $\theta$ range (°)                    | 1.913 - 30.398                                          |
| Rflns/unique                          | 10877/5649                                              |
| R <sub>int</sub>                      | 0.0393                                                  |
| Data/params                           | 5649/257                                                |
| Goodness of fit $F^2$                 | 1.040                                                   |
| $R_1/wR_2$ ( $I > 2\sigma(I)$ )       | 0.0583/0.1418                                           |
| $R_1/wR_2$ (all data)                 | 0.0870/0.1588                                           |
| Abs. struct. param                    | -0.05(4)                                                |
| Largest diff. peak and                | 0.474/-0.451                                            |
| hole (e Å <sup>-3</sup> )             |                                                         |
| CCDC No.                              | 2049622                                                 |
|                                       |                                                         |



**Figure S1**. ORTEP drawing of conglomerate (R)/(S)- $\alpha$ -phenylglycine: CCDC1981269.



**Figure S2.** ORTEP drawing of (R)- $\alpha$ -phenylglycine: CCDC1981270.



**Figure S3.** ORTEP drawing of (*S*)-α-phenylglycine. CCDC1981271.



**Figure S4.** ORTEP drawing of racemate (R)/(S)-methyl  $\alpha$ -phenylglycinate hydrochloride: CCDC1981272.



**Figure S5.** ORTEP drawing of (*R*)-methyl  $\alpha$ -phenylglycinate hydrochloride: CCDC1981273.



**Figure S6.** ORTEP drawing of (S)-methyl  $\alpha$ -phenylglycinate hydrochloride: CCDC1981274.



**Figure S7.** ORTEP drawing of (*R*)-ethyl  $\alpha$ -phenylglycinate hydrochloride: CCDC2049622.