On Weighted Simpson’s
Rule
Abstract
:1. Introduction and Preliminaries
2. Functions of Bounded Variation
3. Lipschitzian Function
3.1. is Lipschitzian
3.2. is Lipschitzian
4. Derivatives Belong to
5. Convex Functions
6. Applications
6.1. Special Means
6.2. Weighted Simpson’s Formula
6.3. Approximations of Moments of Random Variables
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Pećaric, J.; Varošanec, S. A note on Simpson’s inequality for functions of bounded variation. Tamkang J. Math. 2000, 31, 239–242. [Google Scholar] [CrossRef]
- Pećaric, J.; Varošanec, S. A note on Simpson’s inequality for Lipschitzian functions. Soochow J. Math. 2001, 27, 53–57. [Google Scholar]
- Ujević, N. Sharp inequalities of Simpson type and Ostrowski type. Comput. Math. Appl. 2004, 48, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Tseng, K.-L.; Yang, G.-S.; Dragomir, S.S. On weighted Simpson type inequalities and applications. J. Math. Inequal. 2007, 1, 13–22. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, E. On new inequalities of Simpson’s type for convex functions. Res. Rep. Coll. 2010, 60, 2191–2199. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef] [Green Version]
- Matić, M.; Pečarić, J.; Vukelić, A. On generalization of Bullen-Simpson’s inequality. Rocky Mountain J. Math. 2005, 35, 1727–1754. [Google Scholar] [CrossRef]
- Chena, J.; Huang, X. Some New Inequalities of Simpson’s Type for s-convex Functions via Fractional Integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Differ. Equ. 2020, 2020, 1–27. [Google Scholar] [CrossRef]
- Luo, C.-Y.; Du, T.-S.; Kunt, M.; Zhang, Y. New bounds considering the weighted Simpson-like type inequality and applications. J. Inequal. Appl. 2018, 2018, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Qaisar, S.; He, C.; Hussain, S. A generalizations of Simpson’s type inequality for differentiable functions using (α,m)-convex functions and applications. J. Inequal. Appl. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Uzair Awan, M.; Talib, S.; Kashuri, A.; Aslam Noor, M.; Chu, Y.-M. Estimates of quantum bounds pertaining to new q-integral identity with applications. Adv. Differ. Equ. 2020, 2020, 1–15. [Google Scholar]
- Matić, M.; Pečarić, J.; Vukelić, A. Generalization of Bullen-Simpson’s 3/8 inequality. Math. Comput. Model. 2005, 41, 463–483. [Google Scholar] [CrossRef]
- Dedić, L.J.; Matić, M.; Pečarić, J.; Vukelić, A. On Euler-Simpson 3/8 formulae. Nonlinear Stud. 2011, 18, 1–25. [Google Scholar]
- Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Krylov, V.I. Approximate Calculation of Integrals; Macmillan: New York, NY, USA, 1962. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 9. [Google Scholar]
- Matłoka, M. Weighted Simpson type inequalities for h-convex functions. J. Nonlinear Sci. Appl. 2017, 10, 5770–5780. [Google Scholar] [CrossRef]
- Erden, S.; Iftikhar, S.; Rostamian Delavar, M.; Kumam, P.; Thounthong, P.; Kumam, W. On generalizations of some inequalities for convex functions via quantum integrals. RACSAM 2020, 114, 110. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton’s inequalities for p-harmonic convex functions. Honam. Math. J. 2018, 40, 239–250. [Google Scholar]
- Apostol, T.M. Mathematical Analysis; Addison-Wesley Publishing Company: Reading, MA, USA, 1974. [Google Scholar]
- Robert, A.W.; Varbeg, D.E. Convex Functions; Academic Press: New York, NY, USA; London, UK, 1973. [Google Scholar]
- Bullen, P.S. Handbook of Means and Their Inequalities; Springer: Kluwer, The Netherlands, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostamian Delavar, M.; Kashuri, A.; De La Sen, M.
On Weighted Simpson’s
Rostamian Delavar M, Kashuri A, De La Sen M.
On Weighted Simpson’s
Rostamian Delavar, Mohsen, Artion Kashuri, and Manuel De La Sen.
2021. "On Weighted Simpson’s
Rostamian Delavar, M., Kashuri, A., & De La Sen, M.
(2021). On Weighted Simpson’s