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Abstract: The infinite product of matrices with integer entries, known as a modified Glimm–Bratteli
symbol n, is a new, sufficiently simple, and very powerful tool for the characterization of approxi-
mately finite-dimensional (AF) algebras. This symbol provides a convenient algebraic representation
of the Bratteli diagram for AF algebras in the same way as was previously performed by J. Glimm for
more simple uniformly hyperfinite (UHF) algebras. We apply this symbol to characterize integrodif-
ferential algebras. The integrodifferential algebra FN,M is the C∗-algebra generated by the following
operators acting on L2([0, 1)N → CM): (1) operators of multiplication by bounded matrix-valued
functions, (2) finite-difference operators, and (3) integral operators. Most of the operators and their
approximations studying in physics belong to these algebras. We give a complete characterization of
FN,M. In particular, we show that FN,M does not depend on M, but depends on N. At the same
time, it is known that differential algebras HN,M, generated by the operators (1) and (2) only, do
not depend on both dimensions N and M; they are all ∗-isomorphic to the universal UHF algebra.
We explicitly compute the Glimm–Bratteli symbols (for HN,M, it was already computed earlier)
which completely characterize the corresponding AF algebras. This symbol n is an infinite product
of matrices with nonnegative integer entries. Roughly speaking, all the symmetries appearing in
the approximation of complex infinite-dimensional integrodifferential and differential algebras by
finite-dimensional ones are coded by a product of integer matrices.

Keywords: representation of integrodifferential operators; Glimm-Bratteli symbols; AF algebras

1. Introduction

Discrete and continuous analogs of integrodifferential algebras are actively used in
various applications, for example, in the development of computer algorithms for symbolic
and numerical solving of integrodifferential equations, see, e.g., [1–4]. These studies do not
concern the structure of C∗-algebras. On the other hand, differential algebras are closely
related to the rotation C∗-algebras well studied in, e.g., [5–8]. In contrast to the rotation
algebras, the integrodifferential algebras contain operators of multiplication by discontin-
uous functions and integral operators. Nevertheless, the integrodifferential algebras are
AF algebras and, hence, they admit a classification in terms of, e.g., the Bratteli diagrams.
We give an algebraic representation of the Bratteli diagrams based on the infinite products
of matrices with nonnegative integer entries. These infinite products of matrices extend
the infinite products of natural numbers that J. Glimm used for the characterization of
uniformly hyper-finite algebras. This is a reason why we call the infinite products of
matrices Glimm–Bratteli symbols. GB symbols are a fairly powerful tool because it allows
one to use a simple matrix product technique to prove the presence or absence of isomor-
phism between algebras. In general, isomorphism is very important in understanding
the differences and similarities between different classes of operators. Recently, in [9], it
was proved that all the differential C∗-algebras are isomorphic, independently of their
dimensions. A natural question arises: what will happen if we add integral operators
to differential algebras? We see below that the resulting integrodifferential algebras are
already nonisomorphic to each other, they depend on the dimension. Thus, while there are
unified methods for analyzing finite-difference approximations of differential equations
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for any dimension, the analysis of such approximations of integrodifferential equations
may strongly depend on the dimensions.

The current research is devoted to the integrodifferential operators acting on multi-
dimensional tori. In the future, we plan to adapt the analysis to more complex stochastic
integrodifferential operators acting on non-compact and fractal domains.

The manuscript is organized as follows: Section 2 contains basic information about
∗-homomorphisms of finite-dimensional C∗-algebras, a structure of AF-algebras, related
graphical Bratteli diagrams along with their algebraic representations by the Glimm–
Bratteli symbols, and some examples; Section 3 is devoted to the characterization of
integrodifferential C∗-algebras in terms of the Glimm–Bratteli symbols; Section 4 contains
the proofs of the results from Sections 2 and 3; we conclude in Section 5.

2. Characterization of AF-Algebras. Infinite Product of Matrices with Integer Entries

Let us recall some facts about Bratteli diagrams. It is well known that any finite-
dimensional C∗-algebra is ∗-isomorphic to the direct sum of simple matrix algebras. Up
to the order of terms, this direct sum is determined uniquely. It is convenient to use the
following notation for finite-dimensional C∗-algebras. Let p = (pj)

n
j=1 ∈ Nn, then

M (p) := Cp1×p1 ⊕ ...⊕Cpn×pn . (1)

Any ∗-homomorphism from M (p) to M (q) with p ∈ Nn, q ∈ Nm is internally (inside
each Cqj×qj ) unitary equivalent to some canonical ∗-homomorphism. Any canonical ∗-
homomorphism is completely and uniquely determined by the matrix of multiplicities of
partial embeddings E ∈ Zm×n

+ (E matrix), satisfying E(pj)
n
j=1 = (q̃j)

m
j=1, where q̃j 6 qj, and

Z+ = N∪ {0}. For example, the canonical ∗-homomorphism

ϕ : M (2, 2, 3)→M (4, 4), A⊕ B⊕ C
ϕ7−→
(

A 0
0 A

)
⊕
(
0
)

has the E matrix

E =

(
2 0 0
0 0 0

)
.

For simplicity, we can write

M (2, 2, 3) E−→M (4, 4).

If a canonical ∗-homomorphism is unital then there are no zero rows in the E matrix, and
we should replace the above-mentioned condition q̃j 6 qj with q̃j = qj. For example, the
unital embedding

M (2, 2, 3) E−→M (4, 5), E =

(
2 0 0
0 1 1

)
has the form

A⊕ B⊕ C 7−→
(

A 0
0 A

)
⊕
(

B 0
0 C

)
.

The AF algebra is a separable C∗-algebra, any finite subset of which can be approx-
imated by a finite-dimensional C∗-subalgebra. For convenience, we will consider unital
AF algebras only. This is not a restriction because the unitalization of an AF algebra is
obviously an AF algebra. It is well known that for any unital AF algebra A , there is a
family of nested finite-dimensional C∗-subalgebras An ⊆ A , satisfying

C1×1 ∼= A0 ⊆ A1 ⊆ A2 ⊆ ..., A =
∞⋃

n=0
An. (2)
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Since An are nested finite-dimensional C∗-algebras, they are isomorphic to some canonical
algebras M (pn), where pn ∈ NMn , Mn ∈ N, and the inclusions (2) can be written as

M (p0)
E0−−→M (p1)

E1−−→M (p2)
E2−−→ ..., (3)

where p0 = 1, M0 = 1, and En ∈ ZMn+1×Mn
+ . Moreover, due to the unital embeddings

M (pn) ⊆ M (pn+1), all E matrices have no zero rows and columns and they satisfy
Enpn = pn+1. Because p0 = 1, we obtain

pn+1 = En...E1E0 =
n

∏
i=0

Ei. (4)

We will always assume the right-to-left order in the product ∏. Using (3) and (4), we
conclude that the matrices {En}+∞

n=0 completely determine the structure of the unital AF
algebra A . It is useful to note that the choice of E matrices is not unique. For example, E
matrices {E′n}+∞

n=0, where E′n = E2n+1E2n, determine the same algebra A . This is because
the composition of two embeddings has the E-matrix equivalent to the product of E
matrices corresponding to the embeddings. It is possible to describe the class of all E-
matrices determining the same unital AF-algebra.

Definition 1. Let E be the set of sequences of matrices {En}∞
n=0, where En ∈ ZMn+1×Mn

+ have
no zero rows and columns, and M0 = 1, Mn ∈ N are some positive integer numbers. Let us
define the equivalence relation on E. Two sequences {An}∞

n=0 ∼ {Bn}∞
n=0 are equivalent if there is

{Cn}∞
n=0 ∈ E such that

C0 =
r1−1

∏
i=0

Ai, C2n−1C2n−2 =
mn−1

∏
i=mn−1

Bi, C2nC2n−1 =
rn+1−1

∏
i=rn

Ai, n > 1, (5)

where 0 = r0 < r1 < r2 < ... and 0 = m0 < m1 < m2 < ... are some monotonic sequences of
integer numbers. The corresponding set of equivalence classes is denoted by E := E/ ∼.

It is convenient to denote the equivalence classes as

{En}∞
n=0 =

∞

∏
n=0

En

because, see (5),

∞

∏
n=0

An =
∞

∏
n=0

rn+1−1

∏
i=rn

Ai =
∞

∏
n=0

Cn =
∞

∏
n=0

mn+1−1

∏
i=mn

Bi =
∞

∏
n=0

Bn.

In other words, we can perform the standard manipulations in the product of matrices
without leaving the equivalence class. Of course, the manipulations should not go beyond
E, i.e., all the resulting matrices should have non-negative integer entries and should not
have zero rows and zero columns.

Let A be a unital AF algebra. Following (2)–(4), there is {En}∞
n=0, which represents a

Bratteli diagram for A . Let us define the mapping

n : A 7→
∞

∏
n=0

En. (6)

Because the Bratteli diagram is not unique, the correctness of the mapping n should be
checked. This is already complete in the main structure theorem for Bratteli diagrams.
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Theorem 1. (i) The relation ∼ defined in Definition 1 is the equivalence relation. (ii) Let A be the
set of classes of nonisomorphic unital A -algebras. Then, n : A→ E is 1–1 mapping.

Note that the inverse mapping n−1 has a more explicit form than n. For example,
n−1(∏∞

n=0 En) is the C∗-algebra A given by the inductive limit (3).
The proof of Theorem 1 follows from the similar results formulated for the graphical

representations of Bratteli diagrams, see, e.g., [10,11], and Theorem 3.4.4 in [12]. The
equivalence relation ∼ is the complete analogue of telescopic transformations of Bratteli
diagrams defined in [12]. While the Bratteli diagram is not unique, it provides a kind
of good classification tool. Other types of classification of AF algebras, including the
efficient K-theoretic Elliott classification, are discussed in [13–17]. The infinite product
n(A ) representing the Bratteli diagram for AF-algebra A can be called the Glimm–Bratteli
symbol. The reason for using this name is the following. Working with supernatural
symbols (numbers), when En are natural numbers in (6), J. Glimm provides the classification
of UHF algebras in [18]. In turn, the UHF algebras are a partial case of AF algebras for which
the supernatural numbers should be replaced with “supernatural matrices” connected
with the corresponding Bratteli diagram. Let us consider some examples of AF algebras.

Example 1 (Compact operators). Let K be the C∗-algebra of compact operators acting on a
separable Hilbert space. Let K1 = Alg(K , 1) be its unitalization. It is well known, see, e.g., [12],
that the Bratteli diagram for K1 can be presented as it is drawn in Figure 1.

...
Figure 1. Bratteli diagram for the unitalized C∗-algebra of compact operators K1.

The nodes correspond to simple matrix sub-algebras, and the edges show the multiplicity of
embedding: one line means the multiplicity is equal to 1, two lines means the multiplicity is 2, and
so on. The first node is a node that has no incoming edges; it is always C1×1. The dimensions of
nodes are determined by the dimensions of nodes connected on the left and by the multiplicities of
embedding. The corresponding Glimm–Bratteli symbol is

n(K1) =

(
1 0
1 1

)∞(1
1

)
.

Combining terms in the infinite product, we can write another form of the Glimm–Bratteli symbol

n(K1) =

(
1 0
1 1

)∞(1
1

)
=

( ∞

∏
n=1

(
1 0
1 1

)n)(1
1

)
=

( ∞

∏
n=1

(
1 0
n 1

))(
1
1

)
,

which leads to the labeled Bratteli diagram depicted in Figure 2.

2 3 4 5 6

...
Figure 2. Another variant of the Bratteli diagram for the unitalized C∗-algebra of compact opera-
tors K1.

In the labeled Bratteli diagram, the edge numbers are the multiplicities of embeddings. The
multiplicity 1 is usually omitted.
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Example 2 (CAR algebra). For the CAR (canonical anticommutation relations) algebra C , which
is a UHF algebra, the Glimm–Bratteli symbol is n(C ) = 2∞. At the same time,

n(C ) = 2∞ =

((
1 1

)(1
1

))∞

=

((
1
1

)(
1 1

))∞(1
1

)
=

(
1 1
1 1

)∞(1
1

)
.

The corresponding Bratteli diagrams are depicted in Figure 3.

∼= 2 2 2 ∼= ....

Figure 3. Different Bratteli diagrams represent the same C∗-algebra n−1(2∞).

Comparing this explanation with the similar one given in [12], it is seen how the symbol n
simplifies the proof of equivalence of presented Bratteli diagrams.

Example 3 (Direct sum of AF algebras). Above, we already used the notation ⊕ for the direct
sum of matrix algebras and for their elements. We will use the same symbol in a slightly different
context, namely for the direct sum of not necessarily square E matrices. Suppose that C = A ⊕B
is the standard direct sum of two AF algebras. If n(A ) = ∏∞

n=0 An and n(B) = ∏∞
n=0 Bn then it

can be shown that

n(C ) =

( ∞

∏
n=0

Cn

)(
1
1

)
, where Cn = An ⊕ Bn =

(
An 0
0 Bn

)
.

Example 4 (Tensor product of AF-algebras). It is useful to note the following property of the
tensor product

M (p)⊗M (q) = M (p⊗ q),

where
p = (pi)

n
i=1 ∈ Nn, q = (qj)

m
j=1 ∈ Nm, p⊗ q = (piqj)

n,m
i,j=1 ∈ Nnm.

Moreover, it is easy to check that if

M (p1)
E1−−→M (q1), M (p2)

E2−−→M (q2)

then
M (p1 ⊗ p2)

E1⊗E2−−−−→M (q1 ⊗ q2),

where the tensor product of matrices is defined in the standard way

(Ai,j)⊗ (Br,s) = (C(i,r),(j,s)), C(i,r),(j,s) = Ai,jBr,s.

Hence, the standard tensor product C = A ⊗B of two AF algebras is an AF algebra which satisfies

n(C ) =
∞

∏
n=0

An ⊗ Bn,

where n(A ) = ∏∞
n=0 An, n(B) = ∏∞

n=0 Bn, and the tensor product of matrices is then

A⊗ B =

 b11A ... b1NA
... ... ...

bM1A ... bMHA

, B =

 b11 ... b1N
... ... ...

bM1 ... bMN

.

We will also use the following result.

Theorem 2. Let {An}∞
n=1 be a commutative (multiplicative) semigroup of square matrices with

non-negative integer entries and with non-zero determinants. Let A0 be a matrix column with
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positive integer entries such that A1A0 is defined. Let {Bn}∞
n=1 ⊂ {An}∞

n=1 be a subset consisting
of not necessarily different matrices satisfying the condition (σσσ): for any p ∈ N there are r, s ∈ N
such that ApAr = ∏s

i=1 Bi. Then,

n−1((
∞

∏
n=1

Bn)A0) ∼= n−1((
∞

∏
n=1

An)A0). (7)

Even if (σσσ) is not fulfilled, LHS in (7) is a sub-algebra of RHS.

Remark 1. The universal UHF algebra U is the AF algebra generated by the multiplicative
semigroup of natural numbers

U = n−1(
+∞

∏
n=1

n) = n−1(
+∞

∏
n=1

p∞
n ) = n−1(

+∞

∏
n=1

(p1...pn)
n) = n−1(

+∞

∏
n=1

(p1...pn)),

where p1 = 2, p2 = 3, p3 = 5, ... are the prime numbers. Any UHF algebra is a sub-algebra of U .
The CAR algebra is the UHF algebra generated by any of the following multiplicative semigroups
{2n : n ∈ mN}, where m ∈ N.

There is another useful proposition describing nonisomorphic classes of AF algebras.

Theorem 3. Let N, M ∈ N. Let {An} ⊂ ZN×N
+ , {Bn} ⊂ ZM×M

+ be two sequences of matrices
with non-zero determinants. Let A0 ∈ ZN×1

+ , B0 ∈ ZM×1
+ be two matrix columns without zero

entries. If N 6= M, then n−1(∏∞
n=0 An) 6∼= n−1(∏∞

n=0 Bn) are nonisomorphic C∗-algebras.

3. Main Results

Let N, M ∈ N be positive integers. Let L2
N,M = L2(TN → CM) be the Hilbert space

of periodic vector-valued functions defined on the multidimensional torus TN , where
T = R/Z ' [0, 1). Everywhere in the article, it is assumed the Lebesgue measure in the
definition of Hilbert spaces of square-integrable functions. Let R∞

N,M = R∞(TN → CM×M)
be the C∗-algebra of matrix-valued regulated functions with rational discontinuities. The
regulated functions with possible rational discontinuities are the functions that can be
uniformly approximated by the step functions of the form

S(x) =
P

∑
n=1

χJn(x)Sn, (8)

where P ∈ N, Sn ∈ CM×M, and χJn is the characteristic function of the parallelepiped
Jn = ∏N

i=1[pin, qin) with rational end points pin, qin ∈ Q/Z ⊂ T. In particular, continuous
matrix-valued functions belong to R∞

N,M. Let us introduce generating operators for the
integrodifferential algebras. These operators are operators of multiplication by a function
M, finite-difference operators D, and integral operators I , all of which act on L2

N,M:

MSu(x) = S(x)u(x)
Di,hu(x) = h−1(u(x + hei)− u(x))
Iiu =

∫ 1
0 u(x)dxi

, u(x) ∈ L2
N,M, x ∈ TN , (9)

where the function S ∈ R∞
N,M, the index i ∈ NN := {1, ..., N}, the step of differentiation

h ∈ Q, the standard basis vector ei = (δij)
N
j=1, and δij is the Kronecker symbol. The

C∗-algebra of integrodifferential operators is generated by all the operators (9)

FN,M = Alg
B{MS, Di,h, Ii : S ∈ R∞

N,M, i ∈ NN , h ∈ Q}, (10)
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where B ≡ BN,M = B(L2
N,M) is the C∗-algebra of all the bounded operators acting on

L2
N,M. The typical example of an operator A from F1,1 is

Au(x) =
p

∑
n=1

An(x)D1, n
p
u(x) +

∫ 1

0
K(x, y)u(y)dy, u ∈ L2

1,1, x ∈ T,

where An ∈ R∞
1,1, K ∈ R∞

2,1, and p ∈ N. Let us provide the characterization of FN,M.

Theorem 4. The AF-algebra FN,M has the following Glimm–Bratteli symbol

n(FN,M) =

( ∞

∏
n=2

(
n 0

n− 1 1

)⊗N)(1
1

)⊗N

. (11)

In particular, FN,M and FN1,M1 are isomorphic if, and only if, N = N1.

Integrodifferential algebras with a different number of variables are nonisomorphic.
This fact indicates a significant difference between the integrodifferential algebras FN,M
and differential algebras HN,M generated by MS and Di,h. The algebras HN,M are all
isomorphic to the universal UHF algebra U =

⊗∞
n=1 Cn×n independently on the number

of variables N and the number of functions M; see [9].

Example 5. Let us consider the C∗-algebra of two-dimensional integrodifferential operators F2,M.
We have

n

∏
i=1

(
i 0

i− 1 1

)⊗2(1
1

)⊗2

=

(
n!
n!

)⊗2

= (n!)2


1
1
1
1


and (

n + 1 0
n 1

)⊗2

=


(n + 1)2 0 0 0
n(n + 1) n + 1 0 0
n(n + 1) 0 n + 1 0

n2 n n 1

.

A fragment of the Bratteli diagram for F2,M is depicted in Figure 4. Here, the vertices in the
row represent direct summands of the finite-dimensional sub-algebra, the edges represent partial
embeddings into the next finite-dimensional sub-algebra appearing in the direct limit, and the edge
labels are multiplicities of partial embeddings. Note that the orientation of the Bratteli diagram for
F2,M is up→down, but the Bratteli diagrams for the examples in the previous section are oriented
as left→right. The only reason for that is the convenience of the corresponding graphic illustration.

(n!)2 (n!)2 (n!)2 (n!)2

((n + 1)!)2 ((n + 1)!)2 ((n + 1)!)2 ((n + 1)!)2

(n
+

1) 2

n(n
+

1) n(n + 1)

n2

n
+

1

n

n
+

1

n

1

Figure 4. The fragment of Bratteli diagrams for C∗-algebra F2,M.
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Remark 2. Let us consider the algebra of one-dimensional scalar integrodifferential operators F1,1.
The E matrices for F1,1 are given by Theorem 4

E0 =

(
1
1

)
, En =

(
n + 1 0

n 1

)
.

It is clear that

En =

(
n + 1 0

0 1

)(
1 0
1 1

)n

.

Thus, there are arbitrary large elements
(

1 0
1 1

)n

, n ∈ N in n(F1,1). Remembering that these

elements correspond to the unitalized algebra of compact operators C1 +K (L2
1,1), see above and,

e.g., Example 3.3.1 in [12], we can expect that K (L2
1,1) ⊂ F1,1. This is true because any compact

operator can be uniformly approximated by finite-dimensional operators in some orthonormal basis
of L2

1,1. Taking the Walsh basis fn, n ∈ N consisting of step functions, we see that for any n, m ∈ N,

the one-rank operator Cn,m given by Cn,m : u(x)→ fm(x)
∫ 1

0 fn(t)u(t)dt, where u ∈ L2
1,1, belongs

to F1,1. Hence, any compact operator belongs to H1,1, since it can be uniformly approximated by
linear combinations of Cn,m.

Finally, note that
(

n + 1 0
0 1

)
= (n + 1)⊕ (1). E matrices (n + 1) for n ∈ N corre-

spond to the universal uniformly hyper-finite algebra U =
⊗∞

n=1 Cn×n which has the
supernatural number n(U ) = ∏∞

n=1 n. As is shown in [9], the algebra U , generated byMS
and Di,h, see (9), is a sub-algebra of F1,1. Thus, roughly speaking, F1,1 is a combination of
the universal UHF algebra U and the algebra of compact operators K .

The natural extension of F1,1 (or F1,M) is the AF algebra F1 generated by the follow-
ing commutative semigroup

n(F1) =
∞

∏
n=1

n

∏
m=1

(
n 0

n−m m

)
.

This is the maximal commutative semigroup of 2× 2 matrices from E with the eigenvectors(
1
1

)
and

(
0
1

)
. Perhaps it would be interesting to see the “physical meaning” of extended

integrodifferential operators from F1.

4. Proof of the Main Results

Proof of Theorem 2. The conditions of Definition 1 will be checked. We set C0 = A0,
C1 = B1, and r1 = 1, m1 = 2 correspondingly. Next, B1 = An1 for some n1 > 1. We take
C2 = ∏n1−1

i=0 Ai, or C2 = A2 if n1 = 1. In the first case, we set r2 = n1 + 1; in the second
case we set r2 = 3.

Anyway, C2 ∈ {An}∞
n=1, since this is a semigroup. Hence, for some C3 ∈ {An}∞

n=1,
we have (B1C2)C3 = ∏m2−1

i=1 Bi by the condition (σσσ). Thus, C2C3 = ∏m2−1
i=m1

Bi because B1 is
invertible, and all the matrices are commute. In general, commutativity greatly simplifies
the reasoning, since we do not need to worry about the order of the factors.

By induction, suppose that for some n > 1, we already found 1 = r1 < ... < rn, and
2 = m1 < ... < mn, and Ci ∈ {An}∞

n=1, satisfying

C2j−1C2j−2 =

mj−1

∏
i=mj−1

Bi, C2j−2C2j−3 =

rj−1

∏
i=rj−1

Ai, 2 6 j 6 n. (12)
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Let µ(A) be the maximal element of the matrix A. It is true that

µ(AnAm) > max(µ(An), µ(Am)), (13)

since An, Am are matrices with non-negative integer entries, without zero rows and
columns. There are two possibilities: (a) limp→∞ µ(Cp

2n−1) = ∞, and (b) µ(Cp
2n−1) are

bounded. In the case of (a), for some sufficiently large p > 1, we have Cp
2n−1 = Ar, where

r > rn. We set rn+1 = r + 1, C2n = Cp−1
2n−1 ∏r−1

i=rn
Ai. Hence, we obtain

C2nC2n−1 =
rn+1−1

∏
i=rn

Ai. (14)

Note that C2n ∈ {An}∞
n=1, since this is a semigroup. Another possibility: (b) µ(Cp

2n−1)

are uniformly bounded for all p. Then, Cp
2n−1 = Cs

2n−1 for some p > s because {Cp
2n−1}

is a sequence of matrices with bounded non-negative integer entries. The existence of
inverse matrix C−1

2n−1 leads to Cp−s
2n−1 = I being the identity matrix. We set rn+1 = rn + 1,

C2n = Cp−s−1
2n−1 Arn . These values also satisfy (14). Note that E matrices satisfying condition

(b) correspond to a permutation of elements in the Bratteli diagrams.
Again, there are two possibilities: (a) limp→∞ µ(Cp

2n−1) = ∞, and (b) µ(Cp
2n−1) are

bounded. Consider the first case (a), the second case (b) can be treated as above. There is
p > 1, such that

µ(Cp
2n) > µ(

mn

∏
i=1

Bi). (15)

Hence, by the condition (σσσ), taking Ap = (∏mn−1
i=1 Bi)C

p
2n (recall that the set {An}∞

n=1 is a
semigroup), we have

((
mn−1

∏
i=1

Bi)C
p
2n)Ar =

mn+1−1

∏
i=1

Bi (16)

for some, mn+1 > mn because of (13) and (15). We set C2n+1 = Cp−1
2n Ar. Using (16), we

deduce that

C2n+1C2n =
mn+1−1

∏
i=mn

Bi. (17)

Thus, by induction we prove that ∏∞
n=0 An and (∏∞

n=1 Bn)A0 are equivalent; see Definition 1.
By Theorem 1, they represent the same algebra.

If µ(∏
p
i=1 Bi) are bounded for all p, then there is Ar and 1 6 m1 < m2 < ... such

that ∏mn
i=1 Bi = Ar for all n. Thus, n−1((∏∞

n=1 Bn)A0) ∼= M (ArA0) is a sub-algebra of
M (∏r

n=0 An), which, in turn, is the sub-algebra of n−1(∏∞
n=0 An). Now, suppose that

µ(∏
p
i=1 Bi)→ ∞. Then, we can take 1 = m1 < m2 < ... such that

mn+1−1

∏
i=mn

Bi = Arn n > 1,

where 0 = r0 < r1 < r2 < ...., denoting

Dn =
rn

∏
i=rn−1+1

Ai, En =
n

∏
j=1

(

rj−1

∏
i=rj−1+1

Ai),
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where En = I is the identity matrix if rn − 2 < rn−1. Then, the following infinite commuta-
tive diagrams

M (A0) M (D1A0) M (D2D1A0) ... n−1(∏∞
n=0 An)

M (A0) M (Ar1 A0) M (Ar2 Ar1 A0) ... n−1((∏∞
n=1 Bn)A0)

D1 D2

Ar1

I E1

Ar2

E2

show that n−1((∏∞
n=1 Bn)A0) is the sub-algebra of n−1(∏∞

n=0 An).

Proof of Theorem 3. Suppose that N > M. If n−1(∏∞
n=0 An) ∼= n−1(∏∞

n=0 Bn); then, there
is a sequence of matrices {C}∞

n=0 satisfying (5), namely

C2n−2C2n−3 =
rn−1

∏
i=rn−1

Ai, C2n−1C2n−2 =
mn−1

∏
i=mn−1

Bi, C2nC2n−1 =
rn+1−1

∏
i=rn

Ai

for some n > 2. This yields to

rn+1−1

∏
i=rn−1

Ai = C2n(
mn−1

∏
i=mn−1

Bi)C2n−3.

The matrix in LHS has the full rank N, while the matrix in RHS has a rank less or equal to
M. This is the contradiction.

Proof of Theorem 4. Let us start from the 1D case N = M = 1. For h ∈ Q: define the shift
operator Sh = 1− hD1,h. Define also the operators of multiplication by the characteristic
functions of intervals

Mj,p ≡Mχ
Ip
j

, Ip
j =

[
j
p

,
j + 1

p

)
, j ∈ Zp := {0, ..., p− 1}, p ∈ N. (18)

The operators satisfy some elementary properties that can be checked directly; see also
[19],

Mi,pMj,p = δijMi,p, S j
p
Mi,p =Mi+j,pS j

p
, ShSt = Sh+t, M∗

i,p =Mi,p,

S∗h = S−h, ShI1 = I1Sh = I1, I1Mi,pI1 = p−1, (19)

where i, j ∈ Zp, h, t ∈ Q, and p ∈ N. For i, j ∈ Zp, define the basis operators

Bp
i,j = pMi,pI1Mj,p, Ap

i,j =Mi,pS i−j
p
−Bp

i,j. (20)

Using (19), we can directly check the properties

Bp
i,jB

p
n,m = δjnB

p
i,m, (Bp

i,j)
∗ = Bp

j,i, A
p
i,jA

p
n,m = δjnA

p
i,m,

(Ap
i,j)
∗ = Aj,i, Ai,jBn,m = 0. (21)

Identities (21) mean that

Hp ≡ Alg{Ap
i,j, B

p
i,j : i, j ∈ Zp} ∼= M (p)⊕M (p) = M (p, p) (22)

with the ∗-isomorphism defined by

Ap
ij 7→ (δinδjm)

p−1
n,m=0 ⊕ 0p, Bp

ij 7→ 0p ⊕ (δinδjm)
p−1
n,m=0, (23)
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where 0p is the zero element in Mp. Let q ∈ N be some positive integer. Using (20) and
the identity

Mi,p =
(i+1)q−1

∑
n=iq

Mn,pq,

we obtain

Bp
ij =

1
q

(i+1)q−1

∑
n=iq

(j+1)q−1

∑
m=jq

Bpq
nm, Ap

ij = (
(i+1)q−1

∑
n=iq

Mn,qp)S iq−pq−n+n
pq

−Bp
i,j =

(i+1)q−1

∑
n=iq

(Apq
n+(j−i)q + B

pq
n+(j−i)q)−

1
q

(i+1)q−1

∑
n=iq

(j+1)q−1

∑
m=jq

Bpq
nm. (24)

Identity (24) shows how Hp is embedded into Hpq. Namely, the corresponding ∗-embedding
is defined by

A⊕ B 7→ (A⊗ Iq)⊕ (A⊗ Iq −A⊗ (q−11q) + B⊗ q−11q), (25)

where Iq is the identity matrix in Mq and 1q = (1) ∈Mq is the matrix, which has all entries
equal to 1. The matrix q−11q is the rank-one matrix with the unit trace and, hence, it is
unitarily equivalent to the matrix with one nonzero entry

q−11q '

1 0 ...
0 0 ...
... ... ...

. (26)

Using (26), we conclude that ∗-embedding (25) between Hp ∼= M (p, p) and Hpq ∼=
M (pq, pq) has the E matrix

E =

(
q 0

q− 1 1

)
. (27)

The integral operator I1 belongs to all Hp, since

I1 = ∑
i∈Zp

∑
j∈Zp

Bp
ij ∈Hp. (28)

By definition, any S ∈ R∞
1,1 can be uniformly approximated by step functions with rational

discontinuities. Thus, the operator of multiplication by the functionMS can be uniformly
approximated by linear combinations of Mi,p, i ∈ Zp. On the other hand, using (20),
we have

Mi,p = Ap
i,i + B

p
i,i ∈Hp (29)

Hence, for any S ∈ R∞
1,1, the operatorMS can be uniformly approximated by the elements

from Hp with arbitrary precision when p→ ∞. The identity operator 1 belongs to all Hp,
since

1 =
p−1

∑
j=0
Mj,p. (30)

The shift operators Sh (with h = q/p ∈ Q) belongs to Hp, since

S 1
p
= ∑

i∈Zp

(Ap
i,i−1 + B

p
i,i−1) ∈Hp, S q

p
= Sq

1
p
∈Hp (31)

by (19), (20) and (30). Hence, the finite differentials belong also to Hp:

D1,h = h−1(1− Sh) ∈Hp. (32)
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Using (28) and (32), and the above-mentioned fact about the approximation ofMS (for any
S ∈ R∞

1,1) by the elements from Hp, we conclude that F1,1 is the inductive limit of Hp for
p → ∞. In particular, taking pn = n! and using (27) for Hpn ⊂ Hpn+1 , we obtain (11) for
N = M = 1.

The algebra F1,M = M (M)⊗F1,1 has the same Glimm–Bratteli symbol as F1,1, since

n(F1,M) = n(M (M)⊗F1,1) =

( ∞

∏
n=2

(
n 0

n− 1 1

))(
1
1

)
M =( ∞

∏
n=2

(
n 0

n− 1 1

))(
M
M

)
=

( ∞

∏
n=2

(
n 0

n− 1 1

))(
M 0

M− 1 1

)(
1
1

)
=( ∞

∏
n=2

(
n 0

n− 1 1

))(
1
1

)
= n(F1,1). (33)

Let us discuss why the first identity in the last string of (33) is true. The matrices (27) form
a commutative (multiplicative) semigroup. Then, the infinite product with one duplicated
term in the LHS of (33) obviously satisfies the condition (σσσ) from Theorem 2. Hence,
F1,M and F1,1 are isomorphic. There is also a more intuitive similarity with supernatural
numbers( ∞

∏
n=2

(
n 0

n− 1 1

))(
M 0

M− 1 1

)(
1
1

)
=

( ∞

∏
n=1

(
pn 0

pn − 1 1

)∞)( K

∏
j=1

(
pnj 0

pnj − 1 1

)Rj)(
1
1

)
=

∞

∏
n=1

(
pn 0

pn − 1 1

)∞(1
1

)
=

∞

∏
n=2

(
n 0

n− 1 1

)(
1
1

)
,

where p1 = 2, p2 = 3, p3 = 5, ... are prime numbers and M = ∏K
j=1 p

Rj
nj is the prime

factorization of M. This similarity with supernatural numbers is possible because all the
matrices commute with each other. In this sense, the presented idea is somewhat similar to
that one related to supernatural numbers, see [18].

Consider the case N > 1. Using the fact that L2
N,M =

⊕M
j=1(L2

1,1)
⊗N , we deduce that

FN,M = M (M)⊗F⊗N
1,1 . This means that

n(M (M)⊗F⊗N
1,1 ) = n(F1,M ⊗F⊗N−1

1,1 ) = n(F⊗N
1,1 ) =

( ∞

∏
n=2

(
n 0

n− 1 1

)⊗N)(1
1

)⊗N

,

which proves (11). Thus, the C∗-algebras FN,M and FN1,M1 are isomorphic if, and only if,
N = N1 by Theorem 3.

5. Conclusions

We have considered the Glimm–Bratteli symbol n that is a convenient algebraic
representation of the Bratteli diagrams for AF algebras in the form of infinite products
of matrices with integer entries. We have applied this symbol for the classification of
the algebra of integrodifferential operators. In particular, the Glimm–Bratteli symbol
allowed us to prove easily that the algebras of integrodifferential operators acting on the
tori of different dimensions are nonisomorphic. This is an essential addition to the result
proved recently: all the algebras of differential operators are isomorphic to each other,
independently to the dimensions of the tori that they act on, see [19]. In the future, we plan
to characterize the algebras of operators acting on more complex non-compact domains,
including fractal ones. Another interesting research area is the application of modified
Glimm–Bratteli symbols to the algebras of stochastic integrodifferential operators.
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