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Abstract: In this article, a discrete analogue of an extension to a two-parameter half-logistic model is
proposed for modeling count data. The probability mass function of the new model can be expressed
as a mixture representation of a geometric model. Some of its statistical properties, including hazard
rate function, moments, moment generating function, conditional moments, stress-strength analysis,
residual entropy, cumulative residual entropy and order statistics with its moments, are derived. It is
found that the new distribution can be utilized to model positive skewed data, and it can be used
for analyzing equi- and over-dispersed data. Furthermore, the hazard rate function can be either
decreasing, increasing or bathtub. The parameter estimation through the classical point of view has
been performed using the method of maximum likelihood. A detailed simulation study is carried
out to examine the outcomes of the estimators. Finally, two distinctive real data sets are analyzed to
prove the flexibility of the proposed discrete distribution.

Keywords: probability mass function; hazard rate function; moments; dispersed data; simulation;
chi-square test; COVID-19

1. Introduction

In probability theory, the half-logistic (HLo) distribution is a continuous probability
(CPr) model for nonnegative-valued random variables (RVs). The HLo model is a random
distribution reported by folding at zero the logistic (Lo) distribution centered around the
origin. Due to the flexibility of the HLo model, several authors aimed to propose and
study many extensions and generalizations for this model with its applications in various
fields, for instance, Balakrishnan [1], Balakrishnan and Wong [2], Torabi and Bagheri [3],
Olapade [4–6], Kantam et al. [7], Jose and Manoharan [8], Krishnarani [9], Oliveira et al. [10],
Usman et al. [11], Cordeiro et al. [12], Muhammad and Liu [13], Samuel and Kehinde [14],
Xavier and Jose [15], Eliwa et al. [16] and El-Morshedy et al. [17], among others. Among all
these generalizations, we take in our consideration the HLo model with two parameters
(see Hashempour, [18]). An RV X is said to have the continuous two-parameter half-logistic
(HLo-II) distribution if its cumulative distribution function (CDF) is given as

GY(y; δ, λ) =
1− e−δy

1 + e−λy ; y ≥ 0, (1)

where δ > 0 and λ > 0.
In several cases, lifetimes need to be recorded on a discrete scale rather than on a

continuous analogue. Thus, discretizing CPr distributions has received noticeable atten-
tion in recent years. See, for example, Pillai and Jayakumar [19], Kemp [20], Roy [21],
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Johnson et al. [22], Jazi et al. [23], Nekoukhou et al. [24], Bakouch et al. [25], Almalki and
Nadarajah [26], Chakraborty and Chakravarty [27], Shanker and Fesshaye [28], Inusah and
Kozubowski [29], Barbiero and Hitaj [30], Eliwa et al. [31,32], Nezampour and Hamedani [33],
El-Morshedy et al. [34–36] and Eliwa and El-Morshedy [37], among others. Although
there are a number of discrete models in the statistical literature, there is still a lot of space
left to build a new discretized model that is proper under various conditions. In this
article, we propose and study the discrete analogue of the HLo-II (DHLo-II) model. Some
characteristics of the proposed distribution can be summarized as follows: its CDF and
probability mass function (PMF) can be expressed as closed-forms; its hazard rate function
(HRF) can be bathtub-, increasing- and decreasing-shaped; it can be utilized for modelling
equi- and over-dispersion phenomena; and it provides the best fit for various types of data
in several fields in spite of having only two parameters, especially for over-dispersion data.

The article is organized as follows. In Section 2, we introduce the DHLo-II model
based on the survival discretization approach; for more detail around this technique see
Roy and Ghosh [38] and Chakraborti et al. [39]. Different statistical properties are discussed
in Section 3. In Section 4, the model parameters are estimated by using the maximum
likelihood method. A simulation study is presented in Section 5. Two distinctive data
sets are analyzed to show the flexibility of the DHLo-II distribution in Section 6. Finally,
Section 7 provides some conclusions.

2. Synthesis of the DHLo-II Model

In this Section, the new discrete model can be generated by utilizing the survival
discretization technique. Thus, the CDF of the DHLo-II distribution can be expressed as

FX(x; α, β) =
1− αx+1

1 + βx+1 ; x = 0, 1, 2, . . . , (2)

where F(−1; α, β) = 0, 0 < α < 1 and 0 < β < 1. The corresponding PMF to Equation (2)
can be listed as

Pr(X = x; α, β) =
(1− α)αx + (1− β)βx + (β− α)(αβ)x

(1 + βx)(1 + βx+1)
; x = 0, 1, 2, . . . . (3)

Using generalized binomial expansion, Equation (3) can be proposed as a mixture repre-
sentation of geometric (Geo) model as follows

Pr(X = x; α, β) =
∞

∑
i,j=0

(−1)i+jβj (βi+j)x ((1− α)αx + (1− β)βx + (β− α)(αβ)x)

=
∞

∑
i,j=0

(−1)i+jβj
[
(1− α)(αβi+j)x + (1− β)(βi+j+1) + (β− α)(αβi+j+1)x

]
=

∞

∑
i,j=0

w(1)
i,j g(x; 1− αβi+j) +

∞

∑
i,j=0

w(2)
i,j g(x; 1− βi+j+1) +

∞

∑
i,j=0

w(3)
i,j g(x; 1− αβi+j+1), (4)

where

w(1)
i,j =

(−1)i+jβj (1− α)

1− α βi+j , w(2)
i,j =

(−1)i+jβj (1− β)

1− βi+j+1 , w(3)
i,j =

(−1)i+jβj (1− α)

1− α βi+j+1 ,

and g(x; ν) = ν(1− ν)x denote the PMF of Geo distribution with parameter ν. The HRF
can be expressed as

HX(x; α, β) =
{(1− α)αx + (1− β)βx + (β− α)(αβ)x}(1− αx − 1 + βx)

(1 + βx)(1 + βx+1)(1− αx)
; x = 0, 1, 2, . . . , (5)

where HX(x; α, β) = Pr(X=x;α,β)
1−FX(x−1;α,β) . Figure 1 shows the PMF and HRF plots for various

values of the DHLo-II parameters.
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Figure 1. The PMF and HRF plots.

It is noted that the shape of the PMF is always unimodal. Further, the DHLo-II
distribution can be used to model asymmetric data. Regarding the HRF, it is found that
the proposed model has several shapes including bathtub, increasing and decreasing,
which means this model can be utilized to analyze various types of data in different fields,
especially in medicine, insurance and engineering.

3. Statistical Properties
3.1. Moments and Generating Functions

Assume X to be a DHLo-II RV, then the probability generating the function (PrGF)
can be listed as

E(sX) =
∞

∑
x=0

sx Pr(X = x; α, β)

=
∞

∑
i,j=0

w(1)
i,j

1− α βi+j

1− sα βi+j +
∞

∑
i,j=0

w(2)
i,j

1− βi+j+1

1− sβi+j+1 +
∞

∑
i,j=0

w(3)
i,j

1− α βi+j+1

1− sα βi+j+1 . (6)

Onreplacing s by es in Equation (6), the moment generating function (MGF) can be derived.
Thus, the first moment of the DHLo-II distribution is

E(X) =
∞

∑
x=0

αx+2 + βx+2

1 + βx+2 =
∞

∑
x,i=0

(−1)i (βx+2)i (αx+2 + βx+2)

=
∞

∑
i=0

(−1)i β2i+1

1− βi+1 +
∞

∑
i=0

α2 (−1)i β2 i

1− (αβ)i . (7)

Similarly, the other moments can be derived. Based on the MGF, the mean, variance,
index of dispersion (IOD), skewness and kurtosis can be listed in Tables 1–5 as numerical
computations (NuCo).
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From Tables 1–5 it is clear that: the mean, variance and IOD increase for constant
values of β with α −→ 1; the proposed model is appropriate only for modelling equi-
and over-dispersed data, because the IOD always is greater than or equal one; and this
distribution is capable of modeling positively skewed and leptokurtic data sets.

Table 1. Some NuCo of the DHLo-II distribution for β = 0.001.

α

Measure 0.001 0.01 0.1 0.3 0.5 0.7 0.9

Mean 0.00200 0.01109 0.11201 0.42927 1.00050 2.33363 9.00010

Variance 0.00200 0.01117 0.12415 0.61234 1.99950 7.77667 89.9982

IOD 1.00000 1.00748 1.10844 1.42647 1.99850 3.33243 9.99969

Skewness 22.3608 9.60244 3.45601 2.37058 2.12123 2.03213 2.00282

Kurtosis 503.015 96.5834 16.9092 10.6215 9.50161 9.13014 9.01133

Table 2. Some NuCo of the DHLo-II distribution for β = 0.01.

α

Measure 0.001 0.01 0.1 0.3 0.5 0.7 0.9

Mean 0.01099 0.02000 0.12012 0.43559 1.00502 2.33635 9.00100

Variance 0.01107 0.02001 0.13058 0.61338 1.99510 7.76679 89.9828

IOD 1.00775 1.00039 1.08711 1.40815 1.98512 3.32432 9.99697

Skewness 9.64876 7.07593 3.26866 2.34450 2.12024 2.03437 2.00328

Kurtosis 97.5325 53.1472 15.3539 10.5121 9.51522 9.14427 9.01338

Table 3. Some NuCo of the DHLo-II distribution for β = 0.1.

α

Measure 0.001 0.01 0.1 0.3 0.5 0.7 0.9

Mean 0.10283 0.11111 0.20384 0.50229 1.05385 2.36639 9.01128

Variance 0.11674 0.12345 0.21126 0.63993 1.96223 7.66870 89.8131

IOD 1.13534 1.11111 1.03643 1.27401 1.86195 3.24066 9.96674

Skewness 3.69573 3.47850 2.36398 2.07340 2.08971 2.05342 2.00819

Kurtosis 19.0106 17.1000 9.21101 9.18706 9.53455 9.27863 9.19153

Table 4. Some NuCo of the DHLo-II distribution for β = 0.3.

α

Measure 0.001 0.01 0.1 0.3 0.5 0.7 0.9

Mean 0.35189 0.35891 0.43830 0.70225 1.21122 2.47100 9.05015

Variance 0.57726 0.57948 0.61832 0.90749 2.03517 7.47027 89.2348

IOD 1.64044 1.61455 1.41070 1.29225 1.68026 3.02317 9.86003

Skewness 2.76593 2.72830 2.32845 1.70329 1.84145 2.05212 2.02320

Kurtosis 12.7583 12.5653 10.3780 6.97051 8.37013 9.43783 9.11141
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Table 5. Some NuCo of the DHLo-II distribution for β = 0.5.

α

Measure 0.001 0.01 0.1 0.3 0.5 0.7 0.9

Mean 0.76516 0.77124 0.84016 1.07150 1.52899 2.70637 9.15007

Variance 1.99106 1.98797 1.96588 2.05052 2.81392 7.57726 88.0408

IOD 2.60213 2.57760 2.33988 1.91367 1.84036 2.79978 9.62186

Skewness 2.48246 2.47637 2.39012 1.99815 1.58944 1.87366 2.04677

Kurtosis 10.9062 10.8970 10.6659 8.86802 6.69554 8.67895 8.23654

3.2. Conditional Moments

This section lists results of the conditional moments (CoMos) for the DHLo-II distri-
bution. The CoMos can be utilized to derive the mean deviations, Bonferroni and Lorenz
curves. The nth CoMo of the DHLo-II model under Xn|X ≤ x and Xn|X > x can be
expressed as

E(Xn|X ≤ x) =
1

F(x; α, β)

x

∑
t=0

tn Pr(X = t; α, β)

=
1

F(x; α, β)

∞

∑
i,j=0

[
w(1)

i,j

x

∑
t=0

tn g(t; 1− α βi+j) + w(2)
i,j

x

∑
t=0

tn g(t; 1− βi+j+1) (8)

+ w(3)
i,j

x

∑
t=0

tn g(t; 1− αβi+j+1)
]

and
E(Xn|X > x) =

1
1− F(x + 1; α, β)

∞

∑
t=x+1

tn Pr(X = t; α, β)

=
1

1− F(x + 1; α, β)

∞

∑
i,j=0

[
w(1)

i,j

∞

∑
t=x+1

tn g(t; 1− α βi+j) + w(2)
i,j

∞

∑
t=x+1

tn g(t; 1− βi+j+1) (9)

+ w(3)
i,j

∞

∑
t=x+1

tn g(t; 1− αβi+j+1)
]
,

respectively. The mean residual life function is given by E(X− x|X > x) = E(X|X >
x) − x = VF(x; α, β) − x, where VF(x; α, β) is referred to as the vitality function of the
distribution function F.

3.3. Stress-Strength Analysis

Stress-strength analysis has been utilized in mechanical component design. Let
X1 ∼ DHLo-II(α1, β1) and X2 ∼ DHLo-II(α2, β2) be two independent RVs, then

Pr(X1 ≤ X2) =
∞

∑
x=0

FX1(x; α1, β1)Pr(X2 = x; α2, β2)

=
∞

∑
i,j,k=0

(−1)i+j+kβk
2
[ 1− α2

1− α2 βi
1β

j+k
2

+
1− β2

1− βi
1β

j+k+1
2

+
β2 − α2

1− α2 βi
1β

j+k+1
2

(10)

+
α2 − 1

1− α1α2 βi
1β

j+k
2

+
β2 − 1

1− α1 βi
1β

j+k+1
2

+
α2 − β2

1− α1 α2 βi
1β

j+k+1
2

]
.

It is noted that the value of stress-strength depends on the model parameters only.

3.4. Residual Entropy and Cumulative Residual Entropy

Residual entropy (RE) and cumulative residual entropy (CRE) are two important
measures of information theory. The RE of the RV X is given by
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E(X) = −∑∞
x=0 F(x; α, β) log(F(x; α, β))

= ∑∞
k,j=0 ∑k+1

i=0

(−1)k

(
−k− 2

j

)(
k + 1

i

)
k+1

[
αi β2k+1−i

1−αi β2k+1−i −
αi+1 β2k+1−i

1−αi+1 β2k+1−i

]
,

(11)

whereas the CRE can be listed as

CE(X) = −∑∞
x=0 F̄(x; α, β) log(F̄(x; α, β))

= ∑∞
k,j=0 ∑k+1

i=0

(−1)k+i

(
−k− 2

j

)(
k + 1

i

)
k+1

[
αi+1 βj

1−αi+1 βj +
αi βj+1

1−αi βj+1

]
,

(12)

where F̄(x; α, β) represents the survival function of the distribution. The previous two equa-
tions can be derived by using geometric expansion and generalized binomial expansion
(simple algebra).

3.5. Order Statistics

Order statistics (OrSt) play an important role in different fields of statistical theory. Sup-
pose X1, X2, . . .,Xn to be a random sample (RS) from the DHLo-II, and let X1:n, X2:n,. . . ,Xn:n
be their corresponding OrSt. Then, the CDF of the ith OrSt Xi:n for an integer value of x is
proposed as

Fi:n(x; α, β) =
n

∑
j=0

n−j

∑
k=0

(−1)k
(

n
j

)(
n− j

k

)
F(x)j+k

=
n

∑
j=0

n−j

∑
k=0

(−1)k
(

n
j

)(
n− j

k

)
(

1− αx+1

1 + βx+1 )
j+k (13)

=
n

∑
j=0

n−j

∑
k=0

∞

∑
r=0

j+k

∑
l=0

Ω(n,k)
(j,r,l) αl βr (αl βr)x,

where

Ω(n,k)
(j,r,l) = (−1)k+l

(
n
j

)(
n− j

k

)(
−j− k

r

)(
j + k

l

)
.

The PMF of the ith OrSt can be formulated as

Pr(Xi:n = x; α, β) =
n

∑
j=0

n−j

∑
k=0

∞

∑
r=0

j+k

∑
l=0

Ω(n,k)
(j,r,l)α

l βr (1− αl βr)(αl βr)x−1,

where Pr(Xi:n = x; α, β) = Fi:n(x; α, β)− Fi:n(x− 1; α, β). The vth moments of Xi:n can be
proposed as

E(Xv
i:n) =

∞

∑
x=0

n

∑
b=i

n−b

∑
j=0

(−1)j
(

n
b

)(
n− b

j

)
xv Pr

i
(X = x; α, β, b + j). (14)

Based on Equation (14), L-moments can be listed as

∆w =
1
w

w−1

∑
j=0

(−1)j
(

w− 1
j

)
E
(
Xw−j:w

)
,

which can be utilized to discuss some descriptive statistics.
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4. Maximum Likelihood Estimation (MLE)

In this section, we determine the MLE of the DHLo-II parameters according to a
complete sample. Assume X1, X2, . . . , Xn to be an RS of size n from the DHLo-II distribution.
The log-likelihood function (L) can be listed as follows

L(x; α, β) =
n

∑
i=1

log
{
(1− α)αxi + (1− β)βxi + (β− α)(αβ)xi

}
−

n

∑
i=1

log(1 + βxi )−
n

∑
i=1

log
(

1 + βxi+1
)

. (15)

To estimate the model parameters α and β, the first partial derivatives ∂L(x;α,β)
∂α and ∂L(x;α,β)

∂β

should be obtained, and then equating the resulted equations to zero “normal equations”.
These two equations cannot be solved analytically. Thus, an iterative procedure such as
Newton–Raphson is required to solve it numerically.

5. Simulation

In this section, we assess the performance of the maximum likelihood estimators
(MLEs) with respect to sample size n using R software. The assessment is based on
a simulation study: generate 10,000 samples of size n = 10, 12, 14, . . . , 60 from DHLo-
IIβ=0.5

α=0.5 and DHLo-IIβ=0.3
α=0.8 , respectively; compute the MLEs for the 10,000 samples, say $̂l

for l = 1, 2, . . . , 10,000; and compute the biases and mean-squared errors (MSEs), where
bias($) = 1

10,000 ∑10,000
l=1

(
$̂j − $

)
and MSE($) = 1

10,000 ∑10,000
l=1

(
$̂j − $

)2. The empirical results
are given in Figure 2 and Figure 3, respectively.

From Figures 2 and 3, it is noted that the magnitude of bias and MSE always de-
crease to zero as n grows. This shows the consistency of the MLEs. We can say that the
maximum likelihood approach works quite well in estimating the model parameters, and
consequently, it can be used effectively for analyzing the count data.
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Figure 2. The bias and MSE for the DHLo-IIβ=0.5
α=0.5 .
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Figure 3. The bias and MSE for the DHLo-IIβ=0.3
α=0.8 .

6. Applications

In this section, we illustrate the importance and the flexibility of the DHLo-II distri-
bution by utilizing data from different fields. We shall compare the fits of the DHLo-II
distribution with some competitive models such as discrete inverse Weibull (DIW), discrete
gamma Lindley (DGL), discrete Burr II (DB-II), discrete log-logistic (DLL), discrete inverse
Rayleigh (DIR), discrete Burr-Hatke (DBH), discrete Lindley and discrete Pareto (DP). The
fitted models are compared using some criteria, namely, the maximized log-likelihood (L),
Akaike information criterion (Aic) and its corrected (Caic), Hannan–Quinn information
criterion (Hqic), Bayesian information criterion (Bic), and Chi-square (Chi2) test with its
corresponding P-value (Pv).

6.1. Data set I: COVID-19 in Armenia

The data are listed in (https://www.worldometers.info/coronavirus/country/armenia/,
accessed on 20 July 2021) and represent the daily new deaths in Armenia for COVID-19
from 15 February to 4 October 2020. The initial mass shape for these data are explored
utilizing the nonparametric kernel mass estimation (Kme) technique in Figure 4, and it is
observed that the mass is asymmetric function. The normality condition (Nc) is checked
by the quantile-quantile (Qu-Qu) plot in Figure 4. The extreme observations (ExOb) are
spotted from the box plot in Figure 4, and it is observed that some ExOb were listed.

The MLEs with their corresponding standard errors (Se), confidence intervals (CI) for
the parameter(s) and goodness of fit tests for data set I are listed in Tables 6 and 7.

The abbreviations “Of” and “Df” represent the observed frequency and degree of
freedom, respectively. From Table 7, it is noted that the DGL distribution works quite well
in addition to the DHLo-II distribution. However, the DHLo-II model is the best among all
tested distributions. Figure 5 shows that the MLEs are unique because the L profiles have
only unimodal shapes.

https://www.worldometers.info/coronavirus/country/armenia/


Symmetry 2021, 13, 1790 9 of 16

Table 6. The MLEs, Se and CI for data set I.

Parameter→ α β

Model ↓ MLE Se CI MLE Se CI

DHLo-II 0.620 0.048 [0.527, 0.714] 0.815 0.014 [0.788, 0.842]

DIW 0.201 0.026 [0.149, 0.252] 0.958 0.060 [0.839, 1.076]

DGL 0.784 0.037 [0.712, 0.855] 0.228 0.089 [0.053, 0.404]

DB-II 0.643 0.034 [0.576, 0.711] 1.811 0.210 [1.399, 2.223]

DLL 2.871 0.2426 [2.395, 3.346] 1.388 0.086 [1.219, 1.557]

DIR 0.112 0.019 [0.075, 0.149] − − −
DBH 0.976 0.01136 [0.953, 0.998] − − −
DL 0.692 0.012 [0.668, 0.716] − − −
DP 0.493 0.0229 [0.448, 0.538] − − −

Table 7. The goodness-of-fit test for data set I.

Expected Frequency

X Of DHLo-II DIW DGL DB-II DLL DIR DBH DL DP

0 56 48.53 46.60 43.85 61.12 43.59 25.96 118.83 28.24 89.88
1 31 37.23 54.93 35.74 51.49 43.91 108.22 39.57 32.85 35.42
2 22 28.83 30.93 29.08 28.24 32.05 47.70 19.75 31.94 19.64
3 25 22.55 19.14 23.63 17.09 22.69 20.44 11.83 28.47 12.70
4 11 17.83 12.94 19.18 11.39 16.34 10.22 7.865 24.12 8.99
5 14 14.23 9.31 15.55 8.15 12.08 5.76 5.59 19.74 6.75
6 14 11.46 7.02 12.59 6.12 9.15 3.55 4.18 15.77 5.28
7 10 9.29 5.49 10.18 4.78 7.12 2.34 3.24 12.38 4.26
8 11 7.57 4.41 8.23 3.84 5.65 1.62 2.58 9.58 3.52
9 3 6.19 3.62 6.64 3.16 4.55 1.17 2.10 7.33 2.97

10 10 5.08 3.02 5.36 2.65 3.74 0.86 1.74 5.56 2.54
11 7 4.17 2.57 4.32 2.26 3.13 0.66 1.47 4.18 2.20
12 4 3.43 2.20 3.48 1.94 2.62 0.51 1.25 3.13 1.93
13 5 2.82 1.91 2.80 1.69 2.23 0.41 1.07 2.32 1.71
14 2 2.32 1.68 2.25 1.49 1.92 0.33 0.93 1.72 1.52
15 2 1.90 1.49 1.81 1.33 1.68 0.27 0.82 1.27 1.37
≥16 6 8.57 24.74 7.31 25.26 19.55 1.98 9.19 3.40 31.32

Total 232 232 232 232 232 232 232 232 232 232

−L 590.63 625.48 590.86 629.89 609.58 719.92 657.92 604.57 644.98
Aic 1185.26 1254.96 1185.72 1263.77 1223.16 1441.84 1317.85 1211.13 1291.96
Caic 1185.31 1255.01 1185.77 1263.83 1223.22 1441.86 1317.87 1211.15 1291.98
Bic 1192.15 1261.85 1192.61 1270.67 1230.06 1445.29 1321.29 1214.58 1295.41
Hqic 1188.04 1257.74 1188.49 1266.55 1225.94 1443.23 1319.24 1212.52 1293.35

Chi2 18.22 75.53 19.03 82.63 39.97 397.61 185.04 53.71 113.54
Df 11 9 11 8 10 6 8 11 9
Pv 0.08 ≤0.001 0.06 ≤ 0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤ 0.001

Figure 6 supports our empirical results where the DHLo-II is more fit to analyze these
data, whereas Figure 7 shows the probability–probability (Pr–Pr) plot for data set I, which
proves that the data set plausibly came from the DHLo-II distribution.

According to the MLEs, the empirical descriptive statistics (EDS) for mean, variance,
IOD, skewness and kurtosis are 4.16215, 23.66536, 5.68584, 2.10584 and 9.45986, respectively.
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The data exhibit over-dispersion. Moreover, they are moderately skewed to the right
and leptokurtic.
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Figure 4. The Kme, Qu-Qu, and box plots for data set I.

Figure 5. The L profiles for the DHLo-II parameters based on data set I.

6.2. Data Set II: Kidney Dysmorphogenesis

This data set is taken from the study of Chan et al. [40]. Initial mass shape for the
kidney data is explored using the nonparametric Kme approach in Figure 8, and it is noted
that the mass is asymmetric and multimodal functions. The Nc is checked via the Qu-Qu
plot in Figure 8. The ExOb are spotted from the box plot in Figure 8, and it is noted that
some ExOb were reported.
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Figure 6. The fitted PMFs for data set I.
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Figure 7. The Pr–Pr plots for data set I.
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Figure 8. The Kme, Qu-Qu and box plots for data set II.

Here, we examine the fitting capability of the DHLo-II distribution with some other
competitive distributions. The MLEs, Se and CI for the parameter(s) as well as goodness of
fit test for this data are reported in Tables 8 and 9.

Table 8. The MLEs, Se and CI for data set II.

Parameter
−→ α β

Model ↓ MLE Se CI MLE Se CI

DHLo-II 0.052 0.056 [0, 0.162] 0.659 0.035 [0.589, 0.728]
DIW 0.581 0.048 [0.488, 0.675] 1.049 0.146 [0.763, 1.335]
DGL 0.582 0.045 [0.493, 0.671] 0.351 0.0654 [0.223, 0.479]
DB-II 0.278 0.045 [0.189, 0.366] 1.053 0.167 [0.725, 1.381]
DLL 0.780 0.136 [0.514, 1.046] 1.208 0.159 [0.895, 1.520]
DIR 0.554 0.049 [0.458, 0.649] − − −
DBH 0.874 0.041 [0.794, 0.954] − − −
DL 0.436 0.026 [0.385, 0.488] − − −
DP 0.268 0.034 [0.201, 0.336] − − −

Table 9. The goodness-of-fit test for data set II.

Expected Frequency

X Of DHLo-II DIW DGL DB-II DLL DIR DBH DL DP

0 64 62.88 63.91 46.01 64.74 63.19 60.89 61.94 40.29 65.84
1 14 13.64 20.69 26.76 19.18 20.10 33.99 20.06 29.83 18.27
2 10 9.03 8.05 15.57 8.48 8.64 8.12 9.65 18.36 8.16
3 6 7.03 4.23 9.06 4.63 4.66 3.00 5.52 10.34 4.51
4 4 5.29 2.59 5.27 2.86 2.86 1.42 3.49 5.52 2.82
5 2 3.83 1.75 3.07 1.92 1.92 0.78 2.35 2.85 1.91
6 2 2.69 1.26 1.78 1.37 1.37 0.47 1.65 1.44 1.37
7 2 1.85 0.95 1.04 1.01 1.02 0.31 1.19 0.71 1.02
8 1 1.25 0.74 0.60 0.78 0.79 0.21 0.89 0.35 0.79
9 1 0.84 0.59 0.35 0.61 0.62 0.15 0.67 0.17 0.63

10 1 0.56 0.49 0.20 0.49 0.50 0.11 0.52 0.08 0.51
11 2 1.11 4.75 0.29 3.93 4.33 0.55 2.07 0.06 4.17

Total 110 110 110 110 110 110 110 110 110 110

−L 167.52 172.94 178.77 171.14 171.72 186.55 169.89 189.11 171.19
Aic 339.03 349.87 361.53 346.28 347.43 375.09 341.78 380.22 344.38
Caic 339.15 349.98 361.65 346.39 347.55 375.13 341.82 380.26 344.42
Bic 344.44 355.28 366.94 351.68 352.84 377.80 344.48 382.92 347.08
Hqic 341.22 352.06 363.72 348.47 349.62 376.19 342.88 381.32 345.48

Chi2 1.97 6.45 19.09 2.59 4.03 40.46 2.61 34.64 3.43
Df 4 3 3 2 3 2 4 4 4
Pv 0.74 0.09 ≤0.001 0.27 0.26 ≤0.001 0.63 ≤0.001 0.49
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It is noted that the DIW, DB-II, DLL, DBH and DP distributions work quite well in
addition to the DHLo-II distribution. However, the DHLo-II distribution is the best model
among all tested models. Figure 9 shows that the MLEs are unique.

Figure 10 supports our empirical results where the DHLo-II is more fit to analyze data
set II, whereas Figure 11 shows the Pr–Pr plot for the same data.

According to the MLEs, the EDS for mean, variance, IOD, skewness and kurtosis are
1.45414, 5.87716, 4.04167, 2.33510 and 10.05033, respectively. The data are over-dispersed,
skewed to the right and leptokurtic.

Figure 9. The L profiles for the DHLo-II parameters based on dataset II.
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Figure 10. The estimated PMFs for data set II.
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Figure 11. The Pr-Pr plots for data set II.

7. Conclusions

In this paper, we proposed a flexible discrete probability model with two parameters,
in the so-called discrete half-logistic (DHLo-II) distribution. Various statistical properties of
the proposed model have been derived. It was found that the DHLo-II model is convenient
for modelling skewed data sets, especially those which have very extreme observations.
Furthermore, it can be used as a flexible model to analyze equi- and over-dispersed
phenomena, especially in medicine, insurance and engineering fields. More advantages of
the proposed model are that it provides a wide variation in the shape of the HRF, including
decreasing, increasing and bathtub, and consequently this distribution can be used in
modelling various kinds of data. The DHLo-II parameters have been estimated via the
MLE approach. A simulation has been performed based on different sample sizes, and
it was found that the MLE method works quite effectively in estimating the DHLo-II
parameters due to the consistency property. Finally, two distinctive data sets “COVID-19
and kidney dysmorphogenesis” have been analyzed to illustrate the flexibility of the DHLo-
II model. In our future work, the bivariate and multivariate extensions will be derived for
the DHLo-II distribution with its applications in medicine and engineering fields.
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