Key Validity Using the Multiple-Parameter Fractional Fourier Transform for Image Encryption
Abstract
:1. Introduction
2. Reformulation of the MPFRFT
3. Security Analysis
3.1. Eigen-Decomposition-Type FRFT as a Basis Function
3.2. Weighted-Type FRFT as a Basis Function
4. Simulation Verification
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm A1. MPFRFT_code |
%% Multiple-parameter Fractional Fourier Transform (MPFRFT); %Shih’s fractional Fourier transform as basis function. function F = MPFRFT(alpha,M,ml,nl,N) %This code is written by Tieyu Zhao,E-mail:[email protected]; % alpha is the transform order; % M is the resulting weighting term (period); % ml and nl are parameters; % N is the length of the signal; for l=0:M-1 yy=wfrft(N,4*l/M); % WFRFT y{l+1}=yy; end Al=zeros(1,M); for l=0:M-1 for k=0:M-1 Al(l+1)=Al(l+1)+exp(2*pi*i*((alpha*(M*ml(k+1)+1)*(M*nl(k+1)+k))-l*k)/M)/M; end end F=zeros(N); for k=1:M F=F+Al(k)*y{k}; end function F = wfrft(N,beta) % Shih’s fractional Fourier transform (WFRFT) Y=eye(N); y1=fftshift(fft(Y))/(sqrt(N)); y2=y1*y1; y3=conj(y1); pl=zeros(1,4); for k=0:3 pl(k+1)=pl(k+1)+exp(i*3*pi*(beta-k)/4)*cos(pi*(beta-k)/2)*cos(pi*(beta-k)/4); end F=pl(1)*Y+pl(2)*y1+pl(3)*y2+pl(4)*y3; |
References
- Chen, W.; Javidi, B.; Chen, X. Advances in optical security systems. Adv. Opt. Photon 2014, 6, 120–155. [Google Scholar] [CrossRef]
- Javidi, B.; Carnicer, A.; Yamaguchi, M.; Nomura, T.; Cabre, E.P.; Millan, M.; Nishchal, N.K.; Torroba, R.; Barrera, J.F.; He, W.; et al. Roadmap on optical security. J. Opt. 2016, 18, 083001. [Google Scholar] [CrossRef]
- Tao, R.; Lang, J.; Wang, Y. Optical image encryption based on the multiple-parameter fractional Fourier transform. Opt. Lett. 2008, 33, 581–583. [Google Scholar] [CrossRef]
- Shan, M.; Chang, J.; Zhong, Z.; Hao, B. Double image encryption based on discrete multiple-parameter fractional Fourier transform and chaotic maps. Opt. Commun. 2012, 285, 4227–4234. [Google Scholar] [CrossRef]
- Lang, J. Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform and chaos permutation. Opt. Lasers Eng. 2012, 50, 929–937. [Google Scholar] [CrossRef]
- Lang, J. Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain. Opt. Commun. 2015, 338, 181–192. [Google Scholar] [CrossRef]
- Sui, L.; Duan, K.; Liang, J. Double-image encryption based on discrete multiple-parameter fractional angular transform and two-coupled logistic maps. Opt. Commun. 2015, 343, 140–149. [Google Scholar] [CrossRef]
- Keshari, S.; Salim, M.; Modani, S.G. Single channel modified multiple-parameter fractional Fourier transform and scrambling technique. Optik 2015, 126, 5845–5849. [Google Scholar] [CrossRef]
- Li, H.; Bai, X.; Shan, M.; Zhong, Z.; Liu, L.; Liu, B. Optical encryption of hyperspectral images using improved binary tree structure and phase-truncated discrete multiple-parameter fractional Fourier transform. J. Opt. 2020, 22, 055701. [Google Scholar] [CrossRef]
- Ran, Q.W.; Zhang, H.Y.; Zhang, J.; Tan, L.Y.; Ma, J. Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform. Opt. Lett. 2009, 34, 1729–1731. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q. The Weighted Fractional Fourier Transform and Its Application in Image Encryption. Math. Probl. Eng. 2019, 2019, 4789194. [Google Scholar] [CrossRef]
- Zhou, N.; Dong, T.; Wu, J. Novel image encryption algorithm based on multiple-parameter discrete fractional random transform. Opt. Commun. 2010, 283, 3037–3042. [Google Scholar] [CrossRef]
- Lang, J. Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform. Opt. Commun. 2012, 285, 2584–2590. [Google Scholar] [CrossRef]
- Lang, J. A no-key-exchange secure image sharing scheme based on Shamir’s three-pass cryptography protocol and the multiple-parameter fractional Fourier transform. Opt. Express 2012, 20, 2386–2398. [Google Scholar] [CrossRef]
- Ran, Q.; Zhao, T.; Yuan, L.; Wang, J.; Xu, L. Vector power multiple-parameter fractional Fourier transform of image encryption algorithm. Opt. Lasers Eng. 2014, 62, 80–86. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q.; Yuan, L.; Chi, Y.; Ma, J. Security of image encryption scheme based on multi-parameter fractional Fourier transform. Opt. Commun. 2016, 376, 47–51. [Google Scholar] [CrossRef]
- Kang, X.; Tao, R.; Zhang, F. Multiple-Parameter Discrete Fractional Transform and its Applications. IEEE Trans. Signal Process. 2016, 64, 3402–3417. [Google Scholar] [CrossRef]
- Chen, B.; Yu, M.; Tian, Y.; Li, L.; Wang, D.; Sun, X. Multiple-parameter fractional quaternion Fourier transform and its application in colour image encryption. IET Image Process. 2018, 12, 2238–2249. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, S.; Ran, Q. Optical image encryption based on multifractional Fourier transforms. Opt. Lett. 2000, 25, 1159–1161. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, S. Optical image encryption based on the generalized fractional convolution operation. Opt. Commun. 2001, 195, 371–381. [Google Scholar] [CrossRef]
- Shih, C.C. Fractionalization of Fourier-Transform. Opt. Commun. 1995, 118, 495–498. [Google Scholar] [CrossRef]
- Candan, C.; Kutay, M.A.; Ozaktas, H.M. The discrete fractional Fourier transform. IEEE Trans. Signal Process. 2000, 48, 1329–1337. [Google Scholar] [CrossRef] [Green Version]
- McClellan, J.; Parks, T. Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoust. 1972, 20, 66–74. [Google Scholar] [CrossRef]
- Dickinson, B.; Steiglitz, K. Eigenvectors and functions of the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1982, 30, 25–31. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Chi, Y. Key Validity Using the Multiple-Parameter Fractional Fourier Transform for Image Encryption. Symmetry 2021, 13, 1803. https://doi.org/10.3390/sym13101803
Zhao T, Chi Y. Key Validity Using the Multiple-Parameter Fractional Fourier Transform for Image Encryption. Symmetry. 2021; 13(10):1803. https://doi.org/10.3390/sym13101803
Chicago/Turabian StyleZhao, Tieyu, and Yingying Chi. 2021. "Key Validity Using the Multiple-Parameter Fractional Fourier Transform for Image Encryption" Symmetry 13, no. 10: 1803. https://doi.org/10.3390/sym13101803
APA StyleZhao, T., & Chi, Y. (2021). Key Validity Using the Multiple-Parameter Fractional Fourier Transform for Image Encryption. Symmetry, 13(10), 1803. https://doi.org/10.3390/sym13101803