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Abstract: The method proposed by Inomata and his collaborators allows us to transform a damped
Caldirola–Kanai oscillator with a time-dependent frequency to one with a constant frequency and no
friction by redefining the time variable, obtained by solving an Ermakov–Milne–Pinney equation.
Their mapping “Eisenhart–Duval” lifts as a conformal transformation between two appropriate
Bargmann spaces. The quantum propagator is calculated also by bringing the quadratic system to
free form by another time-dependent Bargmann-conformal transformation, which generalizes the
one introduced before by Niederer and is related to the mapping proposed by Arnold. Our approach
allows us to extend the Maslov phase correction to an arbitrary time-dependent frequency. The
method is illustrated by the Mathieu profile.

Keywords: quantum mechanics; semiclassical theories and applications; classical general relativity

PACS: 03.65.-w quantum mechanics; 03.65.Sq semiclassical theories and applications; 04.20.-q classi-
cal general relativity

1. Introduction

A nonrelativistic quantum particle with unit mass in d + 1 spacetime dimensions with
coordinates x, t is given by the natural Lagrangian L = 1

2 ẋ2 −V(x, t). The wave function is
expressed in terms of the propagator,

ψ(x′′, t′′) =
∫

K(x′′, t′′|x′, t′)ψ(x′, t′)dx′ (1)

which, following Feynman’s intuitive proposal [1], is obtained as,

K(x′′, t′′|x′, t′) =
∫

exp
[ i

h̄
A(γ)

]
D© , (2)

where the (symbolic) integration is over all paths γ(t) =
(
x(t), t

)
that link the spacetime

point (x′, t′) to (x′′, t′′) and where:

A(γ) =
∫ t′′

t′
L
(
γ(t), γ̇(t), t

)
dt (3)

is the classical action calculated along γ(t) [1–3].
The rigorous definition and calculation of (2) are beyond our scope here. However,

the semiclassical approximation leads to the van Vleck–Pauli formula [2–5],

K(x′′, t′′|x′, t′) =
[

i
2πh̄

∂2Ā
∂x′∂x′′

]1/2

exp
[

i
h̄
Ā(x′′, t′′|x′, t′)

]
, (4)
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where Ā(x′′, t′′|x′, t′) =
∫ t′′

t′
L(γ̄(t), ˙̄γ(t), t)dt is the classical action calculated along the

(supposedly unique (This condition is satisfied away from caustics [2,3,6]. Moreover, (5)
and (8) are valid only for 0 < T′′ − T′ and for 0 < t′′ − t′ < π, respectively, as discussed
in Section 4.)) classical path γ̄(τ) from (x′, t′) and (x′′, t′′). This expression involves data
of the classical motion only. We note here also the van Vleck determinant ∂2Ā

∂x′∂x′′ in the
prefactor [4,5].

Equation (4) is exact for a quadratic-in-the-position potentials in 1 + 1 dimension
V(x, t) = 1

2 ω2(t) x2 that we consider henceforth.
For ω ≡ 0, i.e., for a free nonrelativistic particle of unit mass in 1 + 1 dimensions with

coordinates X and T, the result is [1–3],

K f ree(X′′, T′′|X′, T′) =
[

1
2πih̄(T′′ − T′)

]1/2
exp

{
i
h̄
(X′′ − X′)2

2(T′′ − T′)

}
. (5)

A harmonic oscillator with dissipation is in turn described by the Caldirola–Kanai
(CK) Lagrangian and the equation of motion, respectively [7,8]. For constant damping and
a harmonic frequency, we have,

LCK =
1
2

eλ0t
((dx

dt
)2 −ω2

0x2
)

, (6)

d2x
dt2 + λ0

dx
dt

+ ω2
0 x = 0 (7)

with λ0 = const. > 0 and ω0 = const.. A lengthy calculation then yields the exact
propagator [2,3,9–11]:

KCK(x′′, t′′|x′, t′) =

[
Ω0 e

λ0
2 (t′′+t′)

2πih̄ sin
[
Ω0(t′′ − t′)

] ] 1
2

× (8)

exp

{
iΩ0

2h̄ sin
[
Ω0(t′′ − t′)

] [(x′′2eλ0t′′ + x′2eλ0t′ ) cos
[
Ω0(t′′ − t′)

]
− 2x′′x′eλ0

t′′+t′
2

]}
,

Ω2
0 = ω2

0 − 1
4 λ2

0 , (9)

where an irrelevant phase factor was dropped.
Inomata and his collaborators [12–15] generalized (9) to a time-dependent frequency

by redefining time, t→ τ, which allowed them to transform the time-dependent problem
to one with a constant frequency (see Section 2). Then, they followed by what they called a
“time-dependent conformal transformation ” (x, t)→ (X, T) such that:

x = f (T) X(T) exp
[

1
2 λ0T

]
, t = g(T) , where f 2(T) =

dg
dT

, (10)

which allowed them to derive the propagator from the free expression (5). When spelled out,
(10) boils down to a generalized version, (22), of the correspondence found by Niederer [16].

It is legitimate to wonder: in what sense are these transformations “conformal” ? In
Section 3, we explain that, in fact, both mappings can be interpreted in the Eisenhart–
Duval (E-D) framework as conformal transformations between two appropriate Bargmann
spaces [17–21]. Moreover, the change of variables x, t → X, T is a special case of the one
put forward by Arnold [22,23] and is shown to be convenient to study time-dependent sys-
tems explicitly.

A bonus is the extension to the arbitrary time-dependent frequency ω(t) of the
Maslov phase correction [2,4–6,19,24–28] even when no explicit solutions are available (see
Section 4).
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In Section 5.2, we illustrate our theory by the time-dependent Mathieu profile ω2(t) =
a− 2q cos 2t , a, b const., the direct analytic treatment of which is complicated.

2. The Junker–Inomata Derivation of the Propagator

Starting with a general quadratic Lagrangian in 1 + 1 spacetime dimensions with
coordinates x̃ and t, Junker and Inomata derived the equation of motion [12]:

¨̃x + λ̇(t) ˙̃x + ω2(t)x̃ = F(t) , (11)

which describes a nonrelativistic particle of unit mass with dissipation λ(t). The driving
force F(t) can be eliminated by subtracting a particular solution h(t) of (11), x(t) = x̃(t)−
h(t), in terms of which (11) becomes homogeneous,

ẍ + λ̇(t)ẋ + ω2(t)x = 0 . (12)

This equation can be obtained from the time-dependent generalization of (6),

LCK =
1
2

eλ(t)[ẋ2 −ω2(t)x2] . (13)

The friction can be eliminated by setting x(t) = y(t) e−λ(t)/2, which yields a harmonic
oscillator with no friction, but with a shifted frequency [29–31],

ÿ + Ω2(t)y = 0 where Ω2(t) = ω2(t)− λ̇2(t)
4
− λ̈(t)

2
. (14)

For λ(t) = λ0t and ω = ω0 = const., for example, we obtain the usual harmonic
oscillator with a constant shifted frequency, Ω2 = ω2

0 − λ2
0/4 = const.

The frequency is in general time-dependent, though Ω = Ω(t); therefore, (14) is a
Sturm–Liouville equation that can be solved analytically only in exceptional cases.

Junker and Inomata [12] followed another, more subtle path. Equation (12) is a linear
equation with time-dependent coefficients, the solution of which can be searched for within
the ansatz (A similar transcription was used also by Rezende [28].):

x(t) = ρ(t)
(

Aeiω̄τ(t) + Be−iω̄τ(t)
)

, (15)

where A, B, and ω̄ are constants and ρ(t) and τ(t) functions to be found. Inserting (15) into
(12), putting the coefficients of the exponentials to zero, separating the real and imaginary
parts, and absorbing a new integration constant into A, B provide us with the coupled
system for ρ(t) and τ(t),

ρ̈ + λ̇ρ̇ + (ω2(t)− ω̄2τ̇2)ρ = 0, (16)

τ̇(t) ρ2(t) eλ(t) = 1 . (17)

Manifestly, τ̇ > 0. Inserting τ̇ into (16) then yields the Ermakov–Milne–Pinney (EMP)
equation [32–34] with time-dependent coefficients,

ρ̈ + λ̇ρ̇ + ω2(t)ρ =
e−2λ(t)ω̄2

ρ3 . (18)

We note for later use that eliminating ρ would yield instead:

ω̄2 =
1
τ̇2

(
ω2(t)− 1

2

...
τ

τ̇
+

3
4

(
τ̈

τ̇

)2
− λ̈

2
− λ̇2

4

)
. (19)
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Conversely, the constancy of the r.h.s. here can be verified using Equation (17).
Equivalently, starting with the Junker–Inomata condition (10),

ω2(t) =
f̈
f
− 2

ḟ 2

f 2 +
λ̇2

4
+

λ̈

2
. (20)

To sum up, the strategy to follow is [12,35,36]:

1. to solve first the EMP Equation (18) for ρ;
2. to integrate (17),

τ(t) =
∫ t e−λ(u)

ρ2(u)
du . (21)

Then, the trajectory is given by (15).
Junker and Inomata showed, moreover, that substituting into (13) the new coordinates:

T =
tan [ω̄ τ(t)]

ω̄
, X = x e

λ(t)
2 τ̇(t)

1
2 sec [ω̄ τ(t)], (22)

allows us to present the Caldirola–Kanai action as (Surface terms do not change the classical
equations of motion and multiply the propagator by an unobservable phase factor, and are
therefore dropped.),

ACK =
∫ t′′

t′
LCKdt =

∫ T′′

T′

1
2
(dX

dT
)2dT , (23)

where we recognize the action of a free particle of unit mass. One checks also directly that
X, T satisfy the free equation, as they should. The conditions (10) are readily verified.

The coordinates X and T describe a free particle; therefore, the propagator is (5) (as
anticipated by our notation). The clue of Junker and Inomata [12] is that, conversely,
trading X and T in (5) for x and t allows deriving the propagator for the CK oscillator (see
also [11], Section 5.1) (The extension of (24) from 0 < ω̄(τ′′ − τ′) < π to all t [2,3,6,11] is
discussed in Section 4.),

Kosc(x′′, t′′|x′, t′) =

 ω̄e
λ′′+λ′

2 (τ̇′′τ̇′)
1
2

2πih̄ sin[ω̄(τ′′ − τ′)]

 1
2

× (24)

exp
{

iω̄
2h̄ sin[ω̄(τ′′ − τ′)]

[
(x′′2eλ′′ τ̇′′ + x′2eλ′ τ̇′) cos[ω̄(τ′′ − τ′)]− 2x′′x′e

λ′′+λ′
2 (τ̇′′τ̇′)

1
2

]}
,

where we used the shorthands λ′′ = λ(t′′), τ′′ = τ(t′′), etc.
This remarkable formula says that in terms of “redefined time”, τ, the problem is

essentially one with a constant frequency. Equation (24) is still implicit, though, as it
requires solving first the coupled system (17), which we can do only in particular cases.

• When λ(t) = λ0t where λ0 = const. ≥ 0, Equation (12) describes a time-dependent
oscillator with constant friction,

ẍ + λ0 ẋ + ω2(t)x = 0. (25)

Then, setting R(t) = ρ(t) eλ0t/2, Equation (17) provide us with the EMP equation for
R, cf. (18),

R̈ + Ω2(t)R− ω̄2

R3 = 0, where Ω2(t) = ω2(t)−
λ2

0
4

; (26)

• If, in addition, the frequency is constant ω(t) = ω0 = const., then Equation (26) is
solved algebraically by:

ω̄2 = ω2
0 − λ2

0/4, R = 1 ⇒ ρ(t) = e−λ0t/2, τ(t) = t. (27)
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Thus, x(t) is a linear combination of e−
1
2 λ0t sin ω̄t and e−

1
2 λ0t cos ω̄t. The spacetime co-

ordinate transformation of (x, t)→ (X, T) in (22) simplifies to the friction-generalized
form of that of Niederer [16],

T =
tan(ω̄t)

ω̄
, X = x exp

(
1
2

λ0t
)

sec(ω̄t), (28)

for which the general expression (24) reduces to (9) when λ0 = 0;
• When the oscillator is turned off, ω0 = 0, but λ0 > 0, we have motion in a dissipative

medium. The coordinate transformation propagator (22) and (24) become:

X =
2x

1 + exp(−λ0t)
, T =

2
λ0

1− exp(−λ0t)
1 + exp(−λ0t)

(29)

and:

Kdiss(x′′, t′′|x′, t′) =

[
λ0

2πih̄[exp(−λ0t′)− exp(−λ0t′′)]

] 1
2

× exp
{

iλ0

2h̄
(x′′ − x′)2

exp(−λ0t′)− exp(−λ0t′′)

}
,

(30)

respectively. A driving force F0 (e.g., terrestrial gravitation) could be added and then
removed by x → x + (F0/λ0)t.

Further examples can be found in [13–15]. An explicitly time-dependent example is
presented in Section 5.2.

3. The Eisenhart–Duval Lift

Further insight can be gained by “Eisenhart–Duval (E-D) lifting” the system to one
higher dimension to what is called a “Bargmann space” [17–21]. The latter is a d + 1 + 1-
dimensional manifold endowed with a Lorentz metric, the general form of which is:

gµνdxµdxν = gij(x, t)dxidxj + 2dtds− 2V(x, t)dt2 , (31)

which carries a covariantly constant null Killing vector ∂s. Then:

Theorem 1 ([18,20]). Factoring out the foliation generated by ∂s yields a nonrelativistic spacetime
in d + 1 dimensions. Moreover, the null geodesics of the Bargmann metric gµν project to ordi-
nary spacetime, consistent with Newton’s equations. Conversely, if (γ(t), t) is a solution of the
nonrelativistic equations of motion, then its null lifts to Bargmann space are:

(
γ(t), t, s(t)

)
, s(t) = s0 −A(γ) = s0 −

∫ t
L(γ(r), r)dr (32)

where s0 is an arbitrary initial value.

Let us consider, for example, a particle of unit mass with the Lagrangian of:

L =
1

2α(t)
gij(xk)ẋi ẋj − β(t)V(xi, t), (33)

where gij(xk)dxidxj is a positive metric on a curved configuration space Q with local
coordinates xi, i = 1, . . . , d. The coefficients α(t) and β(t) may depend on time t, and
V(xi, t) is some (possibly time-dependent) scalar potential. The associated equations of
motion are:

d2xi

dt2 + Γi
jk

dxj

dt
dxk

dt
− α̇

α

dxi

dt
= −αβgij∂jV , (34)
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where the Γi
jk are the Christoffel symbols of the metric gij. For d = 1, gij = δij and

V = 1
2 ω2(t)x2 for α = β = 1, resp. for α = β−1 = e−λ(t), we obtain a (possible time-

dependent) 1d oscillator without, resp. with, friction, Equation (7) [7–9,29–31].
Equation (34) can also be obtained by projecting a null-geodesic of d+ 1+ 1-dimensional

Bargmann spacetime with coordinates (xµ) = (xi, t, s), whose metric is:

gµνdxµdxν =
1
α

gijdxidxj + 2dtds− 2βVdt2. (35)

For α = β−1 = e−λ(t), we recover (12).
Choosing λ(t) = ln m(t) would describe motion with a time-dependent mass m(t).

The friction can be removed by the conformal rescaling x → y =
√

m x, and the null
geodesics of the rescaled metric describe, consistent with (14), an oscillator with no friction,
but with a time-dependent frequency, Ω2 = ω2 − m̈

2m +
( ṁ

2m )2 [37].
The friction term −(α̇/α)ẋi in (34) can be removed also by introducing a new time

parameter t̃, defined by dt̃ = α dt [21]. For λ(t) = λ0t, for example, putting t̃ = −e−λ0t/λ0
eliminates the friction, but it does this at the price of obtaining a manifestly time-dependent
frequency [38,39]:

d2x
dt̃2 + Ω̃2(t̃)x = 0 , Ω̃2(t̃) =

ω2

t̃2λ2
0

. (36)

3.1. The Junker–Inomata Ansatz as a Conformal Transformation

The approach outlined in Section 2 admits a Bargmannian interpretation. For simplic-
ity, we only consider the frictionless case λ = 0.

Theorem 2. The Junker–Inomata method of converting the time-dependent system into one with a
constant frequency by switching from “real” to “fake time”,

t→ τ(t), ξ = τ̇ x (37)

induces a conformal transformation between the Bargmann metrics:
dx2 + 2dtds−ω2(t)x2dt2 frequency ω2(t) (38a)

dξ2 + 2dτdσ− ω̄2ξ2dτ2 , frequency ω̄ = const. (38b)

dξ2 + 2dτdσ− ω̄2ξ2dτ2 = τ̇(t)
(

dx2 + 2dtds−ω2(t)x2dt2
)

. (39)

Proof. Putting µ = ln τ̇ allows us to present the constant-frequency ω̄ (19) as:

ω̄2 = τ̇−2(ω2(t)− 1
2 µ̈ + 1

4 µ̇2). (40)

Then, with the notation
◦
ξ= dξ/dτ, we find,

◦
ξ

2
= τ̇−1

[
ẋ2 +

1
4

µ̇2x2 − 1
2

µ̈x2 +
d
dt

(
1
2

µ̇x2
)]

.

Let us now recall that the null lift to the Bargmann space of a spacetime curve is
obtained by subtracting the classical action as the vertical coordinate,

dσ = −L(ξ,
◦
ξ, τ)dτ = −1

2
( ◦

ξ
2 − ω̄2ξ2)dτ . (41)

Setting here ξ = xτ̇1/2 and dropping surface terms yield, using the same procedure
for the time-dependent-frequency case,

dσ = ds = −1
2
(
ẋ2 −ω2(t)x2)dt (42)
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up to surface terms. Then, inserting all our formulae into (38a) and (38b) yields (39), as stated.
In Junker–Inomata language (10), f (t) = τ̇1/2 sec(ω̄τ), g(t) = (ω̄)−1 tan(ω̄τ).

Our investigation has so far concerned classical aspects. Now, we consider what
happens quantum mechanically. Restricting our attention at d = 1 space dimensions as
before (In d > 2, conformal invariance requires adding a scalar curvature term to the
Laplacian.), we posit that the E-D lift ψ̃ of a wave function ψ is equivariant,

ψ̃(x, t, s) = e
i
h̄ sψ(x, t) ⇒ ∂sψ̃ =

i
h̄

ψ̃ . (43)

Then, the massless Klein–Gordon equation for ψ̃ associated with the 1 + 1 + 1 = 3 d
Barmann metric implies the Schrödinger equation in 1+1 d,

∆g ψ̃ = 0 ⇒ i∂tψ =
[
− h̄2

2
∆x + V(x, t)

]
ψ (44)

where ∆g is the Laplace–Beltrami operator associated with the metric. In d = 1, it is of
course ∆x = ∂2

x.
A conformal diffeomorphism (X, T, S)→ f̃ (X, T, S) = (x, t, s) with conformal factor

σ2
f , f̃ ∗gµν = σ2

f gµν, projects to a spacetime transformation (X, T)→ f (X, T) = (x, t). It is
implemented on a wave function lifted to the Bargmann space as:

ψ̃(x, t, s) = σ−1/2
f ψ̃(X, T, S) (45)

In Sections 4.2, these formulae are applied to the Niederer map (73).

3.2. The Arnold Map

The general damped harmonic oscillator with time-dependent driving force F(t) in
1 + 1 dimensions, (11),

ẍ + λ̇ẋ + ω2(t)x = F(t) , (46)

can be solved by an Arnold transformation [22,23], which “straightens the trajectories” [21,29–31,40].
To this end, one introduces new coordinates,

T =
u1

u2
, X =

x− up

u2
, (47)

where u1 and u2 are solutions of the associated homogeneous Equation (46) with F ≡ 0
and up is a particular solution of the full Equation (46). It is worth noting that (47) allows
checking, independently, the Junker–Inomata criterion in (10). The initial conditions are
chosen as,

u1(t0) = u̇2(t0) = 0, u̇1(t0) = u2(t0) = 1, up(t0) = u̇p(t0) = 0. (48)

Then, in the new coordinates, the motion becomes free [22,23],

X(T) = aT + b , a, b = const. (49)

Equation (46) can be obtained by projecting a null geodesic of the Bargmann metric:

gµνdxµdxν = eλ(t)dx2 + 2dtds− 2eλ(t)
(

1
2

ω(t)2x2 − F(t)x
)

dt2 . (50)

Completing (47) by:

S = s + eλu−1
2

(
1
2

u̇2x2 + u̇px
)
+ g(t) where ġ =

1
2

eλ
(

u̇2
p −ω2u2

p + 2Fup

)
(51)
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lifts the Arnold map to Bargmann spaces, (x, t, s) → (X, T, S) (In the Junker–Inomata
setting (10), f = u2e−λ/2 and g(t) = u1/u2.),

gµνdxµdxν = eλ(t)u2
2(t)

(
dX2 + 2dTdS

)
. (52)

The oscillator metric (50) is thus carried conformally to the free one, generalizing
earlier results [18,19,41]. For the damped harmonic oscillator with λ(t) = λ0t and F(t) ≡ 0,
up ≡ 0 is a particular solution. When ω = ω0 = const., for example,

u1 = e−λ0t/2 sin Ω0t
Ω0

, u2 = e−λ0t/2( cos Ω0t +
λ0

2Ω0
sin Ω0t

)
, Ω2

0 = ω2
0 − λ2

0/4 (53)

are two independent solutions of the homogeneous equation with initial conditions (48)
and provide us with:

T =
sin Ω0t

Ω0(cos Ω0t + λ0
2Ω0

sin Ω0t)
, (54)

X =
eλ0t/2 x

cos Ω0t + λ0
2Ω0

sin Ω0t
, (55)

S = s− 1
2 eλ0tx2 (ω2

0
Ω0

) sin Ω0t

cos Ω0t + λ0
2Ω0

sin Ω0t
. (56)

In the undamped case, λ0 = 0; thus, Ω0 = ω0, and (56) reduces to that of Niederer [16]
lifted to the Bargmann space [19,20],

T =
tan ω0t

ω0
, X =

x
cos ω0t

, S = s− 1
2 x2ω0 tan ω0t. (57)

The Junker–Inomata construction in Section 2 can be viewed as a particular case of
the Arnold transformation. We chose up ≡ 0 and the two independent solutions:

u1 = e−λ/2 τ̇−1/2 sin ω̄τ

ω̄
, u2 = e−λ/2 τ̇−1/2 cos ω̄τ . (58)

The initial conditions (48) at t0 = 0 imply τ(0) = ρ̇(0) = 0, ρ(0) = τ̇(0) = 1. Then,
spelling out (51),

S = s− 1
2

eλ

(
ω̄τ̇ tan ω̄τ +

1
2

λ̇ +
1
2

τ̈

τ̇

)
x2 (59)

completes the lift of (22) to Bargmann spaces. In conclusion, the one-dimensional damped
harmonic oscillator is described by the conformally flat Bargmann metric,

gµνdxµdxν =
cos2 ω̄τ

τ̇

(
dX2 + 2dTdS

)
. (60)

The metric (60) is manifestly conformally flat; therefore, its geodesics are those of the
free metric, X(T) = aT + b. Then, using (47) with (58) yields:

x(t) = e−λ(t)/2 τ̇−1/2(t)
(

a
sin[ω̄τ(t)]

ω̄
+ b cos[ω̄τ(t)]

)
. (61)

The bracketed quantity here describes a constant-frequency oscillator with “time” τ(t).
The original position, x, obtains a time-dependent “conformal” scale factor.
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4. The Maslov Correction

As mentioned before, the semiclassical formula (9) is correct only in the first oscillator
half-period, 0 < t′′ − t′ < π/Ω0. Its extension for all t involves the Maslov correction. In the
constant-frequency case with no friction, for example, assuming that Ω0(t′′ − t′′)/π is not
an integer, we have [2,3,6],

Kext(x′′, t′′|x′, t′) =

[
Ω0

2πh̄
∣∣ sin Ω0(t′′ − t′)

∣∣
] 1

2

× e−i π
4 (1+2`) (62)

exp
{

iΩ0

2h̄ sin Ω0(t′′ − t′)

[
(x′′2 + x′2) cos Ω0(t′′ − t′)− 2x′′x′

]}
,

where the integer:

` = Ent
[Ω0(t′′ − t′)

π

]
(63)

is called the Maslov index (Ent[x] is the integer part of x.). ` counts the completed half-periods
and is related also to the Morse index, which counts the negative modes of ∂2A/∂x′∂x′′ [4,5].

Now, we generalize (62) to the time-dependent frequency:

Theorem 3. In terms of ω̄ and τ introduced in Section 2,

• Outside caustics, i.e., for ω̄(τ′′ − τ′) 6= π`, the propagator for the harmonic oscillator with
the time-dependent frequency and friction is:

Kext(x′′, t′′|x′, t′) =

 ω̄e
λ′′+λ′

2 (τ̇′′τ̇′)
1
2

2πh̄| sin ω̄(τ′′ − τ′)|

1/2

exp
{
− iπ

2

(
1
2
+ Ent

[ ω̄(τ′′ − τ′)

π

])}
(64)

× exp
{

iω̄
2h̄ sin ω̄(τ′′ − τ′)

[(x′′2eλ′′ τ̇′′ + x′2eλ′ τ̇′) cos[ω̄(τ′′ − τ′)]− 2x′′x′e
λ′′+λ′

2 (τ̇′′τ̇′)
1
2 ]

}
;

• At caustics, i.e., for:
ω̄(τ′′ − τ′) = π `, ` = 0,±1, . . . (65)

we have instead [3,6],

Kext
(

x′′, x′, |τ′′ − τ′ =
π

ω̄
`
)
=
[
e

λ′′+λ′
2 (τ̇′′τ̇′)

1
2
]1/2 (66)

× exp
(
− iπ`

2

)
δ
(

x′ exp(λ′/2)τ̇′1/2 − (−1)kx′′ exp(λ′′/2)τ̇′′1/2
)

.

Proof. In terms of the redefined coordinates:

τ = τ(t) and ξ = x exp
[

λ(t)
2

]
τ̇1/2(t), (67)

cf. (37), and using the notation
◦
{ · }= d/dτ, the time-dependent oscillator Equation (12) is

taken into:

◦◦
ξ + ω̄2ξ = 0 , where ω̄2 =

1
τ̇2

(
ω2(t)− 1

2

...
τ

τ̇
+

3
4

(
τ̈

τ̇

)2
− λ̈

2
− λ̇2

4

)
. (68)

Thus, the problem is reduced to one with a time-independent frequency, ω̄ in (19) (We
record for the sake of later investigations that (turning off λ) (68) can be presented as:

ω2(t)− τ̇2 ω̄2 = 1
2 S(τ) (69)
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where S(τ) =
...
τ
τ̇ −

3
2
(

τ̈
τ̇

)2 is the Schwarzian derivative of τ [42]).

Let us now recall Formula (19) of Junker and Inomata in [12], which tells us how
propagators behave under the coordinate transformation (ξ, τ)←→ (x, t):

K2(x′′, t′′|x′, t′) =
[(

∂ξ ′

∂x′

)(
∂ξ ′′

∂x′′

)] 1
2

K1(ξ
′′, τ′′|ξ ′, τ′) . (70)

Here, K2 = Kext is the propagator of an oscillator with a time-dependent frequency
and friction, ω(t) and λ(t), respectively—the one we are trying to find. K1 is in turn the
Maslov-extended propagator of an oscillator with no friction and a constant frequency,
as in (62). Then, the propagator for the harmonic oscillator with a time-dependent frequency and
friction, Equation (64), is obtained using (67).

Notice that (64) is regular at the points rk ∈ Jk where sin = ±1. However, at caustics,
τ′′ − τ′ = (π/ω̄)`, Kext diverges, and we have instead (66).

Henceforth, we limit our investigations to λ = 0.

4.1. Properties of the Niederer Map

More insight is gained from the perspective of the generalized Niederer map (22).
We first study their properties in some detail. For simplicity, we chose, in the rest of this
section, x′ = t′ = 0 and x′′ ≡ x and t′′ ≡ t.

We start with the observation that the Niederer map (22) becomes singular where the
cosine vanishes, i.e., where:

cos[ω̄τ(rk)] = 0, i.e. τ(rk) = (k + 1
2 )

π

ω̄
, k = 0 ,±1, . . . (71)

rk < rk+1 because τ(t) is an increasing function by (21). Moreover, each interval:

Ik =
[
rk, rk+1

]
, k = 0,±1, . . . (72)

is mapped by (22) onto the full range −∞ < T < ∞. Therefore, the inverse mapping is
multivalued, labeled by integers k,

Nk : T → t =
arctank ω̄T

ω̄
, X → x =

X√
1 + ω̄2T2

, (73)

where arctank( · ) = arctan0( · ) + kπ with arctan0( · ) the principal determination, i.e., in
(−π/2, π/2).

Then, limt→rk− tan t = ∞ and limt→rk+ tan t = −∞ imply that:

lim
T→∞

Nk(T) = rk+1 = lim
T→−∞

Nk+1(T) . (74)

Therefore, the intervals Ik and Ik+1 are joined at rk+1, and the Ik form a partition of the
time axis,

{
−∞ < t < ∞

}
= ∪k Ik .

Returning to (64) (which is (62) with Ω0 ⇒ ω̄, t⇒ τ), we then observe that, whereas
the propagator is regular at rk, it diverges at caustics,

sin[ω̄τ(t`)] = 0 i.e., τ(t`) =
π

ω̄
`, ` = 0, ±1, . . . , (75)

cf. (65). Thus, t` ≤ t`+1, and:

Nk(−∞) = rk, Nk(T = 0) = tk+1, Nk(+∞) = rk+1 . (76)

Thus, Nk maps the full T-line into Ik with tk an internal point. Conversely, rk is an internal
point of Jk. The intervals J` =

[
t`, t`+1

]
cover again the time axis, ∪` J` =

{
−∞ < t < ∞

}
.
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By (61) the classical trajectories are regular at t = rk. Moreover, for arbitrary initial
velocities, √

τ̇(t`+1) x(t`+1) = −
√

τ̇(t`) x(t`) (77)

implying that after a half-period ω̄τ → ω̄τ + π, all classical motions are focused at the
same point. The two entangled sets of intervals are shown in Figure 1.

Figure 1. The generalized Niederer map (22) maps each interval Ik = (rk, rk+1) onto the entire real
line−∞ < T < ∞. Its inverse mapping is therefore multivalued, labeled by an integer k. The classical
motions and the propagator are both regular at the separation points rk. All classical trajectories are
focused at the caustic points t`, where the propagator diverges.

The Niederer map (57) “E-D lifts” to the Bargmann space.

Theorem 4. The E-D lift of the inverse of the Niederer map (57), which we shall denote by
Ñk : (X, T, S)→ (x, t, s) (t ∈ Ik), is:

t =
arctank ω̄T

ω̄
, x =

X√
1 + ω̄2T2

, s = S +
X2

2
ω̄2T

1 + ω̄2T2 . (78)

Proof. These formulae follow at once by inverting (57), at once with the cast ω0 ⇒ ω̄, t⇒
τ. Alternatively, it could also be proven as for Theorem 2.

For each integer k (78) maps the real line −∞ < T < ∞ into the “open strip” [19][
rk, rk+1

]
×R2 ≡ Ik ×R2 with rk defined in (71). Their union covers the entire Bargmann

manifold of the oscillator.

Now, we pull back the free dynamics by the multivalued inverse (78). We put ω̄ = 1
for simplicity. The free motion with initial condition X(0) = 0,

X(T) = aT, S(T) = S0 −
a2

2
T , (79)

E-D lifts by (78) to:

x(t) = a sin t s(t) = S0 −
a2

4
sin 2t , (80)

consistent with s(t) = s0 − Āosc, as can be checked directly. Note that the s coordinate
oscillates with a doubled frequency.

• At t = rk = ( 1
2 + k)π (where the Niederer maps are joined), we have limt→rk x(t) =

(−1)k+1a , limt→rk s(t) = S0. Thus, the pull backs of the Bargmann lifts of free motions
are glued to smooth curves;

• Similarly, at t caustics t = t` = π`, we infer from (80) that for all initial velocities
a and for all ` limt→t` x(t) = 0, limt→t` s(t) = S0 . Thus, the lifts are again smooth
at t`, and after each half-period, all motions are focused above the initial position
(x(0) = 0, s(0) = S0).
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4.2. The Propagator by the Niederer Map

Now, we turn to quantum dynamics. Our starting point is the free propagator (5),
which (as mentioned before) is valid only for 0 < T′′ − T′. Its extension to all T involves
the sign of (T′′ − T′) [19].

Let us explain this subtle point in some detail. First of all, we notice that the usual
expression (5) involves a square root, which is double-valued, obliging us to choose one
of its branches. Which one we choose is irrelevant: it is a mere gauge choice. However,
once we do choose one, we must stick to our choice. Take, for example, the one for which√
−i = e−iπ/4, then the prefactor in (5) is:

[
1

2πih̄(T′′ − T′)

]1/2
= e−iπ/4

[
1

2πh̄
∣∣T′′ − T′

∣∣
]1/2

.

Let us now consider what happens when T′′ − T′ changes sign. Then, the prefactor
becomes multiplied by

√
−1 so it becomes, for the same choice of the square root,

eiπ/2 e−iπ/4

[
1

2πh̄
∣∣T′′ − T′

∣∣
]1/2

= e+iπ/4

[
1

2πh̄
∣∣T′′ − T′

∣∣
]1/2

. (81)

In conclusion, the formula valid for all T is,

K f ree(X′′, T′′|X′, T′) = e−i π
4 sign(T′′−T′)

[
1

2πh̄|T′′ − T′|

]1/2
exp

{
i
h̄
Ā f ree

}
, (82)

where:

Ā f ree =
(X′′ − X′)2

2(T′′ − T′)
(83)

is the free action calculated along the classical trajectory. Let us underline that (82) already
involves a “Maslov jump” e−iπ/2 , which, for a free particle, happens at T = 0. For
T′′ − T′ = 0, we have K f ree = δ(X′′ − X′).

Accordingly, the wave function Ψ ≡ Ψ f ree of a free particle is, by (1),

Ψ
(
X′′, T′′

)
= e−i π

4sign(T′′−T′)
[

1
2πh̄|T′′ − T′|

]1/2∫
R

exp
{

i
h̄
Ā f ree

}
Ψ
(
X′, T′

)
dX′ . (84)

Now, we pull back the free dynamics using the multivalued inverse Niederer map.
It is sufficient to consider the constant-frequency case ω̄ = const. and to denote time by
t. Let t belong to the range of Nk in (73), t ∈ Ik = [rk, rk+1] = Nk

(
{−∞ < T < ∞}

)
. Then,

applying the general formulae in Section 3.1 yields [19],

ψ̃(x′′, t′′, s′′) = cos−1/2[ω̄(t′′ − t′)]Ψ̃(X′′, T′′, S′′) = e−
iπ
4 sign

(
tan ω̄(t′′−t′′ )

ω̄

)
×

cos−1/2[ω̄(t′′ − t′)] exp
(

i
h̄ s′′
)

exp
(
− i

h̄ (
1
2 ω̄x′′2 tan[ω̄(t′′ − t′′)]

)
√

|ω̄|
2πh̄| tan[ω̄(t′′ − t′)]|

∫
R

exp

 i
h̄

ω̄| x′′
cos[ω̄(t′′−t′)] − x′|2

2 tan[ω̄(t′′ − t′)]

ψ(x′, t′)dx′ .

However, the second exponential in the middle line combines with the integrand in
the braces in the last line to yield the action calculated along the classical oscillator trajectory,

Āosc =
ω̄

2 sin ω̄(t′′ − t′)
(
(x′′2 + x′2) cos ω̄(t′′ − t′)− 2x′′x′

)
. (85)
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Thus, using the equivariance, we end up with,

ψosc
(

x′′, t′′
)

= cos−1/2[ω̄(t′′ − t′)] exp
[
− iπ

4
sign

(
tan[ω̄(t′′ − t′)]

ω̄

)]
× (86)

√
|ω̄|

2πh̄|tan[ω̄(t′′ − t′)]|

∫
R

exp
{

i
h̄
Āosc

}
ψosc

(
x′, t′

)
dx .

Now, we recover the Maslov jump, which comes from the first line here. For simplicity,
we consider again t′ = 0, x′ = 0 and denote t′′ = t, x′′ = x.

Firstly, we observe that the conformal factor cos ω̄t has a constant sign in the domain
Ik and changes sign at the end points. In fact,

cos ω̄t = (−1)k+1| cos ω̄t| ⇒ cos−1/2(ω̄t) = e−i π
2 (k+1)| cos ω̄t|−1/2. (87)

The cosine enters into the van Vleck factor, while the phase combines with
exp

[
− iπ

4 sign( tan ω̄t
ω̄ )

]
. Recall now that tk+1 = Nk

(
T = 0

)
divides Ik into two pieces,

Ik = [rk, tk+1] ∪ [tk+1, rk+1], cf. Figure 1. However, tk+1 is precisely where the tangent
changes sign: this term contributes to the phase in [rk, tk+1] −π/4 and +π/4 in [tk+1, rk+1].
Combining the two shifts, we end up with the phase:

−π
4
(
1 + 2`

)
for rk < t < tk+1

−π
4
(
1 + 2(`+ 1)

)
for tk+1 < t < rk+1

where ` = Ent
[

ω̄τ

π

]
= k + 1 (88)

which is the Maslov jump at t`.
Intuitively, the multivalued Nk “exports” to the oscillator at t`+1 the phase jump of

the free propagator at T = 0. Crossing from J` to J`+1 shifts the index ` by one.

5. Probability Density and Phase of the Propagator: A Pictorial View
5.1. For a Constant Frequency

We assume first that the frequency is constant. We split the propagator K(x, t) ≡
K(x, t|0, 0) in (62) as,

K(x, t) = |K(x, t)| P(t), P(t) = ei(phase). (89)

The probability density,

|K(x, t)|2 =
Ω0

2πh̄
∣∣ sin Ω0t

∣∣ (90)

viewed as a surface above the x− t plane, diverges at t = t` = π`, ` = 0,±1, . . . .
Representing the phase of the propagator would require four dimensions, though. How-

ever, recall that that the dominant contribution to the path integral should come from where
the phase is stationary [1], i.e., from the neighborhood of classical paths x̄(t), distinguished
by the vanishing of the first variation, δAx̄ = 0. Therefore, we shall study the evolution of
the phase along classical paths x̄(t) for which (61) yields, for h̄ = ω̄ = 1 and a ∈ R, b = 0,

x̄a(t) = a sin t and Pa(t) = exp
{
− iπ

4
[
1− a2

π
sin 2t

]
− iπ

2
`

}
, (91)

as depicted in Figure 2.
An intuitive understanding comes by noting that when t 6= π` = t`, then different

initial velocities a yield classical paths x̄a(t) with different end points, and thus contribute
to different propagators. However, approaching from the left `-times a half period, t →
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(π `)− , all classical paths become focused at the same end point (x = 0 for our choice) and
for all a,

Pa(t→ π`−) = e−i π
4 (1+2`) ≡ P` . (92)

which is precisely the Maslov phase. Thus, all classical paths contribute equally, by P`, and to
the same propagator. Comparing with the right-limit,

Pa(t→ π`+) = e−i π
4 (1+2(`+1) = P`+1 = e−

iπ
2 P`. (93)

the Maslov jump is recovered. Choosing instead y 6= 0, there will be no classical path from
(0, 0) to (y, π`), and thus no contribution to the path integral.

Figure 2. The phase factor P(t) of the propagator in (89) lies on the unit circle of the complex plane
plotted vertically along a classical path γ̄(t). The orientation is positive if it is clockwise when
seen from t = +∞. In the time interval J` labeled by the Maslov index ` = Ent[t/π], the factor
P(t) precesses around P` = exp[−i π

4 (1 + 2`)] with double frequency w.r.t. the classical path, γ̄(t).
Arriving at a caustic, the phase jumps by (−π/2) (red becoming purple) and then continues until
the next caustic when it jumps again (and becomes magenta), and so on.

To conclude this section, we just mention with that the extended Feynman method [6]
with the cast ω̄ = constant frequency and τ = “fake time” would lead also to (64) and
(66) with the integer ` counting the number of negative eigenvalues (Morse index) of the
Hessian [2,4,5,24].

5.2. A Time-Dependent Example: The Mathieu Equation

The combined Junker–Inomata–Arnold method allows us to go beyond the constant-
frequency case, as illustrated here for no friction or driving force, λ = F ≡ 0, but with
explicitly time-dependent frequency. For Ω2(t) = a− 2q cos 2t, for example, (14) becomes
the Mathieu equation,

ẍ + (a− 2q cos 2t)x = 0 . (94)

This equation can be solved either analytically using Mathieu functions [43], or numerically,
providing us for a = 2 and q = 1 (for which odd Mathieu functions are real) with the
dotted curve (in red), shown in Figure 3.

Alternatively, we can use the Junker–Inomata–Arnold transformation (47) [22,23,40].
We first achieve ω̄ = 1 by a redefinition, τ → τ′ = ω̄τ. Inserting Ansatz (15) into (94)
yields the pair of coupled Equations (16) and (17). We chose up = 0 and two independent
solutions u1(t) and u2(t), (58), with initial conditions (48) with t0 = 0, i.e., τ(0) = ρ̇(0) =
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0, ρ(0) = τ̇(0) = 1 , which fix the integration constant, C = ρ2(0)τ̇(0) = 1. Then, consistent
with the general theory outlined above, the Arnold map (47) lifted to the Bargmann space
becomes (22), completed with (59) with λ = 0.

Figure 3. The analytic solution of the Mathieu equation with a = 2, q = 1 for x(t) (dotted in red) lies
on the black curve obtained by (15) from combining the numerically obtained ρ(t) (in green) and
τ(t) (in blue), which are solutions of the pair (18)–(21). The black curve is also obtained by pulling
back the free solution (49) by the inverse Niederer map (73).

Equation (17) is solved by following the strategy outlined in Section 2. Carrying out
those steps numerically provides us with Figure 3.

From the general formula (24), we deduce, for our choice x′′ = x, t′′ = t, x′ = t′ = 0,
that the probability density (The wave function is multiplied by the square root of the
conformal factor, cf. (39).).

|K(x, t)|2 =

√
τ̇

2πh̄| sin τ(t)| , (95)

happens, not depending on the position, and can therefore be plotted as in Figure 4.
The propagator K and hence the probability density (95) diverge at t`, which are

roughly t1 ≈ 1.92, t2 ≈ 4.80, t3 ≈ 7.83 . The classical motions are regular at the caustics,
x̄(t`) ∝ ρ(t`) ≈ 0; see Section 4. The domains Ik = [rk−1, rk] of the inverse Niederer map
are shown in Figure 4. Approximately, r1 ≈ 1.52, r2 ≈ 4.49, r3 ≈ 6.75, r4 ≈ 8.44 . The
evolution of the phase factor along the classical path is depicted in Figure 5.
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Figure 4. The probability density |K(x, t)|2 (95) does not depend on x and is regular in each interval
J` between the adjacent points t` (75), where it diverges. The rk that determines the domains Ik of the
generalized Niederer map (22) lies between the t` and conversely.

Figure 5. For 0 < t < t1, the Mathieu phase factor P(t) plotted along a classical path γ̄(t) = (x̄(t), t)
precesses around e−iπ/4. Arriving at the caustic point τ(t1) = π, its phase jumps by (−π/2), then
oscillates around e−3iπ/4 until τ(t2) = 2π, then jumps again, and so on.
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6. Conclusions

The Junker–Inomata–Arnold approach yields (in principle) the exact propagator
for any quadratic system by switching from a time-dependent to a constant frequency and
redefined time,

ω(t) → ω̄ = const. and t → “fake time” τ . (96)

The propagator (64)–(66) is then derived from the result known for the constant
frequency. A straightforward consequence is the Maslov jump for arbitrary time-dependent
frequency ω(t): everything depends only on the product ω̄ τ.

By switching from t to τ, the Sturm–Liouville-type difficulty is not eliminated, but only
transferred to that of finding τ = τ(t) following the procedure outlined in Section 2. We
have to first solve EMP Equation (18) for ρ(t) (which is nonlinear and has time-dependent
coefficients) and then integrate ρ−2; see (21). Although this is as difficult to solve as solving
the Sturm–Liouville equation, it provides us with theoretical insights.

When no analytic solution is available, we can resort to numerical calculations.
The Junker–Inomata approach of Section 2 is interpreted as a Bargmann-conformal

transformation between time-dependent and constant frequency metrics; see Equation (39).
Alternatively, the damped oscillator can be converted to a free system by the general-

ized Niederer map (22), whose Eisenhart–Duval lift (47)–(51) carries the conformally flat
oscillator metric (60) to the flat Minkowski space.

Two sets of points play a distinguished role in our investigations: the rk in (71) and
the t` in (75). The rk divides the time axis into domains Ik of the (generalized) Niederer
map (22). Both classical motions and quantum propagators are regular at rk, where these
intervals are joined. The t` are in turn the caustic points where all classical trajectories are
focused, and the quantum propagator becomes singular.

While the “Maslov phase jump” at caustics is well established when the frequency
is constant, ω = ω0 = const., its extension to the time-dependent case ω = ω(t) is
more subtle. In fact, the proofs we are aware of [25–28] use sophisticated mathematics,
or a lengthy direct calculation of the propagator [44]. A bonus from the Junker–Inomata
transcription (10) we followed here is to provide us with a straightforward extension valid
to an arbitrary ω(t). Caustics arise when (65) holds, and then, the phase jump is given
by (88).

The subtle point mentioned above comes from the standard (but somewhat sloppy)
expression (5), which requires choosing a branch of the double-valued square root function.
Once this is done, the sign change of T′′ − T′ induces a phase jump π/2. Our “innocent-
looking” factor is in fact the Maslov jump for a free particle at T = 0 (obscured when
one considers the propagator for T > 0 only). Moreover, it then becomes the key tool for
the oscillator: intuitively, the multivalued inverse Niederer map repeats, again and again,
the same jump. The details are discussed in Section 4.

The transformation (10) is related to the nonrelativistic “Schrödinger” conformal symme-
tries of a free nonrelativistic particle [45–47], later extended to the oscillator [16] and an
inverse-square potential [48]. These results can in fact be derived using a time-dependent
conformal transformation of the type (10) [19,42].

The above results are readily generalized to higher dimensions. For example, the os-
cillator frequency can be time-dependent, uniform electric and magnetic fields, and a
curl-free “Aharonov–Bohm” potential (a vortex line [49]) can also be added [41]. Further
generalization involves a Dirac monopole [50].

Alternative ways to relate free and harmonically trapped motions are studied,
e.g., in [51–54]. Motions with the Mathieu profile were considered also in [55].
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