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Abstract: Let G be a graph with vertex set V(G) and edge set E(G). A graph invariant for G is a num-
ber related to the structure of G which is invariant under the symmetry of G. The Sombor and reduced
Sombor indices of G are two new graph invariants defined as SO(G) = ∑uv∈E(G)

√
dG(u)2 + dG(v)2

and SOred(G) = ∑uv∈E(G)

√(
dG(u)− 1

)2
+
(
dG(v)− 1

)2, respectively, where dG(v) is the degree of
the vertex v in G. We denote by Hn,ν the graph constructed from the star Sn by adding ν edge(s),
0 ≤ ν ≤ n− 2, between a fixed pendent vertex and ν other pendent vertices. Réti et al. [T. Réti,
T Došlić and A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021) 11–18] proposed a
conjecture that the graph Hn,ν has the maximum Sombor index among all connected ν-cyclic graphs
of order n, where 0 ≤ ν ≤ n− 2. In some earlier works, the validity of this conjecture was proved
for ν ≤ 5. In this paper, we confirm that this conjecture is true, when ν = 6. The Sombor index in
the case that the number of pendent vertices is less than or equal to n− ν− 2 is investigated, and
the same results are obtained for the reduced Sombor index. Some relationships between Sombor,
reduced Sombor, and first Zagreb indices of graphs are also obtained.

Keywords: Sombor index; reduced Sombor index; first Zagreb index; extremal problem

MSC: 05C07; 05C09; 05C35

1. Basic Definitions

Throughout this paper, all graphs considered are finite, undirected, and simple. Let
G be such a graph with vertex set V = V(G) and edge set E = E(G). We recall that the
degree of a vertex v in G, dG(v), is defined as the number of edges incident to v. Let ∆
be the maximum degree in G. The set of all vertices adjacent to the vertex v is denoted
by N(G, v). The edge degree of e ∈ E(G) is the degree of e in the line graph of G. If we
define εi = εi(G) to be the number of edges of degree i in G, then it can be easily seen that

∑
2∆(G)−2
i=0 εi = |E(G)|. We also use the notation mi,j(G) for the number of edges of G with

endpoints of degrees i and j.
A graph G with this property that the degree of each vertex is at most four is called a

chemical graph. Suppose V(G) = {v1, v2, . . . , vn} and dG(v1) ≥ dG(v2) ≥ · · · ≥ dG(vn).
Then, the sequence d(G) = (dG(v1), dG(v2), . . . , dG(vn)) is called the degree sequence of G.
The graph union G ∪ H of two graphs G and H with disjoint vertex sets is another graph
with V(G ∪ H) = V(G) ∪ V(H) and E(G ∪ H) = E(G) ∪ E(H). The union of s disjoint
copies is denoted by s G. The join G + H of two graphs G and H with disjoint vertex sets is
a graph with vertex set V(G ∪ H) and edge set E(G ∪ H) ∪ {uv | u ∈ V(G) ∧ v ∈ V(H)}.

Suppose f is an edge and u, v are two non-adjacent vertices of G. Then, G− f is the
subgraph of G obtained by deleting the edge f and G + uv is a graph obtained from G by
adding an edge connecting u and v.

Suppose G is a connected graph with exactly n vertices and m edges. The cyclomatic
number of G is defined as ν(G) = m− n+ 1 and a ν-cyclic graph is a graph with cyclomatic
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number ν. For terms and notations not defined here, we follow the standard texts in graph
theory as the famous book of West [1].

A graph invariant for G is a number related to the structure of G which is invariant
under the symmetry of G. The first Zagreb index of a graph G is an old degree-based graph
invariant introduced by Gutman and Trinajstić [2] defined as M1(G) = ∑uv∈E(G)[dG(u) +
dG(v)] = ∑v∈V(G) dG(v)2. In a recent paper about the general form of all degree-based
topological indices of graphs [3], Gutman introduced two new invariants and invited
researchers to investigate their mathematical properties and chemical meanings. He used
the names “Sombor index” and “reduced Sombor index” for his new graphical invariants.
The Sombor and reduced Sombor indices are defined as follows:

SO(G) = ∑
uv∈E(G)

√
dG(u)2 + dG(v)2,

SOred(G) = ∑
uv∈E(G)

√(
dG(u)− 1

)2
+
(
dG(v)− 1

)2.

Very recently, Redžepović [4] discussed chemical applicability on the Sombor index
of graphs. Specifically, the Sombor index was used to model entropy and enthalpy of va-
porization of alkanes with satisfactory prediction potential, indicating that this topological
index may be used successfully on modeling thermodynamic properties of compounds.
In the same paper, the level of the predicting power of the Sombor index and its degeneracy
were tested.

We refer to [5,6], for more information on degree-based topological indices of graphs
and their extremal problems.

Let Γ(s, n) denote the set of all decreasing real sequences c = (c1, c2, . . . , cn) such that
∑n

i=1 ci = s. Define a relation � on Γ(s, n) as follows: For two decreasing real sequences
c = (c1, c2, . . . , cn) and d = (d1, d2, . . . , dn) in Γ(s, n), we write c � d if and only if for each
integer k, 1 ≤ k ≤ n− 1, we have ∑k

i=1 ci ≤ ∑k
i=1 di. It is easy to see that (Γ(s, n),�) is a

partially ordered set. The partial order � is called the majorization and, if c � d, then we
say that c is majorized by d. We refer the interested readers to consult the survey article [7]
and the book [8], for more information on majorization theory and its applications in
graph theory.

Suppose X ⊆ Rn and a, b ∈ X are different points in X. The line segment ab is the
set of all points λa + (1− λ)b, where 0 < λ < 1. The set X is said to be convex, if for
every point a, b ∈ X, ab ⊆ X. Let X ⊆ Rn be convex. The function f : X −→ R is called
a convex function, if for any a, b ∈ X and 0 < λ < 1, we have f (λa + (1− λ)b) ≤ λ f (a)
+ (1− λ) f (b). If f is convex and we have strict inequality for all a 6= b, then we say the
function is strictly convex. It is well-known that if I is an open interval and g : I −→ R
is a real twice-differentiable function on I, then g is convex if and only if for each x ∈ I,
g′′(x) ≥ 0. The function g is strictly convex on I, if g′′(x) > 0 for all x ∈ I.

2. Background Materials

In [3], Gutman proved that, among all n-vertex graphs, the empty graph Kn and
the complete graph Kn have the minimum and maximum Sombor indices, respectively.
He also proved that, if we restrict our attention to the n-vertex connected graph, then
the n-vertex path Pn will attain the minimum Sombor index. He also proved in [9] that
M1(G) ≥ SO(G) ≥ 1√

2
M1(G), and, if G has m edges, then M1(G)− 2m ≥ SOred(G) ≥

1√
2
(M1(G)− 2m).

Cruz et al. [10] characterized the extremal graphs with respect to the Sombor index
over the set of all n-vertex chemical graphs, connected chemical graphs, chemical trees,
and hexagonal systems. Cruz and Rada [11], studied the extremal values of Sombor index
over the set of all unicyclic and also bicyclic graphs of a given order. In a recent work,
Das et al. [12] obtained lower and upper bounds for the Sombor index of graphs based
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on some other graph parameters. Moreover, they obtained some relationships between
Sombor index and the first and second Zagreb indices of graphs.

Deng et al. [13] investigated the chemical importance of the Sombor index and
obtained the extremal values of the reduced Sombor index for chemical trees. Milo-
vanović et al. [14] investigated the relationship between Sombor index and Albertson index
which is an old irregularity measure for graphs, and, in [4], Redz̆epović examined the pre-
dictive and discriminative potentials of Sombor and reduced Sombor indices of chemical
graphs. Wang et al. [15] investigated the relationships between the Sombor index and some
degree based invariants, and obtained some Nordhaus–Gaddum type results. In [16,17],
the authors presented some bounds on the Sombor index of some class of graphs in terms
of graph parameters and characterized the extremal graphs. Ghanbari and Alikhani [18]
computed this index for certain graphs and examined its effects under some operations on
vertex and edge of G. As a consequence, they presented bounds for the Sombor index of
the join and corona product of two graphs.

The following lemma [19] is useful in some of our results.

Lemma 1. Suppose c = (c1, c2, . . . , cn) and d = (d1, d2, . . . , dn) are two decreasing sequences of
real numbers. If c � d, then, for any convex function f , ∑n

i=1 f (ci) ≤ ∑n
i=1 f (di). Furthermore,

if c ≺ d and f is a strictly convex function, then ∑n
i=1 f (ci) < ∑n

i=1 f (di).

The graph constructed from the star Sn by adding ν edge(s), 0 ≤ ν ≤ n− 2, between a
fixed pendent vertex and ν other pendent vertices is denoted by Hn,ν [20].

Conjecture 1 (Réti et al. [20]). If ν and n are fixed integers satisfying the inequality 5 ≤ ν ≤
n− 2, then, among all connected ν-cyclic graphs of order n, only the graph Hn,ν has the maximum
Sombor index.

3. New Bounds on the Sombor Index

The aim of this section is to present some new bounds on Sombor and reduced Sombor
indices of graphs. The relationship between the Sombor index, reduced Sombor index, and
the first Zagreb index of graphs will also be investigated.

Lemma 2. Let G be an n-vertex connected graph with cyclomatic number ν and degree sequence
d(G) = (dG(v1), dG(v2), . . . , dG(vn)) with this property that the number of pendent vertices is
less than or equal to n− ν− 2. If 0 ≤ ν ≤ n− 2 and dG(v1) = n− 1, then

(dG(v2), dG(v3), . . . , dG(vn)) � (ν + 1,

ν︷ ︸︸ ︷
2, . . . , 2,

n−ν−2︷ ︸︸ ︷
1, . . . , 1). (1)

Proof. We have ν = m− n + 1. Moreover,

n

∑
i=2

dG(vi) = 2m− dG(v1) = 2ν + 2n− 2− dG(v1) = 2ν + n− 1.

On the other hand, the sum of all integers on the right hand side of (1) is again
2ν + n − 1. Let c = (c2, . . . , cn) = (dG(v2), . . . , dG(vn)) and let d = (d2, . . . , dn) = (ν +
1, 2, . . . , 2, 1, . . . , 1), where the multiplicities of the numbers 1 and 2 in the last sequence are
n− ν− 2 and ν, respectively. Thus, we have

n

∑
i=2

ci =
n

∑
i=2

dG(vi) = 2ν + n− 1 =
n

∑
i=2

di. (2)

Since the number of pendent vertices is less than or equal to n − ν − 2 in G, one
can easily see that ci ≥ di for i = 3, 4, . . . , n. From this result with (2), we conclude that
∑k

i=2 ci ≤ ∑k
i=2 di (2 ≤ k ≤ n− 1). Hence, c � d. This completes the proof of the result.
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Lemma 3 (Réti et al. [20]). Suppose G is a connected graph with a maximum Sombor index
among all connected graphs with n vertices and cyclomatic number ν. If 0 ≤ ν ≤ n− 2, then
∆(G) = n− 1.

Define SO‡(G) = ∑uv∈ E(G)

√
(dG(u) + 1)2 + (dG(v) + 1)2.

Lemma 4. Let G be a graph with n vertices and m edges. Then,

SO‡(G) ≤ m
√
(m + 1)2 + 4.

For m ≤ n− 1, the equality holds if and only if G ∼= Sm+1 ∪ (n−m− 1)K1.

Proof. For any uv ∈ E(G), we have dG(u) + dG(v) ≤ m + 1. Note that the function
g(x) = (x + 1)2 is strictly convex on (−∞, ∞). For any edge uv ∈ E(G), we have√

(dG(u) + 1)2 + (dG(v) + 1)2 ≤
√
(dG(u) + 1 + m + 1− dG(u)− dG(v))2 + (dG(v) + 1)2 (3)

and (dG(u) + m + 1− dG(u)− dG(v), dG(v)) � (m, 1). Moreover, the equality holds in (3)
if and only if dG(u) + dG(v) = m + 1. For any uv ∈ E(G), by Lemma 1, we have√

(dG(u) + 1 + m + 1− dG(u)− dG(v))2 + (dG(v) + 1)2 ≤
√
(m + 1)2 + 4

with equality holding if and only if (dG(u) + m + 1 − dG(u) − dG(v), dG(v)) = (m, 1).
For any uv ∈ E(G), we obtain√

(dG(u) + 1)2 + (dG(v) + 1)2 ≤
√
(m + 1)2 + 4

with equality holding if and only if (dG(u), dG(v)) = (m, 1). Hence,

SO‡(G) = ∑
uv∈ E(G)

√
(dG(u) + 1)2 + (dG(v) + 1)2

≤ ∑
uv∈ E(G)

√
(m + 1)2 + 4

= m
√
(m + 1)2 + 4.

Moreover, the above equality holds if and only if G ∼= Sm+1 ∪ (n − m − 1)K1 as
m ≤ n− 1.

Lemma 5. Let n ≥ 3. The two functions f (x) =
√
(n− 1)2 + x2 and g(x) =

√
(n− 2)2 + (x− 1)2

are strictly convex on (−∞, ∞).

Proof. We have f ′′(x) = (n−1)2

(x2+(n−1)2)
3
2

. Therefore, for each r, r ∈ (−∞, ∞), we have

f ′′(r) > 0. This proves that f is strictly convex on (−∞, ∞). Similarly, one can easily prove
that g(x) =

√
(n− 2)2 + (x− 1)2 is strictly convex on (−∞, ∞).

Lemma 6. Let G be a connected graph with cyclomatic number ν (0 ≤ ν ≤ n− 2) and vertex
set V(G) = {v1, v2, . . . , vn} with the condition that the number of pendent vertices is less than or
equal to n− ν− 2. If d(G) = (n− 1, dG(v2), . . . , dG(vn)); then,
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∑
v∈V(G)\{v1}

√
(n− 1)2 + dG(v)2 ≤ (n− ν− 2)

√
(n− 1)2 + 1 + ν

√
(n− 1)2 + 4

+
√
(n− 1)2 + (ν + 1)2

with equality if and only if G ∼= Hn,ν.

Proof. Suppose f (x) =
√
(n− 1)2 + x2. By Lemma 5, f is strictly convex on (−∞, ∞).

By Lemma 2, (dG(v2), dG(v3), . . . , dG(vn)) � (ν + 1, 2, . . . , 2, 1, . . . , 1), where the multi-
plicities of the numbers 1 and 2 in the last sequence are n − ν − 2 and ν, respectively.

Now, Lemma 1 implies that ∑v∈V(G)\{v1}
√
(n− 1)2 + dG(v)2 ≤ (n− ν− 2)

√
(n− 1)2 + 1

+ ν

√
(n− 1)2 + 4 +

√
(n− 1)2 + (ν + 1)2 with equality if and only if G ∼= Hn,ν.

We are now ready to prove one of the main results of this section.

Theorem 1. Let G be a connected graph with a maximum value of Sombor index among all
n-vertex connected graphs with cyclomatic number ν and assume that the number of pendent
vertices is less than or equal to n − ν − 2. If 0 ≤ ν ≤ n − 2, then G ∼= Hn,ν and SO(G) =

(n− ν− 2)
√
(n− 1)2 + 1 + ν

√
(n− 1)2 + 4 +

√
(n− 1)2 + (ν + 1)2 + ν

√
(ν + 1)2 + 4.

Proof. By Lemma 3, we have ∆(G) = n − 1. Suppose u ∈ V(G) and dG(u) = n − 1.
By definition of Sombor index, SO(G) = ∑v∈V(G)\{u}

√
(n− 1)2 + dG(v)2 + SO‡(G− u).

Since G − u is a graph of order n− 1 with ν edges, Lemmas 4 and 6 imply that SO(G)

≤ (n− ν− 2)
√
(n− 1)2 + 1 + ν

√
(n− 1)2 + 4 +

√
(n− 1)2 + (ν + 1)2 + ν

√
(ν + 1)2 + 4,

with equality if and only if G ∼= Hn,v. This completes the proof of the theorem.

Lemma 7. If G is an n-vertex graph with exactly m edges, then

SO(G) ≤ m
√

m2 + 1 and SOred(G) ≤ m(m− 1)

with equalities if and only if m ≤ n− 1 and G ∼= Sm+1 ∪ (n−m− 1)K1.

Proof. Suppose uv ∈ E(G). Since G is a graph with m edges, dG(u) + dG(v) ≤ m + 1.
On the other hand, the functions f (x) = x2 and g(x) = (x − 1)2 are strictly convex on
(−∞, ∞), and increasing on [1, ∞). Therefore,√

dG(u)2 + dG(v)2 ≤
√
(dG(u) + λ)2 + dG(v)2 (4)

and √
(dG(u)− 1)2 + (dG(v)− 1)2 ≤

√
(dG(u)− 1 + λ)2 + (dG(v)− 1)2, (5)

where λ = m + 1 − (dG(u) + dG(v)). The equalities in (4) and (5) hold if and only if
dG(u) + dG(v) = m + 1. Furthermore, (dG(u) + λ, dG(v)) � (m, 1), and, by Lemma 1,
we obtain √

(dG(u) + λ)2 + dG(v)2 ≤
√

m2 + 1 (6)

and √
(dG(u)− 1 + λ)2 + (dG(v)− 1)2 ≤ (m− 1). (7)
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The equalities in (6) and (7) hold if and only if (dG(u) + λ, dG(v)) = (m, 1). Therefore,
by (4)–(7),

SO(G) = ∑
uv∈ E(G)

√
dG(u)2 + dG(v)2 ≤ ∑

uv∈ E(G)

√
m2 + 1 = m

√
m2 + 1

and

SOred(G) = ∑
uv∈ E(G)

√
(dG(u)− 1)2 + (dG(v)− 1)2 ≤ ∑

uv∈ E(G)

(m− 1) = m(m− 1).

The equalities hold if and only if m ≤ n− 1 and G ∼= Sm+1 ∪ (n−m− 1)K1, proving
the lemma.

Corollary 1. If T is an n-vertex tree, then

SO(T) ≤ (n− 1)
√
(n− 1)2 + 1 and SOred(T) ≤ (n− 1)(n− 2).

The equalities hold if and only if T ∼= Sn.

Lemma 8. Let G be a graph with maximum reduced Sombor index among all connected graphs
with n vertices and cyclomatic number ν. Then, ∆(G) = n− 1.

Proof. Suppose v ∈ V(G), dG(v) = ∆(G), N(G, v) = {x1, x2, . . . , x∆} and dG(v) ≤ n− 2.
Since G is a connected graph, there exists a positive integer i, 1 ≤ i ≤ ∆, such that
A = N(G, xi)\ (N(G, v) ∪ {v}) 6= ∅. Assume that G′ = G − {xia| a ∈ A} + {va| a ∈
A}, B = N(G, xi) ∩ N(G, v), C = N(G, v)\(B ∪ {xi}) and µ = SOred(G) − SOred(G′).
By definitions,

µ = ∑
a∈ A

√
(dG(a)− 1)2 + (dG(xi)− 1)2 + ∑

b∈ B

√
(dG(b)− 1)2 + (dG(xi)− 1)2

+ ∑
b∈ B

√
(dG(b)− 1)2 + (∆− 1)2 + ∑

c∈C

√
(dG(c)− 1)2 + (∆− 1)2

+
√
(dG(xi)− 1)2 + (∆− 1)2 −

[
∑

a∈ A

√
(dG(a)− 1)2 + (∆ + |A| − 1)2

+ ∑
b∈ B

√
(dG(b)− 1)2 + (dG(xi)− |A| − 1)2 + ∑

b∈ B

√
(dG(b)− 1)2 + (∆ + |A| − 1)2

+ ∑
c∈C

√
(dG(c)− 1)2 + (∆ + |A| − 1)2 +

√
(dG(xi)− |A| − 1)2 + (∆ + |A| − 1)2

]
< ∑

b∈ B

√
(dG(b)− 1)2 + (dG(xi)− 1)2 + ∑

b∈ B

√
(dG(b)− 1)2 + (∆− 1)2

+
√
(dG(xi)− 1)2 + (∆− 1)2 −

[
∑

b∈ B

√
(dG(b)− 1)2 + (dG(xi)− |A| − 1)2

+ ∑
b∈ B

√
(dG(b)− 1)2 + (∆ + |A| − 1)2 +

√
(dG(xi)− |A| − 1)2 + (∆ + |A| − 1)2

]
(8)
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On the other hand, the functions h1(x) =
√
(dG(b)− 1)2 + (x− 1)2, b ∈ B, and

h2(x) = (x− 1)2 are strictly convex on (−∞, ∞), and
(
∆, dG(xi)

)
≺
(
∆+ |A|, dG(xi)− |A|

)
.

Apply Lemma 1 to obtain

∑
b∈ B

√
(dG(b)− 1)2 + (dG(xi)− 1)2 + ∑

b∈ B

√
(dG(b)− 1)2 + (∆− 1)2

+
√
(dG(xi)− 1)2 + (∆− 1)2 < ∑

b∈ B

√
(dG(b)− 1)2 + (dG(xi)− |A| − 1)2

+ ∑
b∈ B

√
(dG(b)− 1)2 + (∆ + |A| − 1)2 +

√
(dG(xi)− |A| − 1)2 + (∆ + |A| − 1)2. (9)

Now, by (8) and (9), SOred(G)− SOred(G′) < 0, contradicted by the fact that SOred(G)
is maximum. Thus, ∆(G) = n− 1. This completes the proof.

Lemma 9. Let G be a connected graph of order n (≥ 3) with cyclomatic number ν (0 ≤ ν ≤ n− 2)
and vertex set V(G) = {v1, v2, . . . , vn} with the condition that the number of pendent vertices is
less than or equal to n− ν− 2. If d(G) = (n− 1, dG(v2), . . . , dG(vn)), then

∑
v∈V(G)\{v1}

√
(n− 2)2 + (dG(v)− 1)2 ≤(n− ν− 2)(n− 2) + ν

√
(n− 2)2 + 1

+

√
(n− 2)2 + ν2

with equality if and only if G ∼= Hn,ν.

Proof. Suppose g(x) =
√
(n− 2)2 + (x− 1)2. By Lemma 5, g is strictly convex on

(−∞, ∞). By Lemma 2, (dG(v2), dG(v3), . . . , dG(vn)) � (ν + 1, 2, . . . , 2, 1, . . . , 1), where
the multiplicities of the numbers 1 and 2 in the last sequence are n− ν− 2 and ν, respec-
tively. By Lemma 1, we obtain

∑
v∈V(G)\{v1}

√
(n− 2)2 + (dG(v)− 1)2 ≤(n− ν− 2)(n− 2) + ν

√
(n− 2)2 + 1

+

√
(n− 2)2 + ν2

with equality if and only if G ∼= Hn,ν.

The following theorem is the second main result of this section.

Theorem 2. Suppose G has maximum reduced Sombor index among all n-vertex graphs with
cyclomatic number ν and assume that the number of pendent vertices is less than or equal to n− ν−
2. If 0 ≤ ν ≤ n− 2, then G ∼= Hn,ν and SOred(G) = (n− ν− 2)(n− 2) + ν

√
(n− 2)2 + 1 +

ν
√

ν2 + 1 +
√
(n− 2)2 + ν2.

Proof. By Lemma 8, we have ∆(G) = n− 1. Suppose u ∈ V(G) and dG(u) = n− 1. By def-
inition of a reduced Sombor index, SOred(G) = ∑v∈V(G)\{u}

√
(n− 2)2 + (dG(v)− 1)2 +

SO(G − u). Since G − u is a graph of order n− 1 with ν edges, Lemmas 7 and 9 imply

that SOred(G) ≤ (n− ν− 2)(n− 2) + ν

√
(n− 2)2 + 1 + ν

√
ν2 + 1 +

√
(n− 2)2 + ν2 with

equality if and only if G ∼= Hn,v.

The following lemma is useful in finding some new lower bounds for the Sombor and
reduced Sombor indices of graphs.
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Lemma 10 (Ref. [21]). If G is a graph with n vertices, m edges, and without isolated edges. Then,
ε1(G) = 4m−M1(G) + ∑2n−4

i=3 εi(G)(i− 2) and ε2(G) = M1(G) − 3m − ∑2n−4
i=3 εi(G)(i− 1).

Suppose x and y are two positive real numbers and x + y− 2 = s. Since x2 + y2 −
(s+2)2

2 = x2 + y2 − (x+y)2

2 = 1
2 (x− y)2, x2 + y2 ≥ (s+2)2

2 , and the equality holds if and only

if x = y. Thus,
√

x2 + y2 ≥
√

2(s+2)
2 , and the equality holds if and only if x = y. We now

give two lower bounds on Sombor index and reduced Sombor index for connected graph
G in terms of m and the first Zagreb index.

Theorem 3. Let G be a connected graph with n ≥ 3 vertices and m edges. Then, SO(G)

≥ 1
3

(
2
√

2−
√

5
)(

3 M1(G)− 4 m + 2
√

5
√

2m
)

and SOred(G) ≥
(√

2− 1
)
(M1(G)− 2 m+

√
2m). The equalities hold if and only if G ∼= Pn or G ∼= Cn.

Proof. By definition of Sombor index,

SO(G) = ∑
1≤ i≤ j≤ n−1

mi,j(G)
√

i2 + j2

= m1,2
√

5 + m1,3
√

10 + m2,2
√

8 +
n−1

∑
j=4

m1,j

√
1 + j2 +

n−1

∑
j=3

m2,j

√
4 + j2

+ ∑
3≤i≤j≤n−1

mi,j

√
i2 + j2

and by our discussion before the statement of this theorem,

SO(G) ≥ m1,2
√

5 + m1,3
√

10 + m2,2
√

8 +
n−1

∑
j=4

m1,j

√
2(j + 1)

2
+

n−1

∑
j=3

m2,j

√
2(j + 2)

2

+ ∑
3≤i≤j≤n−1

mi,j

√
2(i + j)

2
.

On the other hand, ∑1≤i≤j≤n−1 mi,j − (m1,2 + m1,3 + m2,2) = ∑2n−4
i=3 εi(G). Therefore,

by definition of εi(G), 1 ≤ i ≤ 2n− 4,

SO(G) ≥ m1,2
√

5 + m1,3
√

10 + m2,2
√

8 +
2n−4

∑
i=3

εi(G)

√
2(i + 2)

2

≥ m1,2
√

5 +
(
m1,3 + m2,2

)√
8 +

2n−4

∑
i=3

εi(G)

√
2(i + 2)

2

= ε1(G)
√

5 + ε2(G)
√

8 +
2n−4

∑
i=3

εi(G)

√
2(i + 2)

2
.

The equality holds if and only if m = m1,2 + ∑n−1
i=2 mi,i. Now, by Lemma 10,

SO(G) ≥
[
4m−M1(G) +

2n−4

∑
i=3

εi(G)(i− 2)
]√

5 +
2n−4

∑
i=3

εi(G)

√
2(i + 2)

2

+
[

M1(G)− 3m−
2n−4

∑
i=3

εi(G)(i− 1)
]√

8

=
[
4m−M1(G)

]√
5 +

[
M1(G)− 3m

]√
8 +

1
2

2n−4

∑
i=3

εi(G)
(
2
√

5− 3
√

2
)(

i− 2
)

≥ 1
3

(
2
√

2−
√

5
)(

3 M1(G)− 4 m + 2
√

5
√

2m
)

.
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The equality holds if and only if m = m1,2 + m2,2 that is, if and only if G ∼= Pn or
G ∼= Cn. By definition of a reduced Sombor index,

SOred(G) = ∑
1≤ i≤ j≤ n−1

mi,j(G)
√
(i− 1)2 + (j− 1)2

= m1,2 + 2m1,3 +
√

2m2,2 +
n−1

∑
j=4

m1,j

√
(j− 1)2 +

n−1

∑
j=3

m2,j

√
1 + (j− 1)2

+ ∑
3≤i≤j≤n−1

mi,j

√
(i− 1)2 + (j− 1)2.

Using the same technique in the proof of first part, we obtain

SOred(G) ≥ m1,2 + 2m1,3 +
√

2m2,2 +
2n−4

∑
i=3

εi(G)

√
2i

2

≥ m1,2 +
√

2
(
m1,3 + m2,2

)
+

2n−4

∑
i=3

εi(G)

√
2i

2

= ε1(G) +
√

2ε2(G) +
2n−4

∑
i=3

εi(G)

√
2i

2
.

The equality holds if and only if m = m1,2 + ∑n−1
i=2 mi,i. Now, by Lemma 10,

SOred(G) ≥
[
4m−M1(G) +

2n−4

∑
i=3

εi(G)(i− 2)
]
+

2n−4

∑
i=3

εi(G)

√
2i

2

+
√

2
[

M1(G)− 3m−
2n−4

∑
i=3

εi(G)(i− 1)
]

≥
[
4m−M1(G)

]
+
√

2
[

M1(G)− 3m
]
+

1
2

2n−4

∑
i=3

εi(G)
(
2−
√

2
)(

i− 2
)

≥
(√

2− 1
)(

M1(G)− 2 m +
√

2m
)

.

The equality holds if and only if m = m1,2 + m2,2, that is, if and only if G ∼= Pn or
G ∼= Cn.

4. The Case of ν = 6

The aim of this section is to prove the case of ν = 6 in Conjecture 1. In addition, we
give some information on the structure of the graphs with maximum Sombor index (resp.
reduced Sombor index) among connected n-vertex ν-cyclic graphs. To do this, let ES be the
set of graphs G of order at least 1 satisfying: for any vertices v and v′ of G, if dG(v) ≤ dG(v′),
then N(G, v) is a subset of N(G, v′) ∪ {v′}. In addition, assume that G(n, ν) denotes the
set of all graphs with exactly n vertices and cyclomatic number ν, where 0 ≤ ν ≤ n− 2.
If G ∈ G(n, ν), then we use that notation n1(G) for the number of pendent vertices of G.
If 0 ≤ ν ≤ n− 2, then we define:

Ωn,ν
1 = {G ∈ G(n, ν)|∆(G) ≤ n− 2},

Ωn,ν
2 = {G ∈ G(n, ν)|∆(G) = n− 1 and n1(G) ≤ n− ν− 2},

Ωn,ν
3 = {G ∈ G(n, ν)|∆(G) = n− 1, n1(G) ≥ n− ν− 1 and G 6∈ ES},

Ωn,ν
4 = {G ∈ G(n, ν)|∆(G) = n− 1, n1(G) ≥ n− ν− 1 and G ∈ ES},

It is easy to see that {Ωn,ν
1 , Ωn,ν

2 , Ωn,ν
3 , Ωn,ν

4 } is a partition for G(n, ν).
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Lemma 11. Let G be a graph with a maximum Sombor index among connected graphs with n
vertices and cyclomatic number ν. Then, ∆(G) = n− 1.

The proof of Lemma 11 is similar to that of Lemma 8, so we omit it.

Lemma 12. Let G be a graph with maximum Sombor index (resp. reduced Sombor index) among
connected n-vertex ν-cyclic graphs. Then, G is in ES.

Proof. We prove this result by contradiction. For this, we assume that u, v ∈ V(G),
dG(u) ≤ dG(v) and N(G, u)\ (N(G, v) ∪ {v}) = {u1, . . . , ur}, r ≥ 1. Assume that
G′ = G− {uui|i = 1, . . . , r}+ {vui|i = 1, . . . , r}, A = N(G, u) ∩ N(G, v), Λ = SO(G)−
SO(G′) and Υ = SOred(G) − SOred(G′). By Lemmas 8 and 11, G′ is a connected n-
vertex ν-cyclic graph. Now, via the majorization technique, one can easily check that√

dG(u)2 + dG(v)2 <
√
(dG(u)− r)2 + (dG(v) + r)2 and

√
(dG(u)− 1)2 + (dG(v)− 1)2 <√

(dG(u)− r− 1)2 + (dG(v) + r− 1)2. Therefore, by definitions,

Λ ≤
r

∑
i=1

√
dG(u)2 + dG(ui)2 + ∑

a∈ A

√
dG(u)2 + dG(a)2 + ∑

a∈ A

√
dG(v)2 + dG(a)2

−
[ r

∑
i=1

√
(dG(v) + r)2 + dG(ui)2 + ∑

a∈ A

√
(dG(u)− r)2 + dG(a)2

+ ∑
a∈ A

√
(dG(v) + r)2 + dG(a)2

]
, (10)

Υ ≤
r

∑
i=1

√
(dG(u)− 1)2 + (dG(ui)− 1)2 + ∑

a∈ A

√
(dG(u)− 1)2 + (dG(a)− 1)2

+ ∑
a∈ A

√
(dG(v)− 1)2 + (dG(a)− 1)2 −

[ r

∑
i=1

√
(dG(v) + r− 1)2 + (dG(ui)− 1)2

+ ∑
a∈ A

√
(dG(u)− r− 1)2 + (dG(a)− 1)2 + ∑

a∈ A

√
(dG(v) + r− 1)2 + (dG(a)− 1)2

]
. (11)

The equalities hold if and only if uv 6∈ E(G). On the other hand,

r

∑
i=1

√
dG(u)2 + dG(ui)2 <

r

∑
i=1

√
(dG(v) + r)2 + dG(ui)2,

r

∑
i=1

√
(dG(u)− 1)2 + (dG(ui)− 1)2 <

r

∑
i=1

√
(dG(v) + r− 1)2 + (dG(ui)− 1)2.

The functions h1(x) =
√

x2 + dG(a)2 and h2(x) =
√
(x− 1)2 + (dG(a)− 1)2, a ∈ A,

are strictly convex on (−∞, ∞), and
(
dG(v), dG(u)

)
≺
(
dG(v) + r, dG(u)− r

)
. By Lemma 1,

from (10) and (11), we obtain SO(G)− SO(G′) < 0 and SOred(G)− SOred(G′) < 0, con-
tradicted by the fact that SO(G) (resp. SOred(G)) is maximum. Thus, G is in ES. This
completes the proof.

Lemma 13. Let G be a graph in ES of order at least 2. Then, G has an isolated or universal vertex
u, with G− {u} being in ES.

Proof. Let G be in ES. Assume that G has no isolated vertex and let v be a vertex of G
with a maximum degree, and let u ∈ V(G)\{v} and w ∈ N(G, u). As G is in ES and
dG(w) ≤ dG(v), N(G, w) ⊆ N(G, v) ∪ {v}. Thus, uv ∈ E(G), and therefore v is universal
vertex in G. It is easy to check that, if u is isolated or universal, then G− {u} is in ES.

The following characterization of ES gives some information on the structure of the
graphs with maximum Sombor index (resp. reduced Sombor index) among connected
n-vertex ν-cyclic graphs.
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Lemma 14. The following statements hold:

(1) K1 is in ES,
(2) if G is in ES, then G ∪ K1 is in ES,
(3) if G is in ES, then G + K1 is in ES,
(4) each graph of ES is obtained from K1 by applying rules 2) and 3) a finite number of times.

Proof. If G is in ES, then it is easy to see that G ∪ K1 and G + K1 is in ES. In addition,
by induction on order of graph and using Lemma 13, one can easily check that any graph
in ES is obtained from K1 by applying rules (2) and (3) a finite number of times.

Theorem 4. Let G ∈ G(n, ν). If G has a maximum Sombor index or a reduced Sombor index,
then G ∈ Ωn,ν

4 or G ∼= Hn,ν.

Proof. The proof follows from Lemmas 3, 8 and 12 and Theorems 1 and 2.

In the following theorem, it is proved that Conjecture 1 for the case that ν = 6 is correct.

Theorem 5. Let n is a positive integer greater than or equal to 8. Then, the graph Hn,6 has
maximum SO and SOred among all n−vertex connected graphs with cyclomatic number 6.

Proof. Suppose G1, G2 and G3 are graphs which are depicted in Figure 1. In addition,
suppose F1 = (G1 ∪ (n− 5)K1) + K1, F2 = (G2 ∪ (n− 6)K1) + K1, and F3 = (G3 ∪ (n−
7)K1) + K1. By Lemma 14, Ωn,6

4 = {F1, F2, F3}. Now, by the structures of the graphs F1, F2
and F3, it is easy to see that

SO(Hn,6)− SO(F1)

=

√
(n− 1)2 + 49− 4

√
(n− 1)2 + 16 + 6

√
53− 24

√
2− 3

√
(n− 1)2 + 1 + 6

√
(n− 1)2 + 4

> 7
√
(n− 1)2 + 4− 7

√
(n− 1)2 + 16 + 6

√
53− 24

√
2

= − 84√
(n− 1)2 + 4 +

√
(n− 1)2 + 16

+ 6
√

53− 24
√

2 > 4,

SOred(Hn,6)− SOred(F1)

= 6
√

37 + 6
√
(n− 2)2 + 1 +

√
(n− 2)2 + 36− 4

√
(n− 2)2 + 9− 18

√
2− 3

√
(n− 2)2

> 6
√

37 + 7
√
(n− 2)2 + 1− 18

√
2− 7

√
(n− 2)2 + 9 > 6,

SO(Hn,6)− SO(F2) > 5
√
(n− 1)2 + 4− 5

√
(n− 1)2 + 16 + 6

√
53− 10−

√
29− 2

√
34−

√
41 > 6,

SOred(Hn,6)− SOred(F2) > 5
√
(n− 2)2 + 1− 5

√
(n− 2)2 + 9−

√
17− 2

√
13 + 6

√
37− 4

√
5− 5 > 8,

SO(Hn,6)− SO(F7) > 3
√
(n− 1)2 + 4− 3

√
(n− 1)2 + 9− 6

√
5 + 6

√
53− 3

√
2− 6

√
2
√

5 > 6,

SOred(Hn,6)− SOred(F7) > 3
√
(n− 2)2 + 1− 3

√
(n− 2)2 + 4− 2

√
29− 3

√
26− 2

√
2 + 6

√
37 > 6.

Therefore, SO(Fi) < SO(Hn,6) and SOred(Fi) < SOred(Hn,6) for i ∈ {1, 2, 3}. Thus,
the proof follows from Theorem 4.

A similar argument as Theorem 5 shows that the graph Hn,ν, 0 ≤ ν ≤ 5, has the
maximum reduced Sombor index among all connected n−vertex graphs, n ≥ ν − 2.
By Theorem 4, Conjecture 1 can be reduced to the following conjecture:

Conjecture 2. Suppose n and ν are non-negative integers such that 7 ≤ ν ≤ n− 2. If G ∈ Ωn,ν
4 ,

then SO(G) < SO(Hn,ν) and SOred(G) < SOred(Hn,ν).
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A similar argument as Theorem 4.6 shows that the graph Hn,ν, 0 ≤ ν ≤ 5, has
the maximum reduced Sombor index among all connected n−vertex graphs, n ≥ ν− 2.
By Theorem 4.5, Conjecture 1 can be reduced to the following conjecture:

Conjecture 2. Suppose n and ν are non-negative integers such that 7 ≤ ν ≤ n− 2. If G ∈ Ωn,ν
4 ,

then SO(G) < SO(Hn,ν) and SOred(G) < SOred(Hn,ν).

G1 G2 G3

Figure 1. All n−vertex connected graphs in ES, n ≤ 6, with exactly six edges.

5. Concluding Remarks

In this paper, the authors develop a method to calculate the maximum value of
the Sombor index of graphs. This method is applied to solve partially a conjecture of
Réti et al. [19]. In an exact phrase, it is proved that the graph Hn,6 has the maximum
Sombor index among all connected 6-cyclic graphs of order n. Moreover, we proved that
the graph Hn,ν has the maximum Sombor index among all connected ν-cyclic graphs of
order n, where 5 ≤ ν ≤ n− 2 and the number of pendent vertices is less than or equal to
n− ν− 2. It is also proved that under the same conditions this conjecture is valid for the
reduced Sombor index.
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Figure 1. All n−vertex connected graphs in ES, n ≤ 6, with exactly six edges.

5. Conclusions

In this paper, the authors develop a method to calculate the maximum value of
the Sombor index of graphs. This method is applied to partially solve a conjecture of
Réti et al. [20]. In an exact phrase, it is proved that the graph Hn,6 has the maximum
Sombor index among all connected 6-cyclic graphs of order n. Moreover, we proved that
the graph Hn,ν has the maximum Sombor index among all connected ν-cyclic graphs of
order n, where 5 ≤ ν ≤ n− 2 and the number of pendent vertices is less than or equal to
n− ν− 2. It is also proved that, under the same conditions, this conjecture is valid for the
reduced Sombor index.
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