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Abstract: This paper deals with several approximation properties for a new class of g-Bernstein
polynomials based on new Bernstein basis functions with shape parameter A on the symmetric
interval [—1,1]. Firstly, we computed some moments and central moments. Then, we constructed
a Korovkin-type convergence theorem, bounding the error in terms of the ordinary modulus of
smoothness, providing estimates for Lipschitz-type functions. Finally, with the aid of Maple software,
we present the comparison of the convergence of these newly constructed polynomials to the certain
functions with some graphical illustrations and error estimation tables.
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Leta,bm e N,0<a<b,ycl0, {mig ], then following the polynomials introduced

by Karahan and Izgi [4]:

Foap(H:9,y Z#( Ul E’:niab]] )um,j,a,b(y;q), 1)

where the generalized g-Bernstein basis functions u,, ; , , are defined as:

U ja (V) = ( o+ aly ) " m qyj mﬁ_l( ) @)

[m + b, j Pl [m + b],

They investigated some approximation properties of polynomials (1) and estimated
the order of convergence in terms of the moduli of continuity. For some recent works
related to linear positive operators, we refer to [5-14]. Additionally, one can refer to [15-17]
for some notable results with special polynomials based on the g- and (p, q)-integers.

Basis functions with desirable properties have an important role in Computer-Aided
Geometric Design (CAGD) and computer graphics in order to construct surfaces and curves.
The Bernstein polynomial basis was studied and used in many papers. An extensive study
about this topic was given by Farouki in the survey paper [18]. These basis functions are
widely addressed in many applications areas such as the numerical solution of partial
differential equations, CAGD, font design, and 3D modeling. For some applications in
CAGD, we refer to [19-22].

Very recently, the Bernstein basis with shape parameter A € [—1,1], which was
introduced by Ye et al. [23], has attracted the interest of and in as short a time was studied
by a number of researchers.

In the year 2019, Cai et al. [24] obtained several statistical approximation properties of
anew generalization of (A, q)-Bernstein polynomials as follows:

m [,
B2 9) = L Tnj Ny ), ®)
j=0 q

wherem > 2,y € [0,1],0 < g < 1, and 7m,j()x; y,q) are the Bernstein basis with shape
parameter A € [—1,1].

In [25], Acu et al. established several approximation properties of the Kantorovich
kind A-Bernstein polynomials and estimated the order of approximation with the aid of
the Ditzian—Totik modulus of smoothness. Srivastava et al. [26] proposed and studied a
Stancu variant of A-Bernstein polynomials and examined the uniform convergence, global
approximation result, and Voronovskaya’s approximation theorems. Moreover, Ozger [27]
investigated some statistical approximation properties of univariate and bivariate occa-
sions of A-Bernstein polynomials. In [28], Mursaleen et al. considered a Chlodowsky
variant of (A, g)-Bernstein—Stancu polynomials and proved the uniform convergence and
Voronovskaya-type asymptotic theorems for these polynomials. For some recent relevant
papers, see [29-40].

Inspired by all the above-mentioned works, we now construct the following polyno-
mials with shape parameter A € [—1,1] :

, & lglmtalg N
Fuap (i A q,y) = ];]V (M) W0 (V7). €Y
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where:

~ A
U, 0,a,b (]/}Q) = Um,0,a,b (]/}Q) - W”m-ﬁ-l,l,a,b (]/}1/7)/

g t1
_ [m], —2[j], +1
B (439) =t (¥;) +A<q[m]2 [i"l i1, (Y7 9)
q
[m]g —2[j]y — 1 :
- q[m}z—iql“m-&—l,ﬁl,a,b(]/;‘n (j=12.,m=1), 5)
q

~ A
Wi, m,a,b (yfq) = Wm,m,a,b (yrq) - W”m-&-l,m,a,b (yrq) ’

g+1

wherem >2,0<a<b,yel0, %Zi;ﬂg], 0<g<1,and um,]-,a,b(y;q), defined as in (2).

Many researchers have investigated iterated Boolean sums of positive operators since
these operators have the possibility of accelerating the convergence with respect to the
originating positive operators (see [41-43]). There are certain important papers in this
context in which the authors established global direct, inverse, and saturation results for
the convergence of iterated Boolean sums of Bernstein operators to the identity operator.
One may obtain further results about the saturation order of approximating polynomials
defined in this paper as a future study.

The present work is organized as follows: In Section 2, we calculate some preliminary
results such as moments and central moments. In Section 3, we give a Korovkin-type
convergence theorem, bind the error in terms of the ordinary modulus of smoothness,
and provide estimates for Lipschitz-type functions. In the final section, with the help
of the Maple software, we present the comparison of the convergence polynomials (4)
with the different values of the a,b,m, g, and A parameters with some graphs and error
estimation tables.

2. Preliminaries

This section is devoted to calculating some necessary results such as the moments and
central moments of polynomials (4).

Lemma 1 ([4]). Let e;(y) = y', (i = 0,1,2,3,4), be the test functions. Then, the polynomials (1)
satisfy:

Fm,a,b(eo; q, y) =1,
Fpapler;q,y) =y,

y([m+aly — [m +blyy)
(1], [m + b],

Fm,u,b(EZ} q/y) = y2 +

[m+u]q

Lemma 2. Lety € [0, TP

,0<q<1,A€[-1,1],and m > 1. Then, we obtain:

Pm,a,b (60; A, q, y) =1 (6)
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Proof. In view of the relation [m], = g[m — 1]; + 1, we obtain:

m
Z ﬁm,j,a,h (y, A, Q)
=0
_y . A [l =21) 41 ,
= ]; um,],u,b (3/1 Q) - Wuerl,l/u/b (y/ 4) + AW}%——lum+1’llulb (y/ Q)
[m]q —2q[1]5 — [m]y —2[2], + 1
Uy a ;q) + /\—um a ;
2 —1 +12,06(Y; ) 2 — 1 +12ab(V;q)
[m]q —2q[2]; — 1 ) [m)y —2[m —1];+1 .
—A [m]% 1 Um+1,3,ab (y, ’“7) +A [m]% 1 Um+1,m—1,a,b (3// ‘1)
[m]g —2g[m — 1] — 1 A
P i nZ]g - Tt 1m0 (3 9) — ], 1" imad (v;4q)
i 2q[m —1]; — [m], +1
= Z Um,jab (y;‘ﬂ +A 1 [m]qz 1 4 U 41,m,a,b (y,‘q)

j=0

A
- W”erl,m,a,b(y; q)

m
= Z um,j,u,b(y;q) =1
j=0

Hence, we have identity (6). O

[m—&-u]q

Lemma 3. Lety € [0, o],

,0<q<1,A€[-1,1],and m > 1. Then, one has:

o (1 (i)
[m]q([m]g — 1)

el e (L )

N %Ziiiq[m]qqiw (l‘ (mb} )MHﬁG 15}3 )

() et (1 (e t)")

[m]? = 1{2[7% +[2%j e (l - (mﬁ )

Al (o (o)) o et (1 (b))

() ) "

Fm,a,b(el;/\/ ‘7/]/) =Y+

+




Symmetry 2021, 13, 1919 50f 19

Proof.

ol taly
o 5y P B 2:4)

Ms

Fm,a,b (61; Aq, ]/)
j=0

_7:20 m~m]uh(y A q)+ummab(y A, q)
" [flglm alg [ [mlg —2[]g +1
= L {A

N m)q[m + bl [m]2 — 1 U1, (Y )

j=0

[m}q - zq[j]q -

1
_)‘[m]%—_luerl,j+1,a,b (v;q)

A
+ ummub(y; 4) - mum+1,m,¢l,b(y; q)
lq[m +alg

= Bl e 050
e mlg —2|j 1
5 o [[m+£] [ ]q[m}s[i]qf 1 jap(99)
_Am— [jlq[m + alg [m ]q[;é‘{]’]lq— st 41,05 (050).

1 [mg[m + bl

.
Il

|q[m+-al,

It is known from Karahan and Izgi [4] that Z m Un,jab(Y;q) = y; thus:

Fm,ﬂ,b (el} A, q, y)

-7 ”[m]%]l]—l Ji m+1[7[_n:a—ib1 W[[Zﬂ]q—!ﬂq!Gmii)mﬂf
(s -w)

‘”%;—”qé{ 1[%”111:@1%1 TR !Gmig)mﬂy’

T (gt -ov)

BN I = S P PR U VP Gﬂﬂzy“wl

[mg([mlg +1) 5 [m+1g[m + bl [j + 1g!m — jl!

m+ 1]y " U]é[m—ﬁ-a}q [m—l—l] ([m+b]q>m+1yj+l

qry) =y + Q1+ + Q3 + Q4. 8)
q
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Now, we calculate the identities ()1, (2, (33, and ()4, respectively.

L m41]y & [jlglmtal, [ +1],! [m+b],\""" .
O = A iy ) 1 Sriliar) ¥

]:1 1g[m +blg [jlg'm +1 — jlg! \ [m + a4
" [m+ al
r_0<m+b
1l (1 (w+mq) )
o [m), iu - [ +1g [l . o
(], — 1) 2 “rdon (¥ [m]y(fml, = 1)

Next, using the expression []]q = qljlqlj — 1lq + [j]g, it follows:

- m+1 12m + al 1]t (lm4bl\"
== ]; m—f—l} [m +blg [f]q![m+1_j]q!([m+a]q> y

-ﬁ(&z:ﬂ:—w)

;GZHZ ~rv) -2 {ZJ;—HZ zzl T
(hrees) I )

= —%Zjﬂz 2@%:“'4 zmi 10 (454) = myti:”m,j,u,h(y;Q)

“Tra s i)

Furthermore, if we use expression [j]; = [j +1];/9 — 1/4, then:

=i [m +1],!
+1) Z [m 4+ 1]y [+ 1]4![m — jlg!

1
(bl \" " ' (m+aly
([m—l—ah) y 1;[ ([m—i—b]q qy)
[m + a A m—1 Alm+1], m=l
[m+b}:q[m}q([m]q+1 Eum+1]+lab(]/ q) — qumwbyq)
[m + a]
[m + b]

m+alg A _(Im+1bg . nt/[m+alg oy
m+bqq[m}q<[m]q+1><1 <[m+a}q> [ *”qyﬂ)([mmq ”)
]

() (e ) - () )
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s (- () " (e - w) - (b))

[m + alg A <1_([m+b],,>m“1m_[<[m+a]q_qry)

B [m + b]g q[m]y(m]g +1)
[m+b], \""! [m + D] [m+b], \"
() - (1 (B de)))

= [jlqlj +1]4/9 — [j]4/q into account, it follows:

[m 4 al, 5 [m + b],

. - 2
Lastly, taking [f]7

0, = 20Am 41, (13 [m + 1],!
PO & gl g [ gt — !

[m+b ]+1m I m+a r
'<[m+u ) H (m—i—b qy)

_2A 1
= [ﬂ[’l?%—'— ] [ } Zum 1]ah(y Q)

2Am+1 m=1
[ ]q Y Z um,j,a,h(y;q)

almlg (3 1) 5
2A [m + b, "™
+ q[m]q([m]%—l) [m+a]q Z m+1]ah(.‘/ q)

 2A[m 4+ 12 [m+ bg ( B ([m+b]q )”"1> _ 2A[m+1]y
TR e, )y glmlg (1m 3 —1)

}q - [m+b]q m+1
1q<l ([mmqy)

e ({Ziﬂiy)nj " E][m]q<[2n/:]%] 1) {Z
(Zii >m+lﬁ<m+b y))
e Pt (- () )
“”"ﬁ”“’(l (i) ) e (- (i) )
() ()}

Finally, if we combine (9)-(12), hence, we obtain (7). O

(11)

(12)
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Lemma 4. Lety € [0, {Zig}g], 0<qg<1,A¢€[-1,1],and m > 1. Then, we have:
Fm,a,b (32} A, q, ]/)
2 y([m +’1]q —[m +b]qy)
[m]q[m + bl
[m+b]4 m
[m + 15y (bl \"T Imtaly(d- (my) )
*[MAWMD(W“ (rra) e,
B 2lm+ 1A [m4aly [ s [m + bl m=2
[MAWE—OWH*MG[ 0 ()

+(9* +29)y

ﬂm+mu1<w+mq)ml+y“($ﬁ%05>

[m]g
m“qy“ Z%Z“/)nv
+
qlm]q
[m +bl, m
[m+1]y[m+a]q<1 ([m—l—a )
i+l - ()" TRk - ) - ()™
- qlm]q[m + bl
21 [m + a], B 3 ([m+bly N7
+[m}q([m]571) [m+b]q<rﬂm 1ylm +1],°(1 <[m+a]q)

[m+b)y Nt [m+blg \™
(1= q)[m +1]glm + bl (1 = (Grrty) +W+Wﬂkﬁﬂwﬁ)

7] m+a]
Z m+b2 m]ab(yQ)

q[m + al, 72 [ml,
(m+bly \ " [ [m+a [mtb], \Mt1
[m + al, <(1 - (et E)(Wbﬂ SO o)
- — . 13
[m + ], g2[m], (13)
Proof.
o [jRlm + )}
Fuap(e A, q,y) :Z m+bf2 U jap (Y3 A )
]:O
m

j 0
A]i;) 1:11”!}] [m]q[n;];[i]q;r 1”m+1,j,a,b (v;9)
3 m+a] [mq — 24[jlg —
];) gm+ b5 mlg—1

+

Um+t1,j+1,ab (.1/; q)'
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m ‘2 m—+al? ma-a m
Using Z [[mib]]z U (Y3 9) = Y* + W# (see [4]), hence:

Fuap(e2 A q,y)
y([m+alg — [m+b] }/) . [jlz[m + alg
:y2+ [m] q[m+b] 1 1]20 m]{% m+b]2 m+1]ab(]//‘7)
24 [i151m + alg

_[ ] _1];[ ][m+b]2 m+1/ah(y'q)

1
B [[]] ]qz[E?; J:— ﬂb]]q2 11,54 1,00(¥; 1)

m=1 [Py 4+ g
+ [njg):l ]; [[]]] [[m+lj]z tont1j+1,0b (Y5 )

y([m+alg — [m+blgy)

[m]q[m—l—b]q +Q5+Q6+Q7+Qg (14)

Now, we will compute the identities ()5, ()4, (37, and (g, respectively.

m m+a]
05 Z m+b]2 m+1]ab(yr )

:M’“u o m Ay [m
[m]q([m]q — 1) ];) m—l,],a,b(]// q) + [m]%([m]q - 1) [

_ [mry bl N I als(= () ")
‘W 7 “‘(wwi ) " : (15)

Using the expression [j]3 = ¢*[j]4[j — 1]qlj — 2l + (4> +29) [jl4[j — 1]4 + [j]4, we obtain:

m+a]q
[m ¥ b]zum+1]ub(yf q)

2 el
Q=1 L o

2 [m = 1]g[m + 1gAy® [m +aly ™ )
[m]q([ ml? —1) [m + b] Z m—2,j,0b(Y; )

9 j=0
)m + 1gAy* =2
[ ) 2 umfl,j,a,b(y;q)
m ]:

29(q +2

(3

_ 2[m+1]gAy  [m+a]; "= | |

[m]q([m]g_l) [m +b], Zo U jab(Y; )
A

_ [m—i—a]q 3 34 [m—f—b]q m—2
[m]q([m]%—l) [m + b], <’1 m—1],y°(1 ([m—i—a]qy)

SES
m a q

(16)
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[+1qllg  [i+1q
q 92

Then, applying the relation | ]]g = + ql—z, one has:

- ] alm+alZ
Oy = Z Z[m + b2 ”m+1,j+1,a,b(y;q)

[m—i—l}q)xy [m +al,

~ Py +1) [+ Z g (974)

[Tfl‘f‘” )LyZ m—2 )
T +1) 2 e 00

A [m + a7 m=]

[l ([mly+ 1) m+ 02 5 Z Um+1,j4+1,0,6 (Y )

[m+b]y \"
~ qlm]y([m]g +1) [m+ b, qlm],
B 2m+blg [ ([m+Dbl
[+ Uy [m +al, 1 [m 4 al,
(4], \" Iy [ [m+aly [m+b), \™t1
-+l 1= ()" HO( ety 1 y) ()
— . 17
gl [+ 17
Lastly, if we use the identity [j};’ = [+ 1,00 — 1]y — 111;2‘7 [+ 1qlfly + [J+;]q _we obtain:

2qA mol []]3[m+ }q

T P TR
2q[m —1]g[m +1)gAy° [m
: [m]q(Fm]g_1) [m+ Z Um—2,ja (Y3 q)
2(1 — q)[m + 1] Ay? ™

_ .

almly (m2—1) | Z 1jab(¥; 4

2[m+ 1]q)\y [m+a . m—1 |
’ Py ([m]3 — 1) I+l ]; b (Y5 9)

27 {m + a]Z m—1

o (o 1) I 0 s ()
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_ 2\ [m +al, 1 s (Im+b]g m-2
= iy (i —1) [m+b]q<q[ 1g[m+1]g°(1 <[m+a]qy)

" m—1 m m
(= o)+ o+ 90— ()" 1 ()

- q[m +al, lm]
C(mablg NN (Il N ([merblg, "]
(= (i) [1 (i =) = (fa)
[m + “]q r=0
_ 5 (18)
[m + bly q*[mlq
Combining (15)—(18), we immediately arrive at (13). O
Corollary 1. Let y € [0, { ib}q] and A € [—1,1]. As a consequence of Lemmas 2—4, we have the

following inequalities:

(1 ()"

(i) Fm,a,b(e() —y;)\,q,y) < [m]q([m}q — 1)
2[m +blg [m+1gy (1 —y™ [m+blg . .
m+aly m 12—1( a0

T+ TR ( (fovar >m+lﬁ<m£:‘qry)
() ey (- () )
*[m}zl—l{ m+;+nl+bqy (1 FHb )m 1)

m m—+1
(- () )+ e (- (G )

(s e q’)} sl

—_—
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y([m +alqg — [m+blgy)
[m]q[m + b,
[m+1]5y B [m + a,

" ol (il — 1) ((q G TR

[m+b], \" ! [m + a [m + a
+<[m+a1qy) 2=y [m+b]q "l [mqu))

_ 2m+1)y [m+ (q <W1+bhy>m2

[lq ([m]3 m -+ alg

(ii) Fuap((e1 —y)% A 9,y) <

)'" ' y(1— (. y)m)

[m]q
[m+a y2[m + 1][m + b), _(Im bl \"
+q[m]q([ )[m +b], ( [m +al, (1 <[m+a]qy) )
[m+mq’”1 Sm4bly 1 [[m+Dblg\"
() rerngt ) () (m
[m+1]q[m+b]qy(1—([m+b]" )m—[m—i-a] + [m + b] ( +blg )

[m+a) Yy
qlm]q[m + b

+(q* +29)y?

/\

ry>

+

2[m + a] [m+0bl, \" 2
+ [m]q([m}%—l)?m_,_b]q (q[m_l] [+ gy (1~ ( m+a3y)
1 (s

m m—1
(1= )+ Uyl + blyy? (1 — (priefty)

qlm +al, g2[m|

q
[m—+b] m+1. 00 [m+a) m+1
[m + al, ((1 - ([eru]Z) rI—[([mHJ]Z -1 y) y )
—[m+b]q qZ[m]q = Ym,ab y/ )

Remark 1. Let the polynomials Fy, , (1; A, q,y) be defined by (4). Then, we have the following
relations:

> In case A = 0, the polynomials (4) reduce to the generalized g-Bernstein polynomials
introduced by Karahan and 1zgi [4].

> In case a = b, the polynomials (4) reduce to the A-Bernstein polynomials based on the
g-integers studied by Cai et al. [24].

> In case A = 0 and a = b, the polynomials (4) reduce to the g-Bernstein polynomials
introduced by Lupas [1].

> Incase A = 0 and q = 1, the polynomials (4) reduce to the new class of Bernstein
polynomials proposed by Izgi [44].

Remark 2. It is clear that for a fixed g € (0,1), lim [m], = g In order to provide the results,

q l
we obtain the sequence q := (qm) such that 0 < g < 1,qm — l, [n] — 0asm — oo.
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3. Convergence Results of Fy, o1, (#; A, q,y)

In what follows, let the sequence q := g, satisfy the conditions given by Remark 2. As

is known, the space C|[0, Fnib% | stands for the real-valued continuous function on [0, %]
q
equipped with the norm ||;4||C iy = sup |u(y)|
T e, {’;iz ]

In the following theorem, we show the umform convergence of the polynomials (4).

Theorem 1. Let u € C[0, {mib}”] Ae-L1,ye€]o, %},andm > 1. Then, the polynomials
q
(4) converge uniformly to i on [0, %}
q

Proof. Taking the Bohman-Korovkin theorem [45] into account, it is sufficient to verify:

nlii’%o m%] |Fuap(es; A q,y) —es(y)| =0, fors =0,1,2. (19)
]/[ erbq]

The proof of (19) follows easily, from Lemmas 2—4. Hence, we obtain the required se-
quel. O

Let us denote the usual moduli of continuity of u € CJ[0, Fnj:b} | as follows:

w(wn) = sup  sup |u(y+a)—py)l
0<a<y [0 m+z ]
m+ q

Since 7 > 0, w(y; 1) has some useful properties (see [46]). Furthermore, we present an
element of the Lipschitz continuous function with Lip ({), where L > 0and 0 < { < 1.1If
the following relation:

() —pw)| <Llit—yl°,  (Ly€eR),

holds, then one can say a function y belongs to Lip ().
In the following theorem, we estimate the order of convergence in terms of the usual
moduli of continuity.

[mta],
’ [m+b]

[m-&-a]q]’ ye [0

Theorem 2. Let y € C[0, gy
g

inequality verifies:

|, A € [-1,1], and m > 1. Then, the following

|Fnap (A 0,9) — 1) | < 20 (5 \/ Ve p (v, 9)),

where Yy, o5 (Y, q) is the same as in Corollary 1.

Proof. Taking |u(t) —u(y)| < (1 + @)w(y; ) into account and after operating
Fpap(5A,q,y), we obtain:

1
| Fnap (A, 4,y) = wy)| < (1 + 5 Fnap(t =yl A, q,y)>w(u;5)-
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Utilizing the Cauchy-Bunyakovsky-Schwarz inequality, it becomes:

Fnab (A q,9) = u(y)| < <1'+’;\/Fmﬂb((t_'y)z;Avqry)>(U(V;5)

< <1+ ;W)w(wﬂ-

Taking 6 = \/Ym,ab(Y,q), thus the proof is complete. [

In the next theorem, we investigate the order of convergence for the function belonging
to the Lipschitz-type class.

Theorem 3. Let u € Lipr({),0 < ¢ < 1. Then, fory € [O,%], Ae[-1,1],and m > 1,

we obtain:

NI~

|Fnap (1A 0,9) — 1Y) | < L(Ymap(v,q))3,

where Yy, 15 (Y, q) is the same as in Corollary 1.

Proof. Assume that y € Lip; ({). Using the linearity and monotonicity properties of the
polynomials (4), we can write:

A1 AY)

\Eonap (152,0,9) — ()| < Fap (|1 (t)
[ mw]

- io Ty b (Y4, 1) ’y(w)
fon

m + b],[m], B

| mr iy
< L];] m,],a,b(yrq/)‘>‘[m—Fb]q[m]‘i ‘ '

Applying Holder’s inequality and with p; = % and pp = ﬁ, one has -1 + -1 = 1. Hence,

P1 P2
we obtain:
|Enap (A, q,y) — p(y)|
mo [m + aly[j]g )2
L Um,ia ; r/\ -
{ s 059 (s

J

IA
[Sal

2-¢
m P
{ ﬁm,j,a,b (y/ 4, )‘) }
i

]
4

L{Fm,a,b((t _]/)2/')\/‘7/]/)}2

4
< L(')’m,a,b (y/ q)) 2.

Thus, we obtain the required result. [

4. Graphs and Error Estimation Tables

In this section, in order to show the convergence behavior of the polynomials (4), we
present some graphs and error of estimation tables for the different values of the a, b, m, g,
and A parameters. Furthermore, we compare the convergence of the polynomials (4) with
(1) and (3) to the certain functions.

Example 1. Let u(y) = 1 —sin(37ty) (yellow), A = 1,a = 0.1, and b = 0.6. In Figure 1, we
show the convergence of the polynomials (4) to u(y) for m = 15,45,125 (red, green, purple) and
g € (0,1]. Furthermore, in Figure 2, we illustrate the convergence of the polynomials (4) to i (y)
for A = —1, and the other parameters are the same as in Fiqure 1. In Table 1, we estimate the
error of the approximation of the polynomials (4) to u(y) witha = 0.1,b = 0.6, -1 < A <1,
g € (0,1], and m = 15,45, 125, respectively. It is obvious from Table 1 that the absolute difference
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between the polynomials (4) and yu(y) becomes smaller as the value of m increases. Furthermore, in
case A = 1, the polynomials (4) give better approximation results than in cases A = 0and A = —1.

Example 2. Let u(y) = (1 —sin(2my))/ (1 +y?) (yellow), A = 1,a = 05, b = 1.2, and
g = 0.998. In Figure 3, we show the convergence of the polynomials (4) (red), (1) (green), (3)
(purple) to u(y) for m = 10. In Table 2, we compare the convergence of the polynomials (4) with
(3)and (1) to u(y) fora =0.5,b=12,A =1, 9 = 0.998, and m = 200. It is clear from Table 2
that the absolute difference between the polynomials (4) and u(y) is smaller than (3) and u(y) and
(1) and u(y). Namely, the polynomials (4) have a better approximation than the polynomials (3)
and (1). One the other hand, from Table 2, one can check that, since b — a < 1, then the polynomials
(3) have a better approximation than (1).

Example 3. Let u(y) = ycos(my) + sin(3rty) (yellow), A =1,a =1,b = 3, and g = 0.999.
In Figure 4, we demonstrate the convergence of the polynomials (4) (red), (1) (green), (3) (purple)
to u(y) for m = 15. In Table 3, we compare the convergence of the polynomials (4) with (3) and (1)
tou(y)fora=1,b=25A1=1,9=0.99, and m = 150. It is clear from Table 3 that the absolute
difference between the polynomials (4) and u(y) is smaller than (3) and u(y) and (1) and u(y).
As a result, our newly defined polynomials (4) have a better approximation than the polynomials (3)
and (1). Further, from Table 2, one can check that, since b — a > 1, then the polynomials (1) have a
better approximation than the polynomials (3).

u)=1-sin(3my)
—m=125, q=0.9998|

m=45, q=0.998
—m=15, q=0.98

A=1,a=0.1,b=0.6

0.5

0

0 0.‘2 0.‘4 0.‘() 0.‘8 {

y
Figure 1. The convergence of polynomials F,, ,;(1;A,q,y) to u(y) = 1 —sin(3ty) (yellow) for
m =15 (red), m = 45 (green), m = 125 (purple), and A = 1.

[ uo)=I-sin(3my) |
F—m=125, g=0.9998|
m=45, 4=0.998

—m=15, q=0.98
A=-1, a=0.1, b=0.6

0.5

0 T T T T |
0 0.2 0.4 0.6 0.8 1
y

Figure 2. The convergence of polynomials F,, ,;(1; A, q,y) to u(y) = 1 —sin(37ty) (yellow) for
m =15 (red), m = 45 (green), m = 125 (purple), and A = —1.
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0.8

0.6

04l w()=(1-sin2my)/(1+5")
— F,,L a h(ll; A, ‘I)
024 Foa 17(“; q)
— B, (k% q)
A=1, m=10, ¢g=0.998, a=0.5, b=1.2
‘o 02 o4 o6 o8 i

y

Figure 3. The convergence of polynomials Fy ,,(;A,q,y) (red), Eyqp(;q,y) (green), and
B (1; A, y) (purple) to u(y) = (1 —sin(27ty)) /(1 + y?) (yellow) for m = 10.

H(y)=ycos(my)+sin(3my)
— F 0 (B A q)

Fm,u, ,,(P—; ‘l)
\ — 3,1 q)
0.5 A=1, m=15, g=0.999, a=1, b=3

0.2

-0.51

-14

Figure 4. The convergence of polynomials Fy, ,,(;A,q,y) (red), Fyop(#;q,y) (green), and
B (; A, y) (purple) to u(y) = y cos(mty) + sin(37ty) (yellow) for m = 15.

Table 1. Error of approximation polynomials Fy ,p,(y#;A,q,y) to u(y) = 1 — sin(3my) for
m = 15,45,125.

A . |#(Y) — Fnap(#: 2, 9,9)| a=01b=06
m =15 m =45 m = 125
0.98 0.550594325 0.306394389 0.213534145
1 0.998 0.504069181 0.222940932 0.094770016
0.9998 0.499424268 0.215224376 0.085356093
0.98 0.560196708 0.308330384 0.214499941
0 0.998 0.510708683 0.223434415 0.094830635
0.9998 0.505790803 0.215616670 0.085380496
0.98 0.569799091 0.310266384 0.215465740
1 0.998 0.517348184 0.223927891 0.094891256

0.9998 0.512157335 0.216008960 0.085404893
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Table 2. Error of approximation polynomials Fy, 5 5 (#; A, 4,Y), Fyy 0 p (#:9,y), and By, (; A, y) to u(y) =

(1 —sin(27ty) /(1 + y?) for m = 200.

q = 0.998 a=05 b=12
y #(Y) — Enap (A a,y)|  1#(y) = Enap(a.y)l  |#(y) — Bu(m A y)|
0.1 0.0064703691 0.0066166279 0.0064908234
0.2 0.0178590518 0.0179015902 0.0179216560
0.3 0.0202453681 0.0202461350 0.0203259325
0.4 0.0098313720 0.0098337279 0.0098768282
0.5 0.0059935717 0.0060039098 0.0060271492
0.6 0.0166406345 0.0166436305 0.0167571955
0.7 0.0168553088 0.0168781498 0.0170138238
0.8 0.0094123445 0.0094737845 0.0095471335
0.9 0.0017028663 0.0017979154 0.0017552501

Table 3. Error of approximation polynomials Fy, 55 (#; A, 4,Y), Fy o p (#:9,y), and By, (1; A, y) to u(y) =

ycos(mty) + sin(37ty) for m = 150.

q = 0.99 a=1 b =25
y () — Fuap (Mg, )| 1Y) — Euap(:a,y)|  |#(y) — Bu(m A y)|
0.1 0.0395067635 0.0403109983 0.0421575117
0.2 0.0820586872 0.0820251352 0.0880156832
0.3 0.0404867906 0.0401846539 0.0436964312
0.4 0.0578630516 0.0580685817 0.0636539124
0.5 0.1098004706 0.1099528891 0.1228649275
0.6 0.0618640005 0.0620901607 0.0712086537
0.7 0.0266496768 0.0264485480 0.0327246974
0.8 0.0571950380 0.0572345301 0.0789298769
0.9 0.0166758581 0.0169176476 0.0381883355

As a result, we observe from Figures 2—4 and Tables 2 and 3 that the proposed polyno-
mials Fy, , ,(1#; A, ,y) are the generalization of certain polynomials such as (A, 7)-Bernstein
Byu(u; A, y) [40] and generalized g-Bernstein polynomials Fy, , 5 (#;q,v) [4]. The proposed
polynomials have fewer errors of approximation if we change the related parameters, and
they have better approximations.

5. Conclusions

In this research, we proposed and studied several approximation properties of gener-
alized g-Bernstein polynomials based on Bernstein basis functions with shape parameter
A € [-1,1]. We discussed a Korovkin-type convergence theorem, as well as the order of
convergence concerning the usual modulus of continuity and Lipschitz-type functions.
To make our research more intuitive, we considered some graphs and error estimation
tables. As a result, the newly constructed polynomials (4) gave better approximation results
than the previously studied polynomials (1) and (3) in terms of the values of some selected
parameters. Because the shape parameter A is defined on the symmetric interval [—1,1],
there is more flexibility in constructing curves using this basis function, and at the same
time, the corresponding linear polynomials with certain values of the shape parameter A
have better convergence and more flexibility in approximating the related function class.

Author Contributions: Conceptualization, R.A. and Q.-B.C.; methodology, R.A. and Q.-B.C.; soft-
ware, R.A.; validation, R.A. and Q.-B.C.; formal analysis, R.A.; investigation, R.A. and Q.-B.C;
resources, Q.-B.C.; data curation, R.A.; writing—original draft preparation, R.A.; writing—review
and editing, R.A; visualization, R.A. and Q.-B.C.; supervision, Q.-B.C.; funding acquisition, Q.-B.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Fujian Province of China
(Grant No. 2020J01783), the Project for High-level Talent Innovation and Entrepreneurship of



Symmetry 2021, 13, 1919 18 of 19

Quanzhou (Grant No. 2018C087R), and the Program for New Century Excellent Talents in Fujian
Province University.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: We thank the Fujian Provincial Big Data Research Institute of Intelligent Manu-
facturing of China.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
nor in the decision to publish the results.

References

1. Lupas, A. A g-analogue of the Bernstein operator. Semin. Numer. Stat. Calculus 1987, 9, 85-92.

2. Phillips, G.M. Bernstein polynomials based on the g-integers. Ann. Numer. Math. 1997, 4, 511-518.

3. Kac, V.; Cheung, P. Quantum Calculus; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001.

4. Karahan, D;Izgi, A. On Approximation Properties of Generalized g-Bernstein Operators. Numer. Funct. Anal. Optim. 2018, 39,
990-998. [CrossRef]

5. Orug, H,; Phillips, G.M. g-Bernstein polynomials and Bézier curves. J. Comput. Appl. Math. 2003, 151, 1-12. [CrossRef]

6.  Mursaleen, M.; Khan, A. Generalized g-Bernstein-Schurer operators and some approximation theorems. J. Funct. Spaces. 2013,
2013, 1-7. [CrossRef]

7.  Acar, T.; Aral, A. On pointwise convergence of g-Bernstein operators and their g-derivatives. Numer. Funct. Anal. Optim. 2015, 36,
287-304. [CrossRef]

8. Aslan,R,; 1zgi, A. Some approximation results on modified g-Bernstein operators. J. Math. Anal. 2020, 11, 58-70.

9.  Mahmudov, N.I. The moments for g-Bernstein operators in the case 0 < g < 1. Numer. Algorithms 2010, 53, 439-450.

10. Agratini, O. On certain g-analogues of the Bernstein operators. Carpathian |. Math. 2008, 281-286.

11. Ghomanjani, F.; Shateyi, S. A new approach for solving Bratu’s problem. Demonstr. Math. 2019, 52, 336-346. [CrossRef]

12. Mohiuddine, S.A.; Ahmad, N.; Ozger, F.; Hazarika, B. Approximation by the parametric generalization of Baskakov-Kantorovich
operators linking with Stancu operators. Iran . Sci. Technol. Trans. Sci. 2021, 45, 593-605. [CrossRef]

13. Alotaibi, A.; Ozger, F.; Mohiuddine, S.A.; Alghamdi, M.A. Approximation of functions by a class of Durrmeyer-Stancu type
operators which includes Euler’s beta function. Adv. Differ. Equ. 2021, 2021, 13. [CrossRef]

14. Mursaleen, M.; Ansari, K.J.; Khan, A. Approximation properties and error estimation of g-Bernstein shifted operators. Numer.
Algorithms 2019, 84, 1-21. [CrossRef]

15. Khan, W.A; Khan, I.A; Duran, U.; Acikgoz, M. Apostol type (p, q)-Frobenius-Eulerian polynomials and numbers. Afr. Mat.
2021, 32, 115-130. [CrossRef]

16. Kang, J.Y.; Khan, W.A. A new class of g-Hermite-based Apostol type Frobenius Genocchi polynomials. Commun. Korean Math.
Soc. 2020, 35, 759-771.

17.  Khan, W.A.; Nisar, K.S.; Baleanu, D. A note on (p, g)-analogue type of Fubini numbers and polynomials. AIMS Math. 2020, 5,
2743-2757. [CrossRef]

18. Farouki, R.T. The Bernstein polynomial basis: A centennial retrospective. Comput. Aided Geometr. Design 2012, 29, 379-419.
[CrossRef]

19. Khan, K.; Lobiyal, D.K. Bézier curves based on Lupas (p, g)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math.
2017, 317, 458-477. [CrossRef]

20. Khan, K;; Lobiyal, D.K.; Kiligman, A. Bézier curves and surfaces based on modified Bernstein polynomials. Azerb. . Math. 2019, 9,
3-21.

21. Farin, G. Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide; Elsevier: Amsterdam, The Netherlands, 2014.

22. Sederberg, T.W. Computer Aided Geometric Design. 2012. Available online: https://scholarsarchive.byu.edu/facpub/1/
(accessed on 1 September 2021).

23.  Ye, Z.;Long, X.; Zeng, X.M. Adjustment algorithms for Bézier curve and surface. In Proceedings of the International Conference
on 5th Computer Science and Education, Hefei, China, 24-27 August 2010.

24. Cai, Q.-B.; Zhou, G,; Li, ]. Statistical approximation properties of A-Bernstein operators based on g-integers. Open Math. 2019, 17,
487-498. [CrossRef]

25.  Acu, AM.; Manav, N.; Sofonea, D.F. Approximation properties of A-Kantorovich operators. J. Inequal. Appl. 2018, 2018, 202.
[CrossRef] [PubMed]

26. Srivastava, H.M.; Ozger, F; Mohiuddine, S.A. Construction of Stancu-type Bernstein operators based on Bézier bases with shape

parameter A. Symmetry 2019, 11, 316. [CrossRef]


http://doi.org/10.1080/01630563.2018.1449755
http://dx.doi.org/10.1016/S0377-0427(02)00733-1
http://dx.doi.org/10.1155/2013/719834
http://dx.doi.org/10.1080/01630563.2014.970646
http://dx.doi.org/10.1515/dema-2019-0023
http://dx.doi.org/10.1007/s40995-020-01024-w
http://dx.doi.org/10.1186/s13662-020-03164-0
http://dx.doi.org/10.1007/s11075-019-00752-4
http://dx.doi.org/10.1007/s13370-020-00814-0
http://dx.doi.org/10.3934/math.2020177
http://dx.doi.org/10.1016/j.cagd.2012.03.001
http://dx.doi.org/10.1016/j.cam.2016.12.016
https://scholarsarchive.byu.edu/facpub/1/
http://dx.doi.org/10.1515/math-2019-0039
http://dx.doi.org/10.1186/s13660-018-1795-7
http://www.ncbi.nlm.nih.gov/pubmed/30839580
http://dx.doi.org/10.3390/sym11030316

Symmetry 2021, 13, 1919 19 of 19

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Ozger, F. Applications of generalized weighted statistical convergence to approximation theorems for functions of one and two
variables. Numer. Funct. Anal. Optim. 2020, 41, 1990-2006. [CrossRef]

Mursaleen, M.; Al-Abied, A.A.H.; Salman, M.A. Chlodowsky type (A, q)-Bernstein-Stancu operators. Azerb. J. Math. 2020, 10,
75-101.

Rahman, S.; Mursaleen, M.; Acu, A.M. Approximation properties of A-Bernstein-Kantorovich operators with shifted knots. Math.
Meth. Appl. Sci. 2019, 42, 4042-4053. [CrossRef]

Cai, Q.-B.; Lian, B.Y.; Zhou, G. Approximation properties of A-Bernstein operators. J. Inequal. Appl. 2018, 2018, 61. [CrossRef]
[PubMed]

Ozger, F. Weighted statistical approximation properties of univariate and bivariate A-Kantorovich operators. Filomat 2019, 33,
3473-3486. [CrossRef]

Ozger, F. On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Commun. Fac. Sci.
Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 376-393. [CrossRef]

Aslan, R. Some approximation results on A-Szasz-Mirakjan-Kantorovich operators. FUJMA. 2021, 4, 150-158.

Ozger, F.; Srivastava, H.M.; Mohiuddine, S.A. Approximation of functions by a new class of generalized Bernstein-Schurer
operators. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 2020, 114, 173. [CrossRef]

Mohiuddine, S.A.; Ozger, F. Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape
parameter «. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 2020, 114, 70. [CrossRef]

Srivastava, H.M.; Ansari, K.J.; Ozger, F; Odemis C)zger, Z. A link between approximation theory and summability methods via
four-dimensional infinite matrices. Mathematics 2021, 9, 1895. [CrossRef]

C)der, F.; Demirci, K.; Yildiz, S. Approximation by Kantorovich variant of A-Schurer operators and related numerical re-
sults. In Topics in Contemporary Mathematical Analysis and Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 77-94,
ISBN 9780367532666

Cai, Q.-B.; Torun, G.; Dinlemez Kantar, U. Approximation Properties of Generalized A-Bernstein-Stancu-Type Operators. J. Math.
2021, 2021, 5590439. [CrossRef]

Ghomanjani, F; Farahi, M.H.; Kiligman, A.; Kamyad, A.V.; Pariz, N. Bezier curves based numerical solutions of delay systems
with inverse time. Math. Probl. Eng. 2014, 2014, 602641. [CrossRef]

Cai, Q.-B.; Cheng, W.T. Convergence of A-Bernstein operators based on (p, q)-integers. J. Inequal. Appl. 2020, 2020, 35. [CrossRef]
Micchelli, C. The saturation class and iterates of Bernstein polynomials. J. Approx. Theory 1973, 8, 1-18. [CrossRef]

Campiti, M. Convergence of iterated Boolean-type sums and their iterates. Numer. Funct. Anal. Optim. 2018, 39, 1054-1063.
[CrossRef]

Occorsio, D.; Russo, M.G.; Themistoclakis, W. Some numerical applications of generalized Bernstein operators. Constr. Math.
Anal. 2021, 4, 186-214.

Izgi, A. Approximation by a class of new type Bernstein polynomials of one and two variables. Glob. . Pure Appl. Math. 2012, 8,
55-71.

Korovkin, PP. On convergence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR. 1953, 90,
961-964.

Altomare, F.; Campiti, M. Korovkin-Type Approximation Theory and Its Applications; Walter de Gruyter: Berlin, Germany, 2011;
Volume 17.


http://dx.doi.org/10.1080/01630563.2020.1868503
http://dx.doi.org/10.1002/mma.5632
http://dx.doi.org/10.1186/s13660-018-1653-7
http://www.ncbi.nlm.nih.gov/pubmed/29576718
http://dx.doi.org/10.2298/FIL1911473O
http://dx.doi.org/10.31801/cfsuasmas.510382
http://dx.doi.org/10.1007/s13398-020-00903-6
http://dx.doi.org/10.1007/s13398-020-00802-w
http://dx.doi.org/10.3390/math9161895
http://dx.doi.org/10.1155/2021/5590439
http://dx.doi.org/10.1155/2014/602641
http://dx.doi.org/10.1186/s13660-020-2309-y
http://dx.doi.org/10.1016/0021-9045(73)90028-2
http://dx.doi.org/10.1080/01630563.2018.1467446

	Introduction
	Preliminaries
	Convergence Results of Fm,a,b(;,q,y)
	Graphs and Error Estimation Tables
	Conclusions
	References

