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Abstract: X-ray computed tomography (CT) is widely used in medical applications, where many
efforts have been made for decades to eliminate artifacts caused by incomplete projection. In this
paper, we propose a new CT image reconstruction model based on nonlocal low-rank regularity
and data-driven tight frame (NLR-DDTF). Unlike the Spatial-Radon domain data-driven tight
frame regularization, the proposed NLR-DDTF model uses an asymmetric treatment for image
reconstruction and Radon domain inpainting, which combines the nonlocal low-rank approximation
method for spatial domain CT image reconstruction and data-driven tight frame-based regularization
for Radon domain image inpainting. An alternative direction minimization algorithm is designed to
solve the proposed model. Several numerical experiments and comparisons are provided to illustrate
the superior performance of the NLR-DDTF method.

Keywords: Radon transform; image inpainting; nonlocal low-rank regularity; data-driven tight frame

MSC: 94A08; 42C15; 44A12; 68U10

1. Introduction

Medical imaging applications of X-ray computed tomography (CT) include cranial,
chest, cardiac abdominal and pelvic imaging. The wide use of CT is due to the ability of
viewing interior structures without destroying the surface of organs or subjects. However,
the radiation caused by X-ray during imaging does harm to patients’ health. Thus, the
approximately lossless image reconstruction based on low-dose X-ray, such as reducing
the number of projections, is continuously considered by scientists and doctors. The basic
model of the X-ray reconstruction problem can be represented as a linear inverse problem,

Pu = f (1)

where P ∈ Rm×n is a projection operator representing the collection of discrete line integra-
tions at different projection angles and along different beamlets. Numerically P is realized
by Siddon’s algorithm [1,2].

When small number of projections are used, i.e., m < n, the matrix P has a rank
deficiency. As a result, Equation (1) will have an infinite amount of solutions. There are
many methods for deriving a useful result from them, such as the solutions by the filtered
back-projection (FBP) algorithm [3] and algebraic reconstruction technique (ART) [4];
however, they usually contain artifacts and thus result in unreliable reconstructions.
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In practice, the projection image f usually contains noise. Gaussian noise [1,5–14] and
Poisson noise [15,16] both are considered to simulate a realistic environment. Thus, the
basic model (1) is modified by

f = Pu + ε. (2)

In order to suppress noise and artifacts (local irregularities) during image reconstruc-
tion, it should usually contain tiny structural or high-frequency information to maintain
fidelity and effectiveness. Various differential operator-based regularization methods, such
as the total variation (TV)-based regularization approach (see [6,7,15,17] and references
therein), low-rank models (see [8,18]) and wavelet frame-based methods (see [9–12]), have
been proposed and received acceptable results for both, in vision and computational error.
A standard form of the TV-based image reconstruction model can be written as

min
u

1
2
‖Pu− f ‖2

2 + λ‖∇u‖1. (3)

It is important to mention that the authors of [9] established a rigorous connection
between a special model of wavelet frame-based approach, called the analysis-based
approach, and variational models.

Two adjacent columns in the projected image f represent the information collected
from adjacent projection angles. Therefore, f must be column-dependent locally. In order to
exploit this kind of prior knowledge of f , the authors of [1] proposed an image inpainting
method on the projection image f , following with another inverse problem for image
restoration in the spatial domain. This wavelet frame-based regularity with Radon domain
inpainting was shown to be useful for reconstructing high quality images from a very small
number of projections,

min
f ,u

1
2
‖RΛc(Pu− f )‖2

2 +
1
2
‖RΛ(Pu)− f0‖2

2 +
κ

2
‖RΛ f − f0‖2

2+ (4)

λ1‖W1 f ‖1,2 + λ2‖W2u‖1,2.

where RΛC denotes the reconstruction on Ω\Λ, and RΛ denotes the restriction on Λ. Here,
f0 is the projection image defined on the grid Λ of size N0 × Np, where N0 is the total
number of detectors and Np is the number of angular projections. The unknown projection
image f is defined on a grid Ω ⊃ Λ of size N0 × Ñp, with Ñp = 2Np is selected in this
paper. The first three terms of Equation (4) represent the data fidelity, making sure that f
is consistent with f0 on Λ and P f ≈ f . W1 and W2 are two different tight wavelet frame
transforms. A fast algorithm was introduced to solve the model (4) based on the split
Bregman algorithm [17,19,20] and the augmented Lagrangian method [21,22]. For more
details about model and algorithm, we refer to [1].

Recently, it is known that in area of image restoration, data-driven tight frames or
bi-frames generally outperform the regular pre-constructed wavelet frames [5,13,14]. The
author of [5] proposed the SRD-DDTF model using data-driven tight frames as their
sparsity priors for both u and f ,

min
f ,u,v1,W1,v2,W2

1
2
‖RΛc(Pu− f )‖2

2 +
1
2
‖RΛ(Pu)− f0‖2

2 +
κ

2
‖RΛ f − f0‖2

2+ (5)

λ1‖v1‖0 +
µ1

2
‖W1 f − v1‖2

2 + λ2‖v2‖0 +
µ2

2
‖W2u− v2‖2

2,

s.t. WT
i Wi = I, i = 1, 2.

where tight frames W1 and W2 and corresponding coefficients v1 and v2, are all treated as
unknowns for enforcing the sparsity approximation to u and f . Here, `0 norm ‖vi‖0 stands
for the number of non-zero elements in vi, i = 1, 2. For solving the additional Wi and vi
subproblems such as Equation (7), an alternative optimization algorithm was proposed
in [13] based on Singular Value Decomposition (SVD) of a matrix associated with the image
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u (or f ) after block rearrangement. As usual, the `0 regularization of vi can be solved by
applying hard-thresholding to the singular values. A short review is stated in Section 2.1,
for more details and convergence analysis, we refer to [5,13,14].

It is desired that there exist lots of similar structures both in natural and medical im-
ages. This property of nonlocal self-similarity was introduced by Dong et al. in [23,24] for
exploiting structured sparsity in compressive sensing of both photographic and CT/MRI
images. Random sampling and pseudo-radial sub-sampling are used for under sampling.
However, they did not use any inpainting method in the transform domain for recon-
struction. Xie et al. [16] used the nonlocal self-similar constraint in the position emission
tomography (PET) image reconstruction with Total Variation(TV) method. The nonlocal
low-rank approximation and TV model were also used for reducing noise in the denoising
problem of low-dose CT image [25]. Xu et al. [26] proposed a model based on nonlocal
low-rank and prior images under a given wavelet framework for reducing limited-angle
artifacts in CT image restoration. There are also many other applications of nonlocal
low-rank methods in the field of image denoising, one may see [27] for details.

In this paper, the nonlocal patch-based method will be used for restoration of CT
image u. Roughly speaking, we shall use low-rank approximation for several image block
patches after block matching. The rest of this paper is organized as follows. In Section 2,
we will review image restoration methods based on data-driven tight frame and nonlocal
low-rank regularization. In Section 3, we shall introduce our CT image restoration model
combining data-driven tight frames for f and nonlocal low-rank regularization for u. In
Section 4, several experiments will be provided for validating the merits of our proposed
method, and the conclusion is discussed in Section 5.

2. Reviews and Preliminaries
2.1. Data-Driven Tight Frames

In [1,5], the sparse approximation methods were proposed for both the CT image u
and projection image f , which are based on the pre-constructed wavelet frames or data-
driven tight frames. When implemented, the data-driven tight frames are constructed
based on the SVD of a matrix associated with the image u (or f ) after block rearrangement.

It is well known that compared with a basis, using a frame results in a more robust
representation of signals [28,29]. In discrete setting, the fast decomposition transform W
and fast reconstruction transform WT , two finite matrix operators with entries from a filter
{aj}m

j=0 associated to a translation-invariant tight wavelet transform, can be formed by
convolution operators. Actually,

WT = [ST
a0
(−·), ST

a1
(−·), · · · , ST

am(−·)]
T and W = [Sa0 , Sa1 , · · · , Sam ] (6)

with convolution operator Sa : `2(Z)→ `2(Z),

[Sau](n) = [a ∗ u](n) = ∑
k∈Z

a(n− k)u(k) for u ∈ `2(Z).

The tight frame property is guaranteed by WWT = I as usual, see [5]. The data-driven
tight frame method takes the tight frame W as an unknown, which is also determined
stepwisely by solving the following optimization problem:

min
v,W

λ‖v‖0 + ‖W f − v‖2
2, WWT = I. (7)

We also use a small-size W, thus, the phantom image f should be reshaped as the
matrix F ∈ R(N1 N2)×p. Here, each column is a vectorization of N1 × N2 patches extracted
from f . The filters {aj}m

j=0 used for W are selected as the columns of the matrix D ∈
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R(N1 N2)×m. By denoting V ∈ R(N1 N2)×p as the tight frame coefficients and taking m =
N1N2, Equation (7) can be rewritten as

min
V,D

λ‖V‖0 + ‖DT F−V‖2
2, DT D = I. (8)

In the sequel, we follow the alternative optimization algorithm for solving Equation (8),
see [5,13] for details, {

Dk+1 = XYT

Vk+1 = Tλ

(
(Dk+1)T F

) (9)

with X and Y obtained by taking SVD of F(Vk)T , and Tλ being the hard-thresholding
operator defined by

(TλV)[i, j] =


0, if |x| < λ

{0, V[i, j]}, if |x| = λ

V[i, j], otherwise.

(10)

2.2. Nonlocal Low-Rank Regularization

The nonlocal low-rank regularization is used for compressed sensing [24], PET im-
age reconstruction [16] and CT image restoration from limited-angle projection data [26].
All these problems are handled by the alternative direction multiplier method technique,
which is converted into several sub-problems and solved iteratively and alternately. When
implemented, the rank-minimization sub-problem is also solved by the singular value
thresholding (SVT) method, and the image reconstruction sub-problem is solved by differ-
ent regularization methods.

In this article, the nonlocal low-rank regularization is used for CT image restoration, for
the purpose of exploiting the nonlocal property in the image. After extracting

√
n1 ×

√
n1

patches at position i in CT image u, denoted by xi ∈ Rn1 , m1-nearest patches based on
Euclidean distance are used for obtaining the matrix Xi = [xi,0, xi,1, · · · , xi,m1−1]. Here,
each xi,r is its reordered position index, satisfying Si = {r|‖xi − xi,r‖ ≤ Ti} and Ti is the
pre-defined threshold.

Since in the natural image there exist lots of nonlocal self-similar structures, the formed
data Xi can be split into two parts, the low-rank matrix Li and the Gaussian noise matrix
Wi, i.e., Xi = Li + Wi. Then, Li can be recovered by the low-rank regularization model,

Li = argmin
Li

Rank(Li), s.t.‖Xi − Li‖2
2 ≤ σ2

W , (11)

where σ2
W denotes the variance of Gaussian noise. In order to solve Equation (11), as in [24],

we consider an approximate version,

Lk+1
i = argmin

Li

‖Xi − Li‖2
2 + λ2φ(Li, σk

ε ), (12)

where φ(Li, σk
ε ) = ∑n0

r=0 σk
ε,rσr denotes the weighted nuclear norm with σk

ε,r = 1
σk

r +ε
and

n0 = min{n1, m1}. The singular values σr and σk
r corresponding to Li and Lk

i , respectively,
are ordered in descending order. We adopt the weighted singular value thresholding
method to solve Equation (12) efficiently and effectively,

Lk+1
i = Sσk

ε
(Xi) = U

(
Σ− λ2 diag(σk

ε )
)
+

VT , (13)

where UΣVT is the SVD of Xi, (x)+ = max{x, 0} and σk
ε =

[
1

σk
1+ε

, 1
σk

2+ε
, · · · , 1

σk
n0+ε

]
.
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3. Models and Algorithm
3.1. CT Image Reconstruction Model

In this paper, we also focus on the column number of the unknown projection image
satisfying Ñp = 2Np, with Np being the column number of f0. f is considered to be restored
from f0 with doubled angular sampling resolution. Unlike the symmetric model (5), we
use nonlocal low-rank regularization instead of the data-driven tight frame method when
dealing with CT images. Our asymmetric CT image reconstruction model based on nonlocal
low-rank regularity and data-driven tight frames reads as follows,

min
u, f ,W,v,Li

1
2
‖RΛC (Pu− f )‖2

2+
1
2
‖RΛPu− f0‖2

2 +
κ

2
‖RΛ f − f0‖2

2+ (14)

λ1‖v‖0 +
µ

2
‖W f − v‖2

2 + η ∑
j

{
1
2
‖R̃iu− Li‖2

2 + λ2φ(Li, σk
ε )

}

where R̃iu =
[
Ri,0u, Ri,1u, · · · , Ri,m1−1u

]
denotes the first m1 closest patches under cosine

similarity for every exemplar patch xi. In this section, we demonstrate that the proposed ob-
jective functional can be efficiently solved by the method of alternative minimization. After
k-th iteration, the variables of step k + 1 are determined by the following sub-problems.

(1) f sub-problem

If all the parameters but f are determined by k-th iteration, Equation (14) can be
practically rewritten as

f k+1 = argmin
f

1
2
‖RΛC (Pu− f )‖2

2 +
κ

2
‖RΛ f − f0‖2

2 +
µ

2
‖Wk f −Vk‖2

2 +
a
2
‖ f − f k‖2

2. (15)

Here, we add a special term‖ f − f k‖2
2 in order to ensure that the new f k+1 is not far

from f k, which can theoretically justify the convergence of this algorithm. By differentiating
the right side of Equation (15) with respect to f , we obtain the following closed-form
solution

f k+1 = [RΛC + κRΛ + (µ + a)]−1(RΛC Puk + κRΛ f0 + µWkT
Vk + a f k), (16)

where [RΛC + κRΛ + (µ + a)] is a diagonal matrix and, hence, Equation (16) can be com-
puted easily.

(2) W and v sub-problem

In this paper, we use the data-driven tight frame method explained in [5] or Section 2,
for W and v sub-problems,

Wk+1 = argmin
WTW=I

µ

2
‖W f k+1 − vk‖2

2 +
c
2
‖W −Wk‖2

2

vk+1 = argmin
v

µ

2
‖Wk+1 f k+1 − v‖2

2 + λ1‖v‖0 +
d
2
‖v− vk‖2

2

As discussed in the previous section, the variables f , v and W are reformulated in
the practice calculation. To be more specific, we need to solve the following reformulated
sub-problems:

Dk+1 = argmin
DT D=I

µ

2
‖DT Fk+1 −Vk‖2

2 +
c
2
‖D− Dk‖2

2 (17)

Vk+1 = argmin
V

µ

2
‖(Dk+1)T Fk+1 −V‖2

2 + λ1‖V‖0 +
d
2
‖V −Vk‖2

2 (18)
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Thus, to solve sub-problems (17) and (18), we can simply compute

Dk+1 = XYT where XΣYT = Fk+1(Vk+1)T +
c
µ

Dk (19)

and

Vk+1 = T√
λ1

µ+d

(
µ(Dk+1)T Fk+1 + dVk

µ + d

)
, (20)

where Ta(·) is the hard thresholding operator given in Equation (10).

(3) Li and u sub-problems

Based on the augmented Lagrangian method, we formulate the Li sub-problem as,

Lk+1
i = argmin

Li

1
2
‖R̃iuk − Li‖2

2 + λ2φ(Li, σk
ε ) +

e
2
‖Li − Lk

i ‖2
2 (21)

with φ(Li, σk
ε ) = ∑n0

r=1
σr

σk
r +ε

. Here, σr and σk
r are the r-th ordered singular value with respect

to Li and Lk
i . Applying the weighted singular value thresholding operator to Equation (21)

yields the algorithm

Lk+1
i = Sσk

ε

(
R̃iuk + eLk

i

)
= U

(
Σ̃− λ2

1 + e
diag(σk

ε )

)
+

VT (22)

where UΣ̃VT is the SVD of R̃iuk + eLk
i .

After Li being updated, the current estimation of CT image u can be solved by our
proposed model with other variables fixed,

uk+1 = argmin
u

1
2
‖RΛC Pu− f k+1‖2

2 +
1
2
‖RΛPu− f0‖2

2 +
η

2 ∑
k
‖R̃iu− Lk+1

i ‖2
2 +

b
2
‖u− uk‖2

2, (23)

where the term ‖u− uk‖2
2 stands for the similarity in two adjacent steps. It is a quadratic

optimization problem admitting a closed-form solution,

uk+1 =

[
PT P + η ∑

i
R̃T

i R̃i + bI

]−1[
PT RΛC f k+1 + PT RΛC f0 + η ∑

i
R̃T

i Lk+1
i + buk

]
,

where R̃T
i Lk+1

i = ∑m−1
r=0 RT

i,rLk+1
i,r and R̃T

i R̃i = ∑m−1
r=0 RT

i,rRi,r is a diagonal matrix. In order
to derive a much faster algorithm for solving Equation (23), we also use the alternative
direction multiplier method (ADMM) [30]. Thus, we obtain

uk+1 = argmin
u

1
2
‖RΛC Pu− f k+1‖2

2 +
1
2
‖RΛPu− f0‖2

2 +
b
2
‖u− uk‖2

2 (24)

+
β

2
‖u− z +

µ

β
‖2

2 +
η

2 ∑
i
‖R̃iz− Lk+1

i ‖2
2,

where z ∈ Rn×n is an auxiliary variable, u ∈ Rn×n is the Lagrangian multiplier, and β is a
positive scalar parameter. The split iteration version of the optimization of Equation (24)
can be stated as follows:
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zk+1 = argmin
z

βk

2
‖uk − z +

µk

βk ‖
2
2 +

η

2 ∑
i
‖R̃iz− Lk+1

i ‖2
2

uk+1 = argmin
u

1
2
‖RΛC Pu− f k‖2

2 +
1
2
‖RΛPu− f0‖2

2 +
b
2
‖u− uk‖2

2 +
βk

2
‖u− zk+1 +

µk

βk ‖
2
2

µk+1 = µk + βk(µk − zk+1)

βk+1 = 1.2βk.

Here, zk+1 admits a closed-form solution,

zk+1 =

[
η ∑

i
R̃T

i R̃i + βk I

]−1[
βkuk + µk + η ∑

i
R̃T

i Lk+1
i

]
,

∑
i

R̃T
i R̃i is a diagonal matrix with each diagonal element being the number of overlapping

patches that cover the current pixel location. ∑
i

R̃T
i Lk+1

i denotes the weighted low-rank

approximation, i.e., gathering useful information from the collected similar patches.
For uk+1, we also use the conjugate gradient method to solve a linear equation,[

PT P + (b + βk)I
]
u = PT RΛC f k+1 + µk + η ∑

i
R̃T

i Lk+1
i

Collecting all together, we derive the following Algorithm 1.

Algorithm 1: CT image reconstruction via nonlocal low-rank regularity and
data-driven tight frame (NLR-DDTF).

1 Input: compute u0 from (5) and set f 0 = Pu0. Compute v0, w0 from (4).
2 Repeat:
3 (1): update f k+1 by optimizing f using (16)
4 (2): update Dk+1 and Vk+1 by (19) and (20)
5 (3): update Lk+1

i ,for all i using (22)
6 (4): update uk+1 by solving (24)
7 Until: Relative error ‖uk+1 − uk‖/‖uk+1‖ < ε

8 Output: uk

4. Experiments

In this section, we report the experimental results of the proposed asymmetric low-
rank approximation and data-driven tight frame-based asymmetric CT image recovery
method. The proposed joint regulation method is actually based on the SRD-DDTF
model [5]. The major difference is the optimization method for updating uk. Thus, we
select the same warm-started initial value u0 as in [5], given by analysis of the model in
Section 3.1. In the following, we consider three phantoms, head image with smaller details
from [5], head image and brain image with much more details from [24]. All experiments
are conducted on a 3.20 GHZ Intel(R) Core(TM) i7-8700cpu with 16 GB memory. The PSNR,
relative error and correlation results of the reconstructed images are included in Table 1,
additionally, the visual effects are reported in Figures 1–3. Both of them reveal that the
nonlocal low-rank method does preserve more information from the underground truth
other than noise, which contains less structural information.

The degrade projection image f0 is constructed by the every-other-angular extraction
method from synthesized data, based on the Radon transform of real data u and the
Monte Carlo simulation, f0 = RΛ(Pu + ε), where ε is some Gaussian white noise and
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the projection number Np is considered to be 15, 30, 45, 60 in all examples. We choose the
standard deviation of noise as max(|Pu|)/300 in our experiments. The projection image f
is calculated based on the photon numbers the detectors received. Gaussian white noise is
also generated when the corresponding optical equipment counts photons, which is related
to the uncertainty of photons. For an initial value of f , we directly use Pu0 as in [5].

The patch size for u is 6× 6 and the patch size for f is 8× 2 to adapt to the different
shape of u and f . For optimization of the W and v subproblems, we use µ = 8400λ1
and λ1 is selected the same as in the SRD-DDTF model (5). When splitting the image u
into overlapped small patches, we extract a paragon patch in every Ns pixels along both
horizontal and vertical directions. Here, we use Ns = 5 and Ns = 3 for realizing our
proposed NLR-DDTF model. For each patch of u, m1 = 41 similar patches are selected
when the low-rank approximation is executed to derive Li. In our application, we choose
η = 0.8 for smaller details in the image “head1” and η = 1.6 for the many more details in
images “head2” and “brain”. The regularization parameter λ2 is selected to be 1.

For quantitative accuracy evaluation, the relative error and correlation for the recon-
structed u corresponding to the ground truth image ut are defined as:

err(ut, u) =
‖u− ut‖2

‖ut‖2
and corr(ut, u) =

(u− u)(ut − ut)

‖u− u‖2‖ut − ut‖2

with u and ut being the mean of u and ut. The maximum iteration number of all our
experiments is set to 1000 with the following stopping criterion: whenever the relative
change between two consecutive iterations is below 10−3 (or 10−4 for “head1” with higher
Np than 15).

Table 1. Comparison of relative errors (in percentage), correlations (in percentage), PSNR (in db) and running time (in
seconds). For image “head1”, NLR-DDTF methods can improve PSNR 3.8–27.2% with consuming 15.7–240.2% more time;
For image “head2”, NLR-DDTF methods can improve PSNR 0.2–24.6% with consuming 29.1–233.7% more time; for image
“brain”, NLR-DDTF methods can improve PSNR 1.3–11.0% with consuming 18.9–225.7% more time.

“head1”

Np

SRD-DDTF NLR-DDTF with Ns = 5 NLR-DDTF with Ns = 3

err corr psnr time err corr psnr time err corr psnr time

15 10.50 99.06 35.81 470.60 8.97 99.13 37.16 860.71 8.10 99.44 38.03 1600.87

30 5.40 99.75 41.57 923.97 2.03 99.96 50.05 1251.05 1.93 99.97 50.50 1937.15

45 4.28 99.84 43.58 1367.35 1.28 99.96 54.05 1672.66 1.22 99.987 54.48 2368.40

60 3.80 99.88 44.61 1809.70 0.98 99.99 56.38 2095.44 0.941 99.992 56.74 2782.54

“head2”

Np

SRD-DDTF NLR-DDTF with Ns = 5 NLR-DDTF with Ns = 3

err corr psnr time err corr psnr time err corr psnr time

15 29.38 92.34 22.47 495.41 29.21 92.39 22.52 888.51 29.22 92.39 22.52 1653.06

30 20.71 96.28 25.51 914.76 15.66 97.87 27.93 1284.95 15.44 97.93 28.05 1953.55

45 16.94 97.54 27.25 1378.70 10.04 99.13 31.80 1718.87 9.90 99.15 31.91 2443.62

60 15.37 97.98 28.09 1773.86 7.01 99.58 34.91 2290.07 6.939 99.58 35.00 2861.41

“brain”

Np

SRD-DDTF NLR-DDTF with Ns = 5 NLR-DDTF with Ns = 3

err corr psnr time err corr psnr time err corr psnr time

15 23.87 95.51 28.73 476.95 22.87 95.88 29.10 909.44 22.50 96.02 29.24 1553.29

30 15.57 98.12 32.44 944.79 12.34 98.82 34.46 1284.81 12.09 98.87 34.63 2059.53

45 12.97 98.70 34.03 1390.10 9.31 99.33 36.91 1728.38 9.22 99.34 36.99 2453.39

60 11.60 98.96 35.00 1777.77 7.51 99.56 38.77 2112.93 7.45 99.57 38.84 2838.36
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Figure 1. The tomographic results for the image “head1”. (top left) True data and local detail area for comparison;
(top right) the restored image by SRD-DDTF method [5]; (bottom left) the restored image by NLR-DDTF method with
Ns = 5; (bottom right) the restored image by NLR-DDTF method with Ns = 3.

Figure 2. The tomographic results for the image “head2”. (top left) True data and local detail area for comparison;
(top right) the restored image by SRD-DDTF method [5]; (bottom left) the restored image by NLR-DDTF method with
Ns = 5; (bottom right) the restored image by NLR-DDTF method with Ns = 3.



Symmetry 2021, 13, 1873 10 of 12

Figure 3. The tomographic results for the image “brain”. (top left) True data and local detail area for comparison;
(top right) the restored image by SRD-DDTF method [5]; (top right) the restored image by NLR-DDTF method with Ns = 5;
(bottom right) the restored image by NLR-DDTF method with Ns = 3.

5. Conclusions

In this work, we introduced a novel spatial-Radon domain CT image reconstruction
model, which combines the spatial domain inverse problem based on the nonlocal low-
rank approximation method and the Radon domain inpainting model using a data-driven
tight frame-based regularization. The proposed model reconstructs high quality and
high resolution CT images even when the images contain more details than the observed
low-resolution projection images. We used the split Bregman algorithm for numerical
simulations of the proposed model.

The success of the regularization method in CT image restoration, no matter TV-based
or wavelet frame-based, lies in the property of local smoothness or structure sparsity of the
ground truth image. It is shown in [5] that using data-driven tight frame as sparsity priors
for Radon domain projection image preformed better than using pre-determined wavelet
frame systems. The nonlocal low-rank prior can reflect the group sparsity characteristic of
similar patches in CT images well. Our proposed CT image restoration method combines
the advantages of the above two methods. The PSNR and subjective quality comparison
shown in Table 1 clearly reveal that the proposed NLR-DDTF method performs better
than just the tight frame in several cases. Compared with the SRD-DDTF method, our
proposed NLR-DDFT model’s shortcoming is the slightly higher time consumption. When
Ns = 5, the average time required for all examples is 42% longer, and the average time
consumption is 120% times higher if Ns = 3.
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and data curation, F.X.; convergence and supervision, Y.L.; programming and experiments, Y.S. and
F.X.; writing—original draft preparation, Y.S. and S.S.; writing—review and editing, Y.L., X.Y. and
X.Z.; project administration, F.X., Y.L. and X.Y. All authors have read and agreed to the published
version of the manuscript.
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