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Abstract: The natural simplifying assumptions often put forward in the theoretical investigations of
the magnetohydrodynamic turbulence are that the turbulent flow is statistically isotropic, homoge-
neous and stationary. Of course, the natural turbulence in the planetary interiors, such as the liquid
core of the Earth is neither, which has important consequences for the dynamics of the planetary
magnetic fields generated via the hydromagnetic dynamo mechanism operating in the interiors of
the planets. Here we concentrate on the relaxation of the assumption of statistical stationarity of the
turbulent flow and study the effect of turbulent wave fields in the Earth’s core, which induces non-
stationarity, on the turbulent resistivity in the non-reflectionally symmetric flow and the geodynamo
effect. It is shown that the electromotive force, including the so-called α-effect and the turbulent
magnetic diffusivity η̄, induced by non-stationary turbulence, evolves slowly in time. However,
the turbulent ᾱ coefficient, responsible for the dynamo action and η̄ evolve differently in time, thus
creating periods of enhanced and suppressed turbulent diffusion and dynamo action somewhat
independently. In particular, periods of enhanced ᾱ may coincide with periods of suppressed diffu-
sion, leading to a stable and strong field period. On the other hand, it is shown that when enhanced
diffusion occurs simultaneously with suppression of the α-effect, this leads to a sharp drop in the
intensity of the large-scale field, corresponding to a geomagnetic excursion.

Keywords: magnetohydrodynamics; non-stationary turbulence; dynamo theory; geomagnetic excur-
sions; geomagnetic reversals

1. Introduction

The terrestrial magnetic field is generated by the hydromagnetic dynamo action in the
Earth’s liquid core driven thermally and compositionally [1–3]. The turbulent mechanism
of dynamo action, which is typically invoked as responsible for the generation of large-scale
fields, is the so-called α-effect, based on nonlinear interactions of the small-scale fluctuating
components of the non-reflectionally symmetric turbulent state, which generate the large-
scale electromotive force (EMF). For dynamo action to occur, the wave field must exhibit
chirality, i.e., lack of reflectional symmetry [4–6]. The turbulent flow in the core of the Earth
contains a rich wave field composed of nonlinearly interacting magnetohydrodynamic
waves such as, e.g., the inertial waves [7], the so-called MAC waves [8,9] or magnetic
Rossby waves [10]; for a more complete review see [11] on the dynamics of the core. These
interactions could have a profound effect on the dynamics of the core, in particular the
dynamo process as they practically rule out statistical stationarity of the core turbulence—a
feature often invoked in theoretical investigations of magnetohydrodynamic turbulence, as
it greatly simplifies the mathematical approach.

In fact, non-stationarity has been recently shown by [12–15], as an effective mechanism
of generation of the large-scale electromotive force through interactions of waves with
distinct but close frequencies of oscillations (the beating effect). Such an EMF slowly
evolves on timescales comparable or larger than the typical time scales of variation of the
large-scale field. It is shown here that statistically non-stationary, helical turbulence induces
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a slowly varying in time α-effect and turbulent magnetic diffusion, and their variations are
out of phase.

Some well-known features of the evolution of the geomagnetic field are the so-called
geomagnetic excursions and polarity reversals, the former being the periods of a significant
drop in the large-scale field’s intensity. In fact, from the point of view of the possible impact
that such a phenomenon could have on the high-tech human civilization, it is the decrease
in the intensity of the geomagnetic dipole, which is crucial, since it is the dipolar field
that greatly prevents the solar wind from entering the atmosphere. Whether or not the
actual polarity reversal takes place is of much less importance and hence in here, for short,
under the term ’excursion’, we will contain both the actual excursions and reversals. The
aim of this paper is to comment on the phenomenon of geomagnetic excursions in light
of the non-stationarity of the core turbulence induced by wave-interactions and the slow
time evolution of the α-effect and turbulent diffusion. This evolution is shown to create
periods of enhanced diffusion, which may be correlated with suppression of the α-effect,
thus creating favourable conditions for the excursions.

Numerical simulations do not reveal any significant large-scale alterations in the
flow of the conducting liquid during a reversal [16–18], although it must be said that
the currently available computer power does not allow to reach the strongly constrained
Earth-like parameter regime. The first stage of a polarity reversal in simulations by [18]
is associated with local intensification of turbulence, where the vigorous flow twists and
bends the field lines to locally reverse the magnetic field direction. The enhanced turbulence
intensifies the reversed field, which spreads into surrounding regions until the polarity
in the core becomes mixed and the dipole moment is weakened. This suggests that
the magnetic excursions and polarity reversals are manifestations of a chaotic turbulent
behaviour of the liquid core, which is in qualitative agreement with the temporal variations
of turbulent transport coefficients conjectured here.

2. Mathematical Formulation of the Mean Field Dynamo Problem

Evolution of the large-scale magnetic fields induced by the complex flow of an incom-
pressible conducting fluid is governed by the following dynamical equations

∂U
∂t

+ (U · ∇)U = F−∇Π +
1

µ0ρ
(B · ∇)B + ν∇2U, (1a)

∂B
∂t

+ (U · ∇)B = (B · ∇)U + η∇2B, (1b)

∇ ·U = 0 ∇ · B = 0, (1c)

where the velocity field of the fluid flow is denoted by U(t, x), the magnetic field by B(t, x)
and the total pressure

Π =
p
ρ
+

B2

2µ0ρ
. (2)

Without loss of generality, we may assume solenoidal forcing

∇ · F = 0, (3)

and for the purpose of simplicity, we rescale the magnetic field in the following way

〈B〉
√

µ0ρ
→ 〈B〉,

so that the prefactor 1/µ0ρ in the Lorentz-force term in the Navier–Stokes (1a) equation
is lost.

Next, denoting by angular brackets the ensemble mean,

〈·〉 − ensemble mean
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let us introduce the standard Reynolds decomposition

U = 〈U〉+ u, B = 〈B〉+ b, p = 〈p〉+ p′, (4)

and write down separately the equations for the mean fields 〈U〉 and 〈B〉 and the turbulent
fluctuations u and b; this yields

∂〈U〉
∂t

+ (〈U〉 · ∇)〈U〉 =〈F〉 −∇〈Π〉+ (〈B〉 · ∇)〈B〉+ ν∇2〈U〉

−∇ · (〈uu〉 − 〈bb〉), (5a)

∂〈B〉
∂t

= ∇× (〈U〉 × 〈B〉) +∇× 〈u× b〉+ η∇2〈B〉, (5b)

∇ · 〈B〉 = 0, ∇ · 〈U〉 = 0. (5c)

where
E = 〈u× b〉 (6)

is the large-scale electromotive force (EMF) and

∂u
∂t
− ν∇2u + (〈U〉 · ∇)u + (u · ∇)〈U〉 − (〈B〉 · ∇)b− (b · ∇)〈B〉+∇Π′

= f−∇ · (uu− bb) +∇ · (〈uu〉 − 〈bb〉), (7a)

∂b
∂t
− η∇2b + (〈U〉 · ∇)b− (〈B〉 · ∇)u + (u · ∇)〈B〉 − (b · ∇)〈U〉

= ∇× (u× b− 〈u× b〉), (7b)

∇ · b = 0, ∇ · u = 0. (7c)

Furthermore, we adopt the “first-order smoothing approximation” [6] in which
squares and products of fluctuating quantities are ignored

∂u
∂t
− ν∇2u + (〈U〉 · ∇)u + (u · ∇)〈U〉 − (〈B〉 · ∇)b− (b · ∇)〈B〉+∇Π′ =f, (8a)

∂b
∂t
− η∇2b + (〈U〉 · ∇)b− (〈B〉 · ∇)u + (u · ∇)〈B〉 − (b · ∇)〈U〉 = 0, (8b)

∇ · b = 0, ∇ · u = 0. (8c)

Introducing

Gij =
∂〈U〉i

∂xj
, Gij =

∂〈B〉i
∂xj

, (9)

taking the Fourier transforms of (8a)–(8c) and eliminating the pressure from the Fourier
transformed velocity equation with the use of the projection operator

Pij(k) = δij −
kik j

k2 , (10)

one obtains [
−i(ω− k · 〈U〉) + νk2

]
û + P ·G · û− ik · 〈B〉b̂− P ·G · b̂ =f̂ (11a)[

−i(ω− k · 〈U〉) + ηk2
]
b̂ = ik · 〈B〉û−G · û + G · b̂, (11b)

k · b̂ = 0, k · û = 0, (11c)
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where we have already used (11c) in projecting the velocity equation on the plane perpen-
dicular to the wave vector k. Next we rearrange the terms to put all the terms involving
gradients of means on the right hand side

û =
1

γu
f̂− 1

γu
P ·G · û− (k · 〈B〉)2

γuγ2
η

G · û− ik · 〈B〉
γuγη

G · û + i
k · 〈B〉
γuγη

P ·G · û, (12a)

b̂ = i
k · 〈B〉

γη
û− 1

γη
G · û +

1
γη

G · b̂, (12b)

where
γν = −i(ω− k · 〈U〉) + νk2, γη = −i(ω− k · 〈U〉) + ηk2, (13a)

γu = γν +
(k · 〈B〉)2

γη
. (13b)

and assume scale separation between the means and the fluctuations, so that the gradients
of means can be assumed small and treated in a perturbational manner. The large scale
EMF, by the use of (6) and (12b), can be expressed in the following way

εijk

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
= i

k′n〈B〉n
γ′η

εijk
〈
ûjû′k

〉
− εijk

∂〈B〉k
∂xp

1
γ′η

〈
ûjû′p

〉
+ εijk

∂〈U〉k
∂xp

1
γ′η

〈
ûj b̂′p

〉
, (14)

where we have used a short notation û′j = ûj(ω
′, k′). On substituting once again for b̂′p

from (12b) we obtain at the leading order

εijk

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
= i

k′n〈B〉n
γ′η

εijk
〈
ûjû′k

〉
− εijk

∂〈B〉k
∂xp

1
γ′η

〈
ûjû′p

〉
+ iεijk〈B〉n

∂〈U〉k
∂xp

k′n
γ′2η

〈
ûjû′p

〉
, (15)

where higher-order terms in the gradients G and G have been neglected.

3. Simple Kinematic Theory for Homogeneous Turbulence

It is a common practice to assume that the background small scale turbulence has
statistical properties that are given beforehand, and thus the situation becomes kinematic.
For example, we may assume that the turbulence is homogeneous and isotropic and thus
the turbulence correlation tensor takes the general form〈

ûi(k, ω)ûj(k′, ω′)
〉
=
[

E
(
ω, ω′, k

)
Pij(k) + iH

(
ω, ω′, k

)
εijkkk

]
δ(k + k′), (16)

where the H(ω, ω′, k) is responsible for the lack of reflectional symmetry required for the
large-scale dynamo process [6]. Since the mean velocity 〈U〉 only creates a shift of the
frequency ω → ω − k · 〈U〉, we simply absorb it into the frequency. The electromotive
force takes the form
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εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
=

8π

3
〈B〉l

∫
dk
∫

dω
∫

dω′e−i(ω+ω′)t k4

γ′η
H
(
ω, ω′, k

)
− 8π

3
[∇× 〈B〉]l

∫
dk
∫

dω
∫

dω′e−i(ω+ω′)t k2

γ′η
E
(
ω, ω′, k

)
− 4π

3

[
(∇〈U〉)T · 〈B〉

]
l

∫
dk
∫

dω
∫

dω′e−i(ω+ω′)t k4

γ′2η
H
(
ω, ω′, k

)
, (17)

where we have used (15), (16), (A8a) and (A8b) in Appendix B and we have also introduced
a short notation

q = (ω, k), d4q = d3k dω. (18)

Next we consider the case of non-stationary turbulence and assume the following

E
(
ω, ω′, k

)
= e

(
ω2, k

)
∆
(
ω, ω′; ω̃, Γ

)
, H

(
ω, ω′, k

)
= h

(
ω2, k

)
∆
(
ω, ω′; ω̃, Γ

)
, (19)

where the ’non-stationarity’ function

∆
(
ω, ω′; ω̃, Γ

)
= δ(ω + ω′) + Γ

δ(ω + ω′ + ω̃)− δ(ω + ω′ − ω̃)

2i
, (20)

with Γ = const, is chosen in such a way so that the correlations in the real space have a
simple sinusoidal time dependence〈

ui(x, t)ui(x′, t)
〉
∼ 1 + Γ sin(ω̃t). (21)

Let us set for simplicity 〈U〉 = 0, though it is straightforward to include it, and
concentrate on the α-effect only. Consequently, for the EMF in the real space, we obtain

εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
=

8π

3
η〈B〉l

∫
dk
∫

dω
k6h
(
ω2, k

)∣∣γη

∣∣2
− i

4πΓ
3
〈B〉l

∫
dk
∫

dωk4h
(

ω2, k
)[ eiω̃t

i(ω + ω̃) + ηk2 −
e−iω̃t

i(ω− ω̃) + ηk2

]
− 8π

3
η[∇× 〈B〉]l

∫
dk
∫

dω
k4e
(
ω2, k

)∣∣γη

∣∣2
+ i

4πΓ
3

[∇× 〈B〉]l
∫

dk
∫

dωk2e
(

ω2, k
)[ eiω̃t

i(ω + ω̃) + ηk2 −
e−iω̃t

i(ω− ω̃) + ηk2

]
=
{

η
[

I(α)1 + ΓI(α)2 sin(ω̃t)
]
+ Γω̃I(α)3 cos(ω̃t)

}
〈B〉l

−
{

η
[

I(η)1 + ΓI(η)2 sin(ω̃t)
]
+ Γω̃I(η)3 cos(ω̃t)

}
[∇× 〈B〉]l (22)

where we have made use of the fact that for any even function of ω, say fe(ω), the integral∫ ∞
−∞ ω fe(ω)dω = 0 vanishes and the integrals I(α)j , I(η)j , for j = 1, 2, 3 are given in the

Appendix A. In other words, the full EMF, including the molecular diffusion, takes the
following form

E tot = ᾱ〈B〉 − η̄∇× 〈B〉, (23)

where

ᾱ = η I(α)1 +
ηΓI(α)2
cos φα

sin(ω̃t + φα), (24a)



Symmetry 2021, 13, 1881 6 of 20

η̄ = η + η I(η)1 +
ηΓI(η)2
cos φη

sin
(
ω̃t + φη

)
, (24b)

tan φα =
ω̃I(α)3

η I(α)2

, tan φη =
ω̃I(η)3

η I(η)2

. (24c)

Clearly, there is a significant phase shift between the ᾱ coefficient and the turbulent
diffusion η̄.

The excursions and in particular polarity reversals have been observed in numerical
simulations, although none of the numerical models were able to reach the very demanding,
extreme parameter regime of the core. It was reported, however, that increasing the vigour
of convection tends to increase the frequency of polarity reversals [16,17]. In simulations
of [18], the first stage of a polarity reversal is characterised by intensification of turbulence
in some region of the core where the vigorous flow twists and bends the field lines to locally
reverse the magnetic field direction. Since the magnitude of the turbulent flow in that
region is particularly vigorous, so is the local magnetic Reynolds number, thus favouring
conditions for amplification of the reversed field, which spreads into surrounding regions
until the polarity in the core becomes mixed. This implies a sharp decay of the dipole
moment. Consequently, we may expect that the magnetic excursions and polarity reversals
are manifestations of a chaotic turbulent behaviour of the liquid core and no significant
large-scale phenomena seem to take place during excursions.

The real core turbulence is obviously bound to be non-stationary, including propaga-
tion of well-known waves such as the inertial waves [7], MAC-waves [8,9] or the magnetic
Rossby waves [10], likely forming wave packets. These wave fields interact nonlinearly
to form the turbulent electromotive force (EMF), and interactions of waves with distinct
but close frequencies were shown to be effective in creation of the EMF by [12–14]. For
simplicity, we will neglect higher-order interactions and include two-wave interactions
only, so that in the simplest case when only two waves with distinct frequencies but the
same wave vector are present (homogeneity but non-stationarity), the turbulent point
correlations at time t can be written as

〈u(x, t)u(x, t)〉

=
〈[

û1ei(ω1t+k·x) + û2ei(ω2t+k·x) + c.c.
][

û∗1e−i(ω1t+k·x) + û∗2e−i(ω2t+k·x) + c.c.
]〉

=
〈

û1û∗2eiω̃t
〉
+
〈

û2û∗1e−iω̃t
〉
+ 〈û1û∗1〉+ 〈û2û∗2〉, (25)

where
ω̃ = ∆ω = ω1 −ω2, (26)

c.c. means the complex conjugate, and we have assumed that the means of quantities
oscillating with frequencies ω1, ω2 and ω1 + ω2, which correspond to mean field variations
on the timescales from days to decades can be assumed to vanish (without loss of generality,
we may assume ω1 > 0, ω2 > 0). However, since the core perturbations often possess
close frequencies of oscillation, the frequency difference ω̃ can be small and even smaller
than the typical frequencies of oscillations of the large-scale field; in such a case, the first
two terms in the second line of (25) cannot be neglected and lead to long time variations
of the turbulence correlation tensor. This is in keeping with the chosen form of the ’non-
stationarity’ function (20), which leads to correlations in the form (21), corresponding to
the form based on two-wave interactions.

In reality even such two-wave interactions lead to more than one (say N) ω̃-mode, be-
cause the turbulent wave field consists of a number of distinct waves so that more generally

〈
ui(x, t)ui(x′, t)

〉
∼ 1 +

N

∑
n=1

Γn sin(ω̃nt + ψn), (27)
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where the phase shift ψn accounts for both the sine-type and cosine-type time dependence
of the correlation tensor.

4. Dynamic Theory

Instead of assuming some given form of the turbulence correlation tensor, we can use
Equation (12a) to express it in the following form

〈
ûi(q)ûj(q′)

〉
=

1
γuγ′u

〈
f̂i f̂ ′j
〉

−
[

1
γuγ′2u

P′jsGsp +
(k′ · 〈B〉)2

γuγ′2u γ′2η
Gjp + i

k′ · 〈B〉
γuγ′2u γ′η

k′jk
′
s

k′2
Gsp

]〈
f̂i f̂ ′p
〉

−
[

1
γ2

uγ′u
PisGsp +

(k · 〈B〉)2

γ2
uγ2

ηγ′u
Gip + i

k · 〈B〉
γ2

uγηγ′u

kiks

k2 Gsp

]〈
f̂p f̂ ′j

〉
(28)

where higher-order terms in the gradients G and G have been neglected, and we have used
the short notation q = (ω, k). The EMF can then be calculated with the use of (15) and (28)
and on assuming the force correlations in a statistically homogeneous form〈

f̂i(k, ω) f̂ j(k′, ω′)
〉
=
[

F0
(
ω, ω′, k

)
Pij(k) + iF1

(
ω, ω′, k

)
εijkkk

]
δ(k + k′), (29)

we have derived the formula for the mean EMF in Appendix B. This involves the mean
velocity gradients, which within the considered model correspond to effects such as the
cross-helicity dynamo or the shear-current effect [19–21]. Although it is straightforward to
include them in the calculations, for clarity, we drop all the mean velocity terms (we set
〈U〉 = 0) and concentrate only on the α-effect and the effects of turbulent diffusion. For
simplicity, we will also consider the case when ∇〈B〉2 × 〈B〉 is negligible, hence the mean
EMF is reduced to (cf. Appendix B)

El =εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
=I1

(
ν, η, 〈B〉2

)
〈B〉l −

[
I2

(
ν, η, 〈B〉2

)
+ 〈B〉2I3

(
ν, η, 〈B〉2

)]
[∇× 〈B〉]l , (30)

where the integrals I1, I2 and I3 are provided in (A10a)–(A10c) in Appendix B.
Note that lack of reflectional symmetry is introduced here by the term proportional

to F1(ω, ω′, k) in the force corrections (29), hence it is crucial for calculation of the α-effect,
which is not generated by reflectionally symmetric flows [6]. In natural systems, the reflec-
tional symmetry is broken by the presence of background rotation, which introduces the
Coriolis force into the dynamics. However, rapidly rotating flows are naturally anisotropic;
thus for simplicity, we have chosen an isotropic model.

4.1. Stationary Turbulence

First let us explicitly demonstrate the simplest result obtained for stationary turbu-
lence, when

F0
(
ω, ω′, k

)
= F0

(
ω2, k

)
δ(ω + ω′), F1

(
ω, ω′, k

)
= F1

(
ω2, k

)
δ(ω + ω′), (31)

i.e., the force correlations are given by〈
f̂i(k, ω) f̂ j(k′, ω′)

〉
=
[
F0

(
ω2, k

)
Pij(k) + iF1

(
ω2, k

)
εijkkk

]
δ(k + k′)δ(ω + ω′). (32)

In such a case, the integrals in (30) can be calculated to yield

I (st)
1

(
ν, η, 〈B〉2

)
= 4πη

∫
dk
∫ 1

−1
dX

∫
dω

k6X2F1
(
ω2, k

)
|γu|2

∣∣γη

∣∣2 , (33a)
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I (st)
2

(
ν, η, 〈B〉2

)
= πη

∫
dk
∫ 1

−1
dX

∫
dω

k4(1 + X2)F0
(
ω2, k

)
|γu|2

∣∣γη

∣∣2 , (33b)

I (st)
3

(
ν, η, 〈B〉2

)
= πη

∫
dk
∫ 1

−1
dX

∫
dω

k6F0
(
ω2, k

)
|γu|4

∣∣γη

∣∣4 (ω2 − νηk4 − (k · 〈B〉)2
)(

13X4 − 10X2 + 1
)

, (33c)

where X = cos θ and θ is the polar angle in the spherical coordinates (k, θ, φ) in the
wave-vector space, hence the induction equation takes the following form

∂〈B〉
∂t

= ∇× (ᾱst〈B〉)−∇× (η̄st∇× 〈B〉), (34)

with

ᾱst = 4πη
∫

dk
∫ 1

−1
dX

∫
dω

k6X2F1
(
ω2, k

)
|γu|2

∣∣γη

∣∣2 , (35a)

η̄st = η

{
1 + π

∫
dk
∫ 1

−1
dX

∫
dω

k4F0
(
ω2, k

)
|γu|2

∣∣γη

∣∣2
[

1 + X2

+〈B〉2
k2
(

ω2 − νηk4 − k2〈B〉2X2
)(

13X4 − 10X2 + 1
)

|γu|2
∣∣γη

∣∣2
, (35b)

where we have made use of the fact that for any even function of ω, say fe(ω) the integral∫ ∞
−∞ ω fe(ω)dω = 0 vanishes.

4.2. Non-Stationary Turbulence

The dynamics of the Earth’s core is strongly influenced by the wave field, composed
of the fundamental modes such as the inertial waves, the MAC waves and the magnetic
Rossby waves. These waves are described by different dispersion relations, which imply
the existence of a large number of waves with distinct frequencies of oscillation. As argued
at the end of Section 3, their interactions lead to a time-dependent turbulent correlation
tensor. We consider the simplest case of only two-wave interactions and introduce a simple
model by postulating that the turbulence is forced by the following isotropic, homogeneous
but non-stationary forcing (cf. (20))

F0
(
ω, ω′, k

)
= F0

(
ω2, k

)
∆
(
ω, ω′; ω̃, Γ

)
, F1

(
ω, ω′, k

)
= F1

(
ω2, k

)
∆
(
ω, ω′; ω̃, Γ

)
, (36)

i.e.,〈
f̂i(k, ω) f̂ j(k′, ω′)

〉
=
[
F0

(
ω2, k

)
Pij(k) + iF1

(
ω2, k

)
εijkkk

]
δ(k + k′)∆

(
ω, ω′; ω̃, Γ

)
. (37)

In the above, the function ∆(ω, ω′; ω̃, Γ) is the ’non-stationarity’ function given in (20),
so that indeed the two-wave interaction form〈

fi(x, t) fi(x′, t)
〉
∼ 1 + Γ sin(ω̃t) (38)

is preserved. Of course, equally well, one could choose this to be a cosine-type time
dependence. The parameter ω̃ has the physical interpretation of frequency shift between
distinct modes, i.e., MAC or magnetic Rossby waves. The calculation of the mean EMF
in the non-stationary turbulence is postponed until Appendix C. Although the limit is
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not geophysically relevant because of very small viscosity of the core, to make analytical
progress, we have considered

ω̃ � νk2, ηk2, (39)

hence
ω̃

2ΩE`
� 1, E` =

ν

2Ω`2 , (40)

where E` is the Ekman number based on the length scale ` corresponding to most energetic
turbulent eddies in the core. The induction equation then reads

∂〈B〉
∂t

= ∇× (ᾱns〈B〉)−∇× (η̄ns∇× 〈B〉), (41)

where, again, η̄ns is the full effective magnetic diffusivity, including molecular effects and

ᾱns = ᾱst + ᾱstΓ sin(ω̃t)− ᾱ∆ωΓ cos(ω̃t), (42a)

η̄ns = η + η̄st + η̄stΓ sin(ω̃t)− η̄∆ωΓ cos(ω̃t), (42b)

where the coefficients ᾱst and η̄st are given in (35a) and (35b), respectively, whereas formulae
for ᾱ∆ω and η̄∆ω can be found in (A24), (A26), (A27a) and (A27b) in Appendix C. The latter
expressions can be rearranged to yield

ᾱns = ᾱst +
ᾱstΓ

cos φα
sin(ω̃t− φα), (43a)

η̄ns = η + η̄st +
η̄stΓ

cos φη
sin
(
ω̃t− φη

)
, (43b)

where
tan φα =

ᾱ∆ω

ᾱst
, tan φη =

η̄∆ω

η̄st
. (44)

5. The Mean EMF in Non-Stationary, Low-Pm Turbulence

Let us introduce the Hartmann number based on characteristic fluctuational length
scale M and a new variable v,

M 2(k) =
〈B〉2

νηk2 , v =
ω

√
νηk2 . (45)

We can evaluate the integrals expressing the turbulent diffusivity and the α-effect in
non-stationary turbulence (cf. Appendix C) in the geophysically relevant limit of a strong
magnetic field

M 2 =
〈B〉2

νηk2 � 1, (46)

however, on top of this assumption we will also need

∀k PmM 2(k)� 1, (47)

in order to make analytical progress. This means we assume large Hartmann numbers
(strong field), but low magnetic Prandtl numbers Pm = ν/η � 1. Since in the Earth’s core
the Hartmann number

M =
〈B〉L
√

νη
, (48)

based on the core depth L is of the order 107, and Pm ≈ 5× 10−7, the latter assumption
PmM 2(k)� 1 for the Hartmann number M (k) based on fluctuational wavelengths is not
necessarily satisfied. Still, it is reasonable at least in a large part of the short-wavelength
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spectrum, and thus, it is put forward in order to simplify the calculations. Note that
since we consider the strong field limit, it is not applicable to a linear dynamo regime,
i.e., quenching of the electromotive force is significant. Let us take the following simple
statistical model (cf. e.g., [22,23], etc.)

F0

(
ω2, k

)
=

D0

k3 , F1

(
ω2, k

)
=

D1

k5 , (49)

with D0 = const > 0, D1 = const ≤ kminD0 [6], and introduce explicitly the scale separa-
tion, i.e., we introduce the scale of the largest/most energetic turbulent eddies ` = 2π/kmin,
where kmin is the smallest fluctuational wave number. This allows to calculate the relations
between coefficients ᾱst, η̄st and ᾱ∆ω, η̄∆ω (see Appendix C for general formulae), which
yields

ᾱ∆ω ≈
πω̃

12kmin
√

Pm〈B〉
ᾱst, η̄∆ω ≈

15ω̃

28k2
minν

η̄st, (50)

and we recall here the assumptions that led to the final form of the transport coefficients
√

ηνkmin

〈B〉 =
1

M (kmin)
� 1,

ω̃

νk2
min
� 1, PmM 2(kmin)� 1. (51)

Note, however, that these assumptions were only necessary to clearly demonstrate
how the turbulent diffusivity and the α coefficient can be calculated in non-stationary
turbulence, and in particular, we have shown that the significant phase shift in the slow
time dependence between the turbulent diffusivity and the α coefficient is a rather gen-
eral feature of non-stationary turbulence. Under the current assumptions (51) the phase
shifts (44) can be calculated to yield

tan φα =
ᾱ∆ω

ᾱst
≈ ω̃`

24
√

Pm〈B〉
=

1
24

ω̃`2

ν

√
νη

〈B〉` =
1

24
ω̃`2

ν

1
M`

, (52a)

tan φη =
η̄∆ω

η̄st
≈ 15

112π2
ω̃`2

ν
, (52b)

where

M` =
〈B〉`
√

νη
� 1, (53)

is the Hartmann number based on the maximal fluctuational lengthscale, which in the
Earth’s core can be expected to be at the order of 104 or even 105. It follows that φα ≈ 0
is negligibly small and the phase shift between the α-effect and the turbulent magnetic
diffusivity is entirely determined by φη , which is at least a few orders of magnitude larger

φη � φα. (54)

We emphasise that φη is proportional to the frequency shift ω̃ between the slowly
evolving MAC/magnetic Rossby waves, which is not uniquely determined, and in fact,
more realistically, the non-stationary turbulence should be modelled with a superposition
of at least a few (say N) distinct values ω̃n, n = 1, . . . , N, each generating a different phase
shift φη n between the α-effect and the turbulent diffusivity.

Toy Model-Energy of a Force-Free Mode at 〈U〉 = 0

The aim of the simple calculation shown in this section is to demonstrate how a phase
shift between the field-amplifying α-effect and the resistive decay can lead to magnetic
field excursions, through an explicit numerical solution obtained for a force-free mode
defined by

∇× 〈B〉 = κ(x)〈B〉, (55)
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where κ(x) is a scalar function of position; this ensures 〈B〉 × (∇× 〈B〉) = 0. Such force-
free states are known to exist and have been intensively investigated, e.g., in seminal works
of [24,25] (cf. also more recent works of [26,27]). On defining the magnetic energy

Em =
1
2
〈B〉2, (56)

the induction equation in the absence of large-scale flows, 〈U〉 = 0, yields for the energy

∂Em

∂t
= 2ᾱκ(x)Em − 2η̄κ(x)2Em. (57)

Based on the previous analysis we may propose the following

ᾱ =
ᾱ0

1 + ĀE2
m
[1 + Γ cos(ω̃t− φα)], η̄ = η +

η̄0

1 + ĀE2
m

[
1 + Γ cos

(
ω̃t− φη

)]
, (58)

where instead of the magnetic field dependence obtained in the strong field limit with
Pm � 1 considered in previous sections, we added a standard quenching factor, which
models action of the Lorentz force in the simplest way (cf. [28,29]), with Ā = const. Taking

φα = 0, φη = π, (59)

gives a well-suited case study, since it implies that the maximal enhancement of the field
takes place when the effect of the resistive decay is the weakest and vice versa—the
strongest resistive decay of the mean field is associated with the weakest amplification
by the α-effect; the latter situation leads to possible excursions (field decay), whereas the
former one to ’stable’ periods with a strong magnetic field. In such a case, we obtain

∂Em

∂t
=2ᾱ0κ(1 + cos ω̃t)

Em

1 + ĀE2
m

,

− 2κ2
[
η
(

1 + ĀE2
m

)
+ η̄0 − η̄0 cos(ω̃t)

] Em

1 + ĀE2
m

, (60)

where we have inserted Γ = 1. A selected solution of the latter equation is shown on
Figure 1, where indeed regular short-lived excursions are manifested in the evolution of
the magnetic energy, i.e., short periods with a suppressed magnetic field.

Figure 1. Evolution of the magnetic energy in non-stationary turbulence according to Equation (60),
when non-stationary force correlations 〈 fi(x, t) fi(x′, t)〉 ∼ 1 + sin(ω̃t) are defined by a single-mode
time dependence with the frequency ω̃ = 0.0001; the remaining parameters are η = 0.001, η̄ = 0.1,
ᾱ = 1, Ā = 1, κ = 1. The plot is shown in diffusive time units 1/κ2η = 103.

More generally, accounting for the possibility of a more complex time dependence of
the force correlations with more than one slow ω̃-mode, the magnetic energy evolution
equation can be rewritten in the form
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∂Em

∂t
=2ᾱ0κ

[
1 + ∑

n
Γn cos(ω̃nt + ψn)

]
Em

1 + ĀE2
m

− 2κ2

[
η
(

1 + ĀE2
m

)
+ η̄0 + η̄0 ∑

n
Γn cos(ω̃nt + φn)

]
Em

1 + ĀE2
m

. (61)

Selected solutions are shown in Figure 2 for the cases of two and three ω̃-modes.
Especially in the latter case, it is evident that longer periods of relative stability of the
magnetic energy are separated by much shorter excursions.

(a) (b)

Figure 2. Evolution of the magnetic energy in non-stationary turbulence according to Equation (61)
with ψn = 0, φn = π, when non-stationary force correlations 〈 fi(x, t) fi(x′, t)〉 are defined by a two-
mode time dependence with the frequencies ω̃1 = 0.0001 and ω̃2 = 0.000085 (a) and a three-mode
time dependence with ω̃1 = 0.0001, ω̃2 = 0.000085 and ω̃3 = 0.00007 (b); the remaining parameters
are η = 0.001, η̄ = 0.1, ᾱ = 1, Ā = 1, κ = 1. The plot is shown in diffusive time units 1/κ2η = 103.

6. Discussion of Relevance of the Results to the Problem of Geomagnetic Excursions

The presented toy model is obviously a great simplification. Firstly, it considers force-
free modes, but it also relies on derivations obtained under restrictive assumptions of
statistic homogeneity and isotropy. The toy model, however, is only used to visualise the
studied effect of non-stationarity of the turbulent coefficients ᾱ and η̄, which is generic and
independent of the simplifying assumptions.

It needs to be stressed that in the presented analysis, the large-scale EMF is calculated
with the use of fluctuational equations, but then we concentrate on the evolution of the
large-scale field, leaving the dynamics of the small-scale component of the magnetic field
unexplored. It follows that temporal enhancement of turbulent magnetic diffusivity does
not need to suppress the small-scale dynamo, which in reality is actually rather expected to
be vividly operating on much shorter timescales, largely independently of the large-scale
process. Furthermore, as stated above, the problem is greatly simplified from the start
by the assumption of isotropy and neglection of the strongly anisotropic effect of the
background rotation and density stratification. At first, a rough estimate of the anisotropy
leads to a separation between horizontal and vertical turbulent ᾱ and η̄ coefficients. It is
also known that in the weak seed field limit (linear stage of growth of the mean magnetic
field) the mean induction equation with anisotropic ᾱij = ᾱhδij + (ᾱv − ᾱh)δi3δj3 and η̄ij =
η̄hδij + (η̄v − η̄h)δi3δj3 (say rotation is along the z-axis) separates the evolution of even and
odd modes, thus dipolar parity evolves independently with the quadrupolar one. Moreover,
one should bear in mind that the reality is even more complex—not only non-stationary
but also inhomogeneous, leading to spatially dependent turbulent coefficients, which
further differentiates the evolution of different spatial modes. Summarising, the small-scale
dynamo is by no means excluded during the periods of enhanced turbulent diffusion,
and the simple isotropic, homogeneous model obviously does not grasp the complexity
of the strongly anisotropic Earth’s core turbulence and the mean-field evolution; and it
is the anisotropy and inhomogeneity (rotation, stratification, buoyancy, inhomogeneous
wave interactions, etc.) that lead to significant differences in the evolution of the mean
dipolar and quadrupolar fields. Although theoretical models, including non-stationarity,
inhomogeneity and anisotropy, may be too cumbersome to investigate, it could be of
interest to utilise DNS to study the long time evolution of turbulent coefficients in spherical,
rapidly rotating shells and its dynamical connection to magnetic excursions.
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Furthermore, there is a number of other important models, which identify and study
other effects as underlying mechanisms of the geomagnetic reversals/excursions and
present a more general approach to the problem. The dynamics of reversals has been
modelled with sets of nonlinear ODE’s involving supercritical bifurcations and describing
the evolution of field modes with different parities, e.g., by [30] or [31]. Later, ref. [32]
attempted to grasp the main features of evolution of the planetary field by ODE models
with a stochastic noise. A saddle-node-bifurcation model capturing the dynamical features
of the geomagnetic field evolution and those of the field obtained in the VKS experiment
(cf. [33]) was developed by [34]. A group of nonlinear, one-dimensional evolutional models,
which also reported Earth-like features were represented by [35–37]. In short, the described
models point to nonlinearities causing chaotic behaviour of the system as the mechanism
of generation of reversals/excursions in the system evolution. Of course this does not
exclude non-stationarity of the mean-field coefficients as a trigger of the excursion events.

7. Conclusions

Although obviously no decisive conclusion about predictions of geomagnetic excur-
sions can be made from the presented analysis, the paper points to the non-stationarity
of the turbulent transport coefficients ᾱ and η̄, which are likely to slowly evolve in time
due to the non-stationarity of the entire background turbulence in the core. Their evolu-
tion was shown to be out of phase, implying the existence of periods of enhanced and
suppressed turbulent dynamo process, which may correlate or not with periods of en-
hanced/suppressed diffusion. In particular, enhancement of the α-effect may coincide
with suppression of diffusion (stable field) and vice versa, enhancement of diffusion may
coincide with suppression of the dynamo effect (field decay). It would be instructive to
study such temporal characteristics of the turbulent diffusivity and the α-effect in numeri-
cal simulations, in particular the correlations between the value of the ratio η̄/ᾱ and the
occurrences of excursions.

The magnetic diffusion in the Earth’s core is thought to be η = 2 m2/s (cf. e.g., [38]),
which implies the magnetic diffusion time of about 104 years. The non-stationary tur-
bulence can, however, enhance the effective magnetic diffusion of the large-scale dipole
to make it a few times larger, which decreases the magnetic diffusion time to a value of
a few thousand years, which is in line with the realistic time scales of the geomagnetic
excursions/reversals. As shown, in a non-stationary turbulence, such an enhancement of
diffusion can be correlated with simultaneous suppression of the α-effect, in which case it
is likely to result in a sharp drop of the geomagnetic field intensity, i.e., the excursion. With
such a picture, the geomagnetic excursions are manifestations of the chaotic core turbu-
lence and their occurrences are also bound to be chaotic, and no characteristic, significant
alterations in the core large-scale flow are expected during excursions, in accordance with
results of numerical simulations [16–18]. Perhaps with the development of the available
computational abilities and power, in the future, it may become possible to numerically
study the Earth-like parameter regime and construct reliable fits to the geomagnetic data
in order to provide estimates of the turbulent magnetic diffusivity and the α-effect, which
could then be monitored since a drop in the value of the ratio ᾱ/η̄ for the outer core could
indicate a higher possibility for a geomagnetic excursion.
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the subvention of the Ministry of Science and Higher Education in Poland.
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Appendix A

The integrals that appear in Equation (22) take the form

I(α)1 =
8π

3

∫
dk
∫

dω
k6h
(
ω2, k

)∣∣γη

∣∣2 , I(α)2 =
8π

3

∫
dk
∫

dω
k6h
(
ω2, k

)(
ω̃2 + ω2 + η2k4)

(ω2 − ω̃2 − η2k4)
2
+ 4ω2η2k4

, (A1)

I(α)3 =
8π

3

∫
dk
∫

dω
k4h
(
ω2, k

)(
ω2 − ω̃2 − η2k4)

(ω2 − ω̃2 − η2k4)
2
+ 4ω2η2k4

, (A2)

I(η)1 =
8π

3

∫
dk
∫

dω
k4e
(
ω2, k

)∣∣γη

∣∣2 , I(η)2 =
8π

3

∫
dk
∫

dω
k4e
(
ω2, k

)(
ω̃2 + ω2 + η2k4)

(ω2 − ω̃2 − η2k4)
2
+ 4ω2η2k4

, (A3)

I(η)3 =
8π

3

∫
dk
∫

dω
k2e
(
ω2, k

)(
ω2 − ω̃2 − η2k4)

(ω2 − ω̃2 − η2k4)
2
+ 4ω2η2k4

. (A4)

Appendix B

Here we present the explicit calculation of the large-scale EMF (30) given in Section 4.
By the use of (15) and (28) we write down

εl jk

〈
ûj(q)b̂k

(
q′
)〉

=i
k′n〈B〉n

γ′η
εl jk

1
γuγ′u

〈
f̂ j f̂ ′k
〉

+ 〈B〉n〈B〉rεl jk
1

γuγ′2u γ′2η

k′nk′rk′kk′s
k′2

∂〈B〉s
∂xp

〈
f̂ j f̂ ′p

〉
+ 〈B〉n〈B〉rεl jk

1
γ2

uγηγ′ηγ′u

k′nkrk jks

k2
∂〈B〉s
∂xp

〈
f̂p f̂ ′k

〉
− εl jk

∂〈B〉k
∂xp

1
γuγ′uγ′η

〈
f̂ j f̂ ′p

〉
− i

k′n〈B〉n
γ′η

εl jk

[
1

γuγ′2u
P′ks

∂〈U〉s
∂xp

+
(k′ · 〈B〉)2

γuγ′2u γ′2η

∂〈U〉k
∂xp

]〈
f̂ j f̂ ′p

〉
− i

k′n〈B〉n
γ′η

εl jk

[
1

γ2
uγ′u

Pjs
∂〈U〉s

∂xp
+

(k · 〈B〉)2

γ2
uγ2

ηγ′u

∂〈U〉j
∂xp

]〈
f̂p f̂ ′k

〉
+ iεl jk〈B〉n

∂〈U〉k
∂xp

k′n
γuγ′uγ′2η

〈
f̂ j f̂ ′p

〉
, (A5)

where, again, higher-order terms in the gradients G and G have been neglected. We assume
the force correlation tensor in the following isotropic and homogeneous form〈

f̂i(k, ω) f̂ j(k′, ω′)
〉
=
[

F0
(
ω, ω′, k

)
Pij(k) + iF1

(
ω, ω′, k

)
εijkkk

]
δ(k + k′). (A6)

After the change of variables ω → ω− k · 〈U〉, we return to the real space to obtain
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εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
= 2〈B〉n

∫
d4q

∫
dω′e−i(ω+ω′)t knkl

γuγ′uγ′η
F1

− εl jk
∂〈B〉k
∂xp

∫
d4q

∫
dω′e−i(ω+ω′)t 1

γuγ′uγ′η
F0Pjp(k)

+ 〈B〉n〈B〉r
∂〈B〉s

∂xj
εl jk

∫
d4q

∫
dω′e−i(ω+ω′)t 1

γuγ′2u γ′2η

knkrkkks

k2 F0

+ 〈B〉n〈B〉r
∂〈B〉s

∂xj
εl jk

∫
d4q

∫
dω′e−i(ω+ω′)t 1

γ2
uγ′uγηγ′η

knkrkkks

k2 F0

+ 〈B〉n
∫

d4q
∫

dω′e−i(ω+ω′)t

[
knklkkks

k2γuγ′2u γ′η

∂〈U〉s
∂xk

+
knkkkrkw

γuγ′2u γ′3η
〈B〉r〈B〉w

∂〈U〉k
∂xl

]
F1

+ 〈B〉n
∫

d4q
∫

dω′e−i(ω+ω′)t

[
knklkkks

k2γ2
uγ′uγ′η

∂〈U〉s
∂xk

+
knkkkrkw

γ2
uγ2

ηγ′uγ′η
〈B〉r〈B〉w

∂〈U〉k
∂xl

]
F1

− 〈B〉n
∂〈U〉k

∂xl

∫
d4q

∫
dω′e−i(ω+ω′)t knkk

γuγ′uγ′2η
F1. (A7)

Next, using the following formulae

∫ kj

k
f
(

cos2 θ
)

dΩ̊ = 0,
∫ kikjkk

k3 f (cos θ)dΩ̊ = 0, (A8a)

∫ kjkn

k2 f
(

cos2 θ
)

dΩ̊ = π
∫ 1

−1
f (X2)

{
δjn

(
1− X2

)
+ δj3δn3

(
3X2 − 1

)}
dX, (A8b)

∫ kikjkmkn

k4 f
(

cos2 θ
)

dΩ̊ =
π

4

(
δijδmn + δimδjn + δinδjm

) ∫ 1

−1
f (X2)

(
1− X2

)2
dX

− π

4

(
δijδm3δn3 + δimδj3δn3 + δinδj3δm3 + δjmδi3δn3

+δjnδi3δm3 + δmnδi3δj3

) ∫ 1

−1
f (X2)

(
5X4 − 6X2 + 1

)
dX

+
π

4
δi3δj3δm3δn3

∫ 1

−1
f (X2)

(
35X4 − 30X2 + 3

)
dX, (A8c)

where Ω̊ denotes the solid angle and the spherical coordinates (k, θ, φ) have been used
(with a substitution X = cos θ) one obtains

εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
= I1

(
ν, η, 〈B〉2

)
〈B〉l −

[
I2

(
ν, η, 〈B〉2

)
+ 〈B〉2I3

(
ν, η, 〈B〉2

)]
[∇× 〈B〉]l

− I4

(
ν, η, 〈B〉2

)[
∇〈B〉2 × 〈B〉

]
l

+
{
I6

(
ν, η, 〈B〉2

)
+ I8

(
ν, η, 〈B〉2

)
〈B〉2 − I5

(
ν, η, 〈B〉2

)}[
(∇〈U〉)s · 〈B〉

]
l

+ I7

(
ν, η, 〈B〉2

)
〈B〉l
〈B〉 · (∇〈U〉)s · 〈B〉

〈B〉2

−
{
I8

(
ν, η, 〈B〉2

)
〈B〉2 − I5

(
ν, η, 〈B〉2

)}
[(∇× 〈U〉)× 〈B〉]l , (A9)

with

I1

(
ν, η, 〈B〉2

)
= 4π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4X2F1(ω, ω′, k)

γuγ′uγ′η
, (A10a)
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I2

(
ν, η, 〈B〉2

)
= π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k2(1 + X2)F0

γuγ′uγ′η
, (A10b)

I3

(
ν, η, 〈B〉2

)
=

π

2

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4F0

γuγ′uγ′η

[
1

γ′uγ′η
+

1
γuγη

]
g3(X), (A10c)

I4

(
ν, η, 〈B〉2

)
=

π

4

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4F0

γuγ′uγ′η

[
1

γ′uγ′η
+

1
γuγη

]
g4(X), (A10d)

I5

(
ν, η, 〈B〉2

)
= 2π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4X2F1

γuγ′uγ′2η
, (A10e)

I6

(
ν, η, 〈B〉2

)
= 2π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4F1

γuγ′uγ′η

(
1

γ′u
+

1
γu

)
g6(X), (A10f)

I7

(
ν, η, 〈B〉2

)
= π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k4F1

γuγ′uγ′η

(
1

γ′u
+

1
γu

)
g7(X), (A10g)

I8

(
ν, η, 〈B〉2

)
= 2π

∫
dk
∫ 1

−1
dX

∫
dω

∫
dω′e−i(ω+ω′)t k6X4F1

γuγ′uγ′η

(
1

γ′uγ′2η
+

1
γuγ2

η

)
, (A10h)

where
g3(x) = −13X4 + 10X2 − 1, (A11a)

g4(X) = 9X4 − 10X2 + 1, (A11b)

g6(X) = X2
(

1− X2
)

, (A11c)

g7(X) = X2
(

5X2 − 3
)

. (A11d)

The mean velocity gradients within the considered model correspond to effects such as
the cross-helicity dynamo or the shear-current effect [19–21], but for clarity, we will exclude
them here. Hence, we now set 〈U〉 = 0 and concentrate only on the α-effect and the effects
of turbulent diffusion. For simplicity, we will also consider the case when ∇〈B〉2 × 〈B〉 is
negligible, hence the mean EMF is reduced to

εl jk

∫
d4qei(k·x−ωt)

∫
d4q′ei(k′ ·x−ω′t)

〈
ûj(ω, k)b̂k

(
ω′, k′

)〉
=I1

(
ν, η, 〈B〉2

)
〈B〉l

−
[
I2

(
ν, η, 〈B〉2

)
+ 〈B〉2I3

(
ν, η, 〈B〉2

)]
[∇× 〈B〉]l . (A12)

Appendix C

The calculation of the explicit relations between the coefficients ᾱst, η̄st and ᾱ∆ω, η̄∆ω

is presented here. The integrals (A10a)–(A10c) take the following form

I1

(
ν, η, 〈B〉2

)
= I (st)

1

(
ν, η, 〈B〉2

)
− i2πΓ

∫
dk
∫ 1

−1
dX

∫
dω

k4X2F1
(
ω2, k

)
γu

W(ω; ω̃, ν, η), (A13a)

I2

(
ν, η, 〈B〉2

)
= I (st)

2

(
ν, η, 〈B〉2

)
− i

π

2
Γ
∫

dk
∫ 1

−1
dX

∫
dω

k2(1 + X2)F0
(
ω2, k

)
γu

W(ω; ω̃, ν, η), (A13b)
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I3

(
ν, η, 〈B〉2

)
= I (st)

3

(
ν, η, 〈B〉2

)
− i

π

4
Γ
∫

dk
∫ 1

−1
dX

∫
dω

k4F0
(
ω2, k

)
γ2

uγη

(
−13X4 + 10X2 − 1

)
W(ω; ω̃, ν, η)

− i
π

4
Γ
∫

dk
∫ 1

−1
dX

∫
dω

k4F0
(
ω2, k

)
γu

(
−13X4 + 10X2 − 1

)
W(ω; ω̃, ν, η), (A13c)

where

W(ω; ω̃, ν, η) =
eiω̃t

γu(−ω− ω̃)γη(−ω− ω̃)
− e−iω̃t

γu(−ω + ω̃)γη(−ω + ω̃)
, (A14a)

W(ω; ω̃, ν, η) =
eiω̃t

γ2
u(−ω− ω̃)γ2

η(−ω− ω̃)
− e−iω̃t

γ2
u(−ω + ω̃)γ2

η(−ω + ω̃)
, (A14b)

and I (st)
3

(
ν, η, 〈B〉2

)
is given in (33c). To make analytical progress, we now consider the

following asymptotic limit

∀k ω̃ � νk2, ηk2, PmM 2(k)� 1, Pm =
ν

η
� 1, (A15)

where we have defined

M 2(k) =
〈B〉2

νηk2 , (A16)

so that

γu(−ω− ω̃)γη(−ω− ω̃)

=

{
νk2 + ηk2 (k · 〈B〉)

2∣∣γη

∣∣2 + i(−ω− ω̃)

[
(k · 〈B〉)2∣∣γη

∣∣2 − 1

]}(
ηk2 − i(−ω− ω̃)

)
= νηk4 − (ω + ω̃)2 + (k · 〈B〉)2 + i(ω + ω̃)(ν + η)k2

≈ νηk4 −ω2 + (k · 〈B〉)2 + iω(ν + η)k2 + ω̃
[
i(ν + η)k2 − 2ω

]
, (A17)

1
γu(−ω− ω̃)γη(−ω− ω̃)

≈ 1
γu(−ω)γη(−ω)

− ω̃
i(ν + η)k2 − 2ω

γ2
u(−ω)γ2

η(−ω)
. (A18)

On introducing the following new variable

ω =
√

νηk2v, (A19)

we obtain

|γu(ω)|2
∣∣γη(ω)

∣∣2 =ω4 + ω2
[
k4
(

ν2 + η2
)
− 2(k · 〈B〉)2

]
+
(

νηk4 + (k · 〈B〉)2
)2

=ν2η2k8
{

v4 + v2
[(

Pm + Pm−1
)
− 2M 2X2

]
+
(

1 +M 2X2
)2
}

, (A20)

and hence with the use of〈
f̂i(k, ω) f̂ j(k′, ω′)

〉
=

[
D0

k3 Pij(k) + i
D1

k5 εijkkk

]
δ(k + k′)∆

(
ω, ω′; ω̃, Γ

)
, (A21)

where D0, D1 and Γ are constants, one obtains

I1

(
ν, η, 〈B〉2

)
= ᾱst + ᾱstΓ sin(ω̃t)− ᾱ∆ωΓ cos(ω̃t) (A22a)
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I2

(
ν, η, 〈B〉2

)
= η̄1 st + η̄1 stΓ sin(ω̃t)− η̄1 ∆ωΓ cos(ω̃t), (A22b)

〈B〉2I3

(
ν, η, 〈B〉2

)
= −η̄2 st − η̄2 stΓ sin(ω̃t) + η̄2 ∆ωΓ cos(ω̃t), (A22c)

where

ᾱst =
4πD1

ν
√

νη

∫ dk
k5

∫ 1

−1
dX

∫
dv

X2

v4 + v2[(Pm + Pm−1)− 2M 2X2] + (1 +M 2X2)
2

≈ 4πD1

ν
√

νη

∫ dk
k5

∫ 1

−1
dX

∫
dv

X2

v2(Pm−1 − 2M 2X2) + (1 +M 2X2)
2 , (A23)

ᾱ∆ω =− 4πω̃
∫

dk
∫ 1

−1
dX

∫
dω

k4X2F1
(
ω2, k

)
|γu|4

∣∣γη

∣∣4 {
2ω4 + ω2

[
ν(ν− η)k4 − 2k2〈B〉2X2

]
−(ν + η)ηk4

[
νηk4 + k2〈B〉2X2

]}
≈4πD1ω̃

(νη)3/2

∫ dk
k7

∫ 1

−1
dX

∫
dv

X2[Pm−1(1 +M 2X2)+ 2v2M 2X2]{
v2(Pm−1 − 2M 2X2) + (1 +M 2X2)

2
}2 , (A24)

η̄st ≈πη〈B〉2
∫

dk
∫ 1

−1
dX

∫
dω

k6g3(X)F0
(
ω2, k

)
|γu|4

∣∣γη

∣∣4 (
ω2 − νηk4 − k2〈B〉2X2

)
≈πD0〈B〉2

ν(νη)3/2

∫ dk
k7

∫ 1

−1
dX

∫
dv

(
13X4 − 10X2 + 1

)(
1 +M 2X2){

v2(Pm−1 − 2M 2X2) + (1 +M 2X2)
2
}2 , (A25)

η̄∆ω ≈−
3π

2
ω̃〈B〉2

∫
dk
∫ 1

−1
dX

∫
dω

k4F0
(
ω2, k

)
|γu|4

∣∣γη

∣∣4 g3(X)
[
2ω2 + (ν + η)ηk4

]
+ 2π(ν + η)(ν + 3η)ω̃〈B〉2

∫
dk
∫ 1

−1
dX

∫
dω

k8ω2F0
(
ω2, k

)
|γu|6

∣∣γη

∣∣4 g3(X)

+ 2π
(

ν2 − η2
)

ω̃〈B〉2
∫

dk
∫ 1

−1
dX

∫
dω

k8ω2F0
(
ω2, k

)
|γu|6

∣∣γη

∣∣6 g3(X)
[
2(ν + η)ηk4

+k2〈B〉2X2
]

≈ 3πD0ω̃〈B〉2

2(νη)5/2Pm

∫ dk
k9

∫ 1

−1
dX

∫
dv

(
13X4 − 10X2 + 1

){
v2(Pm−1 − 2M 2X2) + (1 +M 2X2)

2
}2

+
2πD0ω̃〈B〉2

(νη)5/2Pm

∫ dk
k9

∫ 1

−1
dX

∫
dv

g3(X)v2(Pm−1 −M 2X2){
v2(Pm−1 − 2M 2X2) + (1 +M 2X2)

2
}3 . (A26)

The above integrals can be evaluated in the asymptotic limit (A15) in a straightforward
manner, leading to

ᾱst

ᾱ∆ω
≈

8〈B〉
√

Pm
∫ K

kmin
dk
k3

πω̃
∫ K

kmin
dk
k4

≈ 12〈B〉
√

Pmkmin

πω̃
, (A27a)

η̄st

η̄∆ω
≈

4ν
∫ K

kmin
dk
k6

3ω̃
∫ K

kmin
dk
k8

≈
28νk2

min
15ω̃

, (A27b)
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where K denotes the short-wavelength dissipative cut-off of the Fourier spectrum and we
have assumed k` � K. The induction equation can be cast in the following form

∂〈B〉
∂t

= ∇× (ᾱns〈B〉)−∇× (η̄ns∇× 〈B〉), (A28)

with
ᾱns = ᾱst + ᾱstΓ sin(ω̃t)− ᾱ∆ωΓ cos(ω̃t), (A29a)

η̄ns = η + η̄st + η̄stΓ sin(ω̃t)− η̄∆ωΓ cos(ω̃t). (A29b)

The Equations (A29a) and (A29b) can be easily rearranged into

ᾱns = ᾱst +
ᾱstΓ

cos φα
sin(ω̃t− φα), (A30a)

η̄ns = η + η̄st +
η̄stΓ

cos φη
sin
(
ω̃t− φη

)
, (A30b)

where
tan φα =

ᾱ∆ω

ᾱst
, tan φη =

η̄∆ω

η̄st
. (A31)
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