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Abstract: In the framework of finitely supported atomic sets, by using the notion of atomic car-
dinality and the T-finite support principle (a closure property for supports in some higher-order
constructions), we present some finiteness properties of the finitely supported binary relations be-
tween infinite atomic sets. Of particular interest are finitely supported Dedekind-finite sets because
they do not contain finitely supported, countably infinite subsets. We prove that the infinite sets
℘ f s(Ak × Al), ℘ f s(Ak × ℘m(A)), ℘ f s(℘n(A) × Ak) and ℘ f s(℘n(A) × ℘m(A)) do not contain uni-
formly supported infinite subsets. Moreover, the functions space ZAm

does not contain a uniformly
supported infinite subset whenever Z does not contain a uniformly supported infinite subset. All
these sets are Dedekind-finite in the framework of finitely supported structures.
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1. Introduction
1.1. Motivation

The framework of this article is given by the finitely supported structures. These
structures are related to the permutation models of Zermelo–Fraenkel set theory with
atoms [1,2]. Permutation models were introduced in 1930s by Fraenkel, Mostowski and
Lindenbaum [3,4] for proving the independence of the axiom of choice from the other
axioms of Zermelo–Fraenkel set theory with atoms (ZFA). More recently, finitely supported
sets have been developed in Zermelo–Fraenkel set theory (ZF), by equipping ZF sets with
actions of a group of permutations of some basic elements called atoms. They were used
to investigate the variables binding, renaming and freshness in the theory of program-
ming [5–7]. Inductively defined finitely supported sets that involve the name-abstraction
together with disjoint unions and Cartesian products can encode a formal syntax modulo
renaming of bound variables. In this manner, the theory of algebraic data types can be
extended to include signatures involving binding operators. In particular, the notions of
structural recursion and structural induction can be consistently modelled in this new
framework [7].

Finitely supported sets that are equipped with finitely supported internal operations
represent finitely supported structures described in [5,6]. These finitely supported structures
are of interest for computer scientists because they present a way of computing very large
(possibly infinite) structures having a certain degree of symmetry; this means that they
allow a computational study of possibly infinite sets containing enough symmetries to
be concisely handled. Actually, this theory allows us to treat as equivalent the objects
those that have a certain degree of similarity and to focus only on those objects that are
‘really different’.
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Regarding the notion of finite support, in a lambda-calculus interpretation the finite
support of a lambda-term is represented precisely by the set of all free variables of the
term; these variables are those who really matter in order to characterize the term, while
the other (bound) variables can simply be renamed. Therefore, by renaming its bound
variables, we can construct an infinite family of terms starting from an original one, but in
order to handle this infinite family it is enough to work with the finite set of free variables
(i.e., the support) of the original term. By using the finitely supported structures, we are
able to deal with infinite sets and to provide precise descriptions of very large structures
by using symmetry orbits [6,7].

In this article we extend the approach presented in [8] where various forms of infinity
for finitely supported sets were introduced and compared. More exactly, we present some
(Dedekind-) finiteness properties of finitely supported (binary) relations between infinite
atomic sets in the framework of finitely supported structures. If S is a finite set of atoms,
there exists only a finite number of S-supported binary relations between some large
infinite atomic sets.

1.2. Methodology

An invariant set is defined as a usual ZF set endowed with a group action of the
group of all (finitary) permutations over a certain fixed infinite ZF set A of basic elements
whose internal structure is ignored (called atoms) satisfying a finite support requirement.
This related finite support requirement says that any element in an invariant set must be
finitely supported, i.e., for any such element there should exist a finite set of atoms such that
any permutation of atoms fixing pointwise this finite set of atoms also leaves the element
invariant under the related group action. An ‘invariant set’ corresponds to a ‘nominal
set’ [7] if the set A of atoms is countable. A finitely supported set is defined as a finitely
supported element in the powerset of an invariant set. A finitely supported structure is
defined as a finitely supported set equipped with a finitely supported internal operation or
relation (which should be finitely supported as a subset of a Cartesian product of finitely
supported sets). Formal definitions are presented in Section 2.

The framework of finitely supported structures contains both the family of ‘non-
atomic’ (i.e., classical) ZF structures (hierarchically constructed over ∅) which are proved to
be trivially invariant structures (i.e., all their elements are empty supported) and the family
of ‘atomic’ structures (i.e., structures that are hierarchically constructed by involving ∅ and
atoms). Our goal is to investigate whether a non-atomic ZF result preserves its validity
when it is reformulated by replacing ‘non-atomic ZF structure’ with ‘atomic and finitely
supported structure’. As proved in [6], such a translation is not obvious and some results
(like various relationship results between choice principles or Stone duality) cannot be
translated from ZF into the new atomic framework. The proof of each new result should
be internally consistent in the framework of finitely supported structures and not retrieved
from ZF; this means that it should involve only finitely supported constructions, even in
the intermediate steps of a proof. The meta-theoretical techniques for the translation of a
result from non-atomic structures to atomic structures are based on a closure property for
finite supports in a hierarchical construction, property called ‘T-finite support principle’.
More details are presented in Section 2.

A related meta-theoretical approach was used in [8] to prove some properties of
finitely supported cardinalities used in this paper to present counting properties for finitely
supported binary relations between infinite atomic sets. For proving our results, we also
use a freshness property saying that for any element x in a finitely supported set it is
possible to find a ‘fresh’ atom a, i.e., an atom a which is outside the support of x.

1.3. Literature Review

Fraenkel introduced the permutation method and model in 1922 to prove the indepen-
dence of the axiom of choice from the other axioms of a set theory with atoms [3]; Fraenkel’s
model was refined and extended by Lindenbaum and Mostowski in [4]. Around 1940
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Godel proved that the axiom of choice is consistent with the axioms of von-Neumann–
Bernays–Godel set theory. Cohen proved in 1963 the independence of the axiom of choice
from the standard axioms of ZF set theory [2]. We continued this research line in [5,6]; by
using atomic permutation actions we introduced finitely supported sets and structures
which are consistent according to ZF axioms (it is not necessary to weaken the axioms of
extensionality in order to allow the existence of atoms). We extensively studied several
choice principles and got results related to various forms of choice, infinity, fixed points,
approximation and stability for finitely supported structures. We also investigated the
consistency of the translation of the non-atomic results into the framework of finitely
supported sets, and present specific properties of atomic sets.

Finitely supported sets are also connected to the recent development of Fraenkel–
Mostowski (FM) axiomatic set theory [9] which represents an axiomatization of Fraenkel
basic model for Zermelo–Fraenkel set theory with atoms (model N1 from [10]), and to the
theory of admissible sets of Barwise (particularly to the theory of hereditary finite sets [11]).
Nominal sets, described in [7], represent a ZF alternative to the non-standard FM set theory,
because nominal sets are defined by involving group actions over standard ZF sets without
being necessary to modify the ZF axioms of extensionality or foundation. Nominal sets
also serve as a good framework to model the syntax of formal systems involving variable-
binding operations as well as a framework for database theory because atoms can be used
as an abstraction for data values appearing in a relational database. Atoms can also be
used to model sources of infinite data in some applications such as software verification,
where an atom can represent a pointer or the contents of an array cell. Atoms have the
same properties as names; the precise nature of names is unimportant because we are
focused only on their distinctness and on their ability to identify. Nominal sets have also
been used in game theory [12], in topology [13], in proof theory [14] where is developed
a proof assistant based on nominal sets, and in process calculi [15] where the π-calculus
was formalized in Isabelle by using the nominal datatypes. Generalizations of nominal sets
are involved in the study of automata, Turing machines and programming languages over
infinite alphabets; for this, a more relaxed notion of finiteness named ‘orbit finiteness’ was
defined as ‘having a finite number of orbits (equivalence classes) under a certain group
action’ [16].

The invariant sets are defined over possibly non-countable sets of atoms; they are also
motivated by Tarski’s approach regarding logicality (a logical notion is defined by Tarski
as one that is invariant under the one-to-one and onto transformations of the universe of
discourse [17]). The concept of ‘invariant structure’ was described and investigated in [5].
A more general concept of ‘finitely supported structure’ for arbitrary algebraic structures
(that are not necessarily partially ordered sets) was described and investigated in [6]. New
results (such as generalized Tarski fixed point theorems) were also proved for invariant
partially ordered sets.

Other generalizations of finitely supported sets include Fraenkel–Mostowski gener-
alized set theory (FMG) introduced in [9] by generalizing both the size of atoms and the
size of support from the FM set theory. More exactly, FMG is a generalization of the FM
sets framework obtained by replacing ‘finite support’ with ‘well-orderable (but at least
countable) support’ and by considering an uncountable set of atoms. The differences
between this approach and the framework of invariant sets are explained in [6]. Private
names in non-commutative logic [18] are modelled by the de Morgan dual pair of quan-
tifiers generalizing the nominal quantifier that encode ‘all, but finitely many’ [7]. These
quantifiers are polarized in the sense that one of them distributes over positive operators,
while the other one distributes over negative operators. This enables private names to be
modelled in processes embedded as predicates in an expressive but decidable proof system
named MAV1.
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1.4. Our Contribution

By using several results obtained by the authors in the theory of finitely supported
structures [6,8], here there are described some apparently large sets (such as finite powersets,
functions spaces and families of relations between infinite atomic sets) satisfying some
(Dedekind-) finiteness properties. In ZF, a set X is Dedekind-finite if and only if every
injective self-function on X is also surjective. Equivalently, a set is Dedekind-finite if and
only if it does not contain an infinite countable subset. These results are preserved in the
framework of finitely supported sets and structures. More exactly, a finitely supported set
(X, �) is Dedekind-finite if and only if every finitely supported injective self-function on X
is also surjective. As a characterization, a finitely supported set is Dedekind-finite if and
only if it does not contain a finitely supported countable subset. We proved in [8] that a
countable finitely supported set is necessarily uniformly supported (i.e., every element
of the set is supported by the same finite set of atoms); thus, a finitely supported set that
does not contain a uniformly supported infinite subset is Dedekind-finite. In this paper
we prove stronger results than in [8], results claiming that XAm

is Dedekind-finite for each
m ∈ N whenever X is a finitely supported set that does not contain a uniformly supported
infinite subset; in particular, X could be ℘ f s(A), AA

f s or ℘ f s(A)A
f s. Moreover, the sets of all

finitely supported binary relations between Ak, ℘m(A), ℘n(A) and Al , with k, m, n, l ∈ N
are also Dedekind-finite.

2. Preliminary Results

We mention some preliminary results that are involved in the proofs of the original
results presented in this article; several results belong to the authors of this paper.

We consider a standard Zermelo–Fraenkel infinite set A (called the set of atoms),
and ignore the internal structure of its elements. A transposition is defined as a func-
tion (x y) : A → A having the properties (x y)(y) = x, (x y)(x) = y, (x y)(z) = z for
z 6= x, y. A permutation of A is a bijection of A obtained by composing finitely many
transpositions, i.e., a bijection of A leaving unchanged all but finitely many elements of A.
By PA is denoted the set of all permutations of A.

Definition 1. Let X be a set in the Zermelo–Fraenkel set theory (ZF).

1. A PA-action on X represents a group action of PA on X, i.e., a function � : PA × X → X
that satisfies IdA � x = x and π � (π′ � x) = (π ◦ π′) � x for all π, π′ ∈ PA and x ∈ X.

2. A PA-set is a pair (X, �), with X a ZF set and � : PA × X → X a PA-action on X.
3. Considering a PA-set (X, �), we say that T ⊂ A supports x (or that x is T-supported) if

π � x = x for each π ∈ Inv(T), where Inv(T) = {π |π(a) = a for all a ∈ T}. An element
supported by a finite subset of atoms is called finitely supported.

4. Considering a PA-set (X, �), we say that X is an invariant set if for each x ∈ X there exists a
finite set Tx ⊂ A supporting x.

5. Considering a PA-set (X, �) and x ∈ X, we know from [5] that there is a least finite set
supp(x) supporting x whenever there is a finite set supporting x. This finite set supp(x)
supporting x is the intersection of all sets supporting x, and it is called the support of x.

6. An empty supported element is equivariant. Thus, z ∈ X is equivariant if and only if
π � z = z for all π ∈ PA.

Fraenkel–Mostowski sets were introduced in [4] as sets with atoms that are hereditary
finitely supported (i.e., they are finitely supported, all their elements are finitely supported,
and so on). They were firstly considered in [3] in order to study the independence of
the axiom of choice in ZFA. ZFA theory is a refinement of ZF theory: in ZFA there does
not exist only a basic element ∅, but infinitely many basic elements (having no internal
structure) named atoms which can be compared only for equality. Moreover, the axiom of
extensionality from ZF is modified in ZFA to allow atoms; more precisely, the ZFA axiom
of extensionality states that ‘any sets that are not atoms are equal if and only if they have the
same elements’.
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In defining our finitely supported sets, we are able to work directly over Zermelo–
Fraenkel set theory (ZF), without being necessary to avoid or modify the axiom of exten-
sionality. In this sense, we adapted the notion of Fraenkel–Mostowski set to our context,
and defined the invariant sets as sets equipped with a group action of the group of all permu-
tations of A having an additional finite support property for all its elements. An invariant
set corresponds to a nominal set of [7] whenever A is countable. By analogy, an invariant set
corresponds to an empty supported (equivariant) set in the class of all Fraenkel–Mostowski
sets defined as a von-Neumann cumulative hierarchy over ∅ and A.

Let (X, �) and (Y, .) be PA-sets. Based on [5], the set A of atoms is an invariant set
where the PA-action � : PA × A→ A is defined by π � a := π(a) for all π ∈ PA and a ∈ A.
Whenever π ∈ PA and x ∈ X is finitely supported, π � x is also finitely supported, also
having the property supp(π � x) = {π(y) | y ∈ supp(x)} := π(supp(x)).

The Cartesian product X×Y is a PA-set with the PA-action ⊗ defined by π ⊗ (x, y) =
(π � x, π . y) for all π ∈ PA and x ∈ X, y ∈ Y; for invariant sets (X, �) and (Y, .), (X×Y,⊗)
is also an invariant set. The powerset ℘(X) = {Z | Z ⊆ X} is a PA-set with the PA-action
? : PA × ℘(X) → ℘(X) defined by π ? Z := {π � z | z ∈ Z} for all π ∈ PA and Z ⊆ X.
For an invariant set (X, �), ℘ f s(X) denotes the set formed from those subsets of X that
are finitely supported according to Definition 1(3) in ℘(X) with respect to the action ?;
(℘ f s(X), ?|℘ f s(X)) is also an invariant set, with ?|℘ f s(X) representing the action ? restricted
to ℘ f s(X). Non-atomic sets are trivially invariant; they are equipped with the trivial
PA-action (π, x) 7→ x. The disjoint union of X and Y is given by X + Y = {(0, x) | x ∈
X} ∪ {(1, y) | y ∈ Y}; X + Y is a PA-set with the PA-action ? defined by π ? z = (0, π � x)
if z = (0, x) and π ? z = (1, π . y) if z = (1, y). Thus, (X + Y, ?) is an invariant set
whenever X and Y are invariant sets.

Definition 2.

1. A subset Z of an invariant set (X, �) is finitely supported if and only if Z ∈ ℘ f s(X), namely
if and only if Z is finitely supported as an element of the PA-set (℘(X), ?). In this case, we
state that (Z, �) is a finitely supported set.

2. A subset Z of an invariant set (X, �) is uniformly supported if all of its elements are supported
by the same finite set of atoms.

A subset U of an invariant set (X, �) is finitely supported by a set T ⊆ A if and only if
π ?U ⊆ U for all π ∈ Inv(T), i.e., if and only if π � u ∈ U for all π ∈ Inv(T) and all u ∈ U.
This is because any permutation of atoms has a finite order, and so for π ∈ PA we have
that there is m ∈ N with πm = IdA, from which we get π ? U ⊆ U ⇔ π ? U = U.

Clearly, a finite subset of an invariant set is uniformly supported (by the union of the
supports of its elements). For uniformly supported sets we have the following property.

Proposition 1 ([19]).

1. Considering a uniformly supported subset Y of an invariant set (X, �), it follows that Y is
finitely supported, with supp(Y) = ∪{supp(y) | y ∈ Y}.

2. Considering a finite subset Y of an invariant set (X, �), it follows that Y is finitely supported,
with supp(Y) = ∪{supp(y) | y ∈ Y}.

Definition 3. Let X and Y be invariant sets.

1. A function f : X → Y is finitely supported whenever f ∈ ℘ f s(X×Y).
2. Let us consider a finitely supported subset U of X, and a finitely supported subset V of Y.

Then a function f : U → V is finitely supported whenever f ∈ ℘ f s(X × Y); the set of all
finitely supported functions from U to V is denoted by VU

f s .
3. A binary relation between X and Y is finitely supported if it is finitely supported as an element

of the PA-set ℘(X×Y).
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Proposition 2 ([5]). Let (X, �) and (Y, .) be two invariant sets.

1. The set YX of all functions from X to Y is a PA-set with the PA-action ?̃ : PA × YX → YX

defined by (π?̃ f )(x) = π . ( f (π−1 � x)) for all π ∈ PA, f ∈ YX and x ∈ X. A function
f : X → Y is finitely supported (as in Definition 3) if and only if it is finitely supported with
respect to the permutation action ?̃.

2. Let U be a finitely supported subset of X and V a finitely supported subset of Y. A function
f : U → V is supported by a finite set T ⊆ A if and only if π � x ∈ U, π . f (x) ∈ V and
f (π � x) = π . f (x) for all x ∈ U and all π ∈ Inv(T).

The notion of the cardinality of a finitely supported set was introduced in [8].

Definition 4. Two finitely supported sets X and Y are equipollent if there is a finitely supported
bijective function f : X → Y.

Theorem 1 ([8]). The equipollence relation is an equivariant equivalence relation over the family
of all finitely supported sets.

Definition 5. The cardinality of X (denoted by |X|) is the equivalence class of all finitely supported
sets equipollent to X.

For two finitely supported sets X and Y, we have |X| = |Y| if and only if there exists
a finitely supported bijection f : X → Y. We can define a relation ≤ over the family of
cardinalities defined by |X| ≤ |Y| if and only if there exists a finitely supported one-to-
one (injective) function from X to Y. According to Theorem 2 in [8], it follows that ≤ is
well-defined and equivariant; it is reflexive, anti-symmetric and transitive, but it is not
total. Similarly, the relation ≤? defined by |X| ≤? |Y| if and only if there exists a finitely
supported onto (surjective) function from Y to X is well-defined and equivariant; it is
reflexive and transitive, but it is not anti-symmetric, nor total.

Operations with cardinalities of finitely supported sets were defined in [8].

Definition 6. Let X and Y be two finitely supported subsets of invariant sets. The following
operations between cardinalities are defined:

|X|+ |Y| = |X + Y|; |X| · |Y| = |X×Y|;
|Y||X| = |YX

f s| = |{ f : X → Y | f is finitely supported}|.

As we proved in [8], these operations are well-defined, namely do not depend on the
representatives for the involved equivalence classes modulo the equipollence relation.

The translation of a result from ZF to the framework of finitely supported sets can be
realized by involving the ‘T-finite supports principle’ presented in [5] and claiming that ‘for
any finite subset T of A, any structure that can be defined in higher-order logic from T-supported
structures by involving only T-supported constructions is also supported by T’. The involvement
of the related T-finite support principle actually implies a step-by-step construction of the
support of a structure by using, at every step, the supports of the substructures of a related
structure that was constructed in the previous steps. Since cardinalities are well-defined
for finitely supported structures (as equivalence classes of an equivariant equivalence
relation) and basic operations with cardinalities can be presented in the higher-order logic,
we get the following property presented as Proposition 3. A detailed proof can be found in
Proposition 9 of [8].

Proposition 3. If X, Y and Z are finitely supported subsets of invariant sets, then we have the
following properties:

1. |X||Y|·|Z| = (|X||Y|)|Z|;
2. |X||Y|+|Z| = |X||Y| · |X||Z|;
3. (|Y| · |Z|)|X| = |Y||X| · |Z||X|.
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We extend a result of [5] from invariant sets to finitely supported sets.

Theorem 2. If (X, �) is a finitely supported subset of an invariant set (Z, �), then there is an
injective (one-to-one) function from ℘ f s(X) onto {0, 1}X

f s, finitely supported by supp(X).

The proof is a rather easy exercise of using the T-finite support principle.

3. Binary Relations between Atomic Sets

This section presents the main results of the paper. Primarily, we prove some counting
properties for finitely supported relations between infinite atomic sets. We use the following
result presented in [19].

Theorem 3. Let us consider two finitely supported subsets X and Y of an invariant set Z. If
neither X nor Y contain uniformly supported infinite subsets, then X × Y does not contain a
uniformly supported infinite subset.

Lemma 1. Let us consider a finite subset T = {t1, . . . , tn} of an invariant set (U, �), and a finitely
supported subset X of an invariant set (V, .). If X does not include a uniformly supported infinite
subset, then the function space XT

f s does not have a uniformly supported infinite subset.

Proof. We show that there is a finitely supported injection g from XT
f s into X|T|. For f ∈ XT

f s,
it is defined g( f ) = ( f (t1), . . . , f (tn)). Obviously, g is injective (it is also surjective).
Let π ∈ Inv(supp(t1) ∪ . . . ∪ supp(tn) ∪ supp(X)). Due to the fact that π is bijective,
then π−1 ∈ Inv(supp(t1) ∪ . . . ∪ supp(tn) ∪ supp(X)). Thus, g(π?̃ f ) = (π . f (π−1 �
t1), . . . , π . f (π−1 � tn)) = (π . f (t1), . . . , π . f (tn)) = π ⊗ g( f ) for all f ∈ XT

f s, where ⊗
is the PA-action on X|T|. Hence g is finitely supported. Using the relation supp(x1) ∪
. . . ∪ supp(xn) = supp((x1, . . . , xn)) for all x1, . . . , xn ∈ X, we have that X|T| (meaning the
|T|-times Cartesian product of X) does not include a uniformly supported infinite subset.
Contrarily, X should include itself a uniformly supported infinite subset (which contradicts
the hypothesis).

Theorem 4. Let us consider a finitely supported subset X of an invariant set (Y, �) such that X
does not include a uniformly supported infinite subset and let T ∈ ℘ f in(A). Then there exist at
most finitely many T-supported functions from A to X.

Proof. By contradiction, we assume that for the finite set T ⊆ A there are infinitely many
functions f : A→ X that are supported by T.

We have that each T-supported function f : A → X may be uniquely decomposed
into a pair of two T-supported functions f |T and f |A\T that are the restrictions of f to T
and A \ T, respectively. This comes from Proposition 2, because both T and A \ T are
supported by T, and so for an arbitrary σ ∈ Inv(T), as f is supported by T, we have
σ(a) ∈ T, f |T(σ(a)) = f (σ(a)) = σ � f (a) = σ � f |T(a), ∀a ∈ T, and σ(b) ∈ A \ T,
f |A\T(σ(b)) = f (σ(b)) = σ � f (b) = σ � f |A\T(b), ∀b ∈ A \ T.

According to Lemma 1, there are only finitely many functions from T to X supported
by T. Thus, we should have an infinite familyH of functions g : (A \ T)→ X supported
by T (functions g are restrictions of functions f to A \ T). Choosing an element x ∈
A \ T and considering an arbitrary T-supported function g : (A \ T) → X, for each
π ∈ Inv(T ∪ {x}) we get π � g(x) = g(π(x)) = g(x) (according to Proposition 2). This
means that g(x) is supported by T ∪ {x}. However, in X there exist at most finitely many
elements supported by T ∪ {x}. Thus, there is n ∈ N such that h1(x), . . . , hn(x) are distinct
in X. Let us consider h ∈ H with h(x) ∈ {h1(x), . . . , hn(x)} for h1, . . . , hn ∈ H, and an
arbitrary y ∈ A \ T (meaning that the transposition (x y) fixes T pointwise). Then, there is
i ∈ {1, . . . , n} such that h(x) = hi(x). Given that h and hi are supported by T, and (x y) ∈
Inv(T), we get h(y) = h((x y)(x)) = (x y) � h(x) = (x y) � hi(x) = hi((x y)(x)) = hi(y).
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This finally leads to h = hi, because y was arbitrarily chosen from their domain of definition.
Therefore, we get a finiteH = {h1, . . . , hn} which is a contradiction.

Corollary 1. Let us consider a finitely supported subset X of an invariant set (Y, �) such that X
does not contain a uniformly supported infinite subset and let T ∈ ℘ f in(A). Then there exist
at most finitely many T-supported functions from An to X where n ∈ N and An is the n-times
Cartesian product of A.

Proof. We must prove that the set XAn

f s of finitely supported functions from An to X does
not have a uniformly supported infinite subset, whenever n ∈ N. The proof is by induction
on n. For n = 1, the claim is true according to Theorem 4. Let us assume that XAk−1

f s does
not include a uniformly supported infinite subset for some k ∈ N, k ≥ 2. According to
Proposition 3, we have |XAk

f s | = |X
Ak−1×A
f s | = |X||Ak−1×A| = |X||Ak−1|·|A| = (|X||Ak−1|)|A| =

|(XAk−1

f s )A
f s|. Thus, there is a finitely supported bijection between XAk

f s and (XAk−1

f s )A
f s. How-

ever, according to Theorem 4, (XAk−1

f s )A
f s does not include a uniformly supported infinite

subset, because the set T = XAk−1

f s does not include a uniformly supported infinite subset
(according to the inductive hypothesis).

Corollary 2. Let T ∈ ℘ f in(A). There exist at most finitely many T-supported subsets of An,
whenever n ∈ N.

Proof. We should prove that there are at most finitely many T-supported elements of
the power set ℘ f s(An), i.e., ℘ f s(An) does not have a uniformly supported infinite subset,
whenever n ∈ N. According to Theorem 2, we have |℘ f s(An)| = |{0, 1}An

f s |. The result
is obtained from the previous Corollary, because {0, 1} is finite and it cannot include a
uniformly supported infinite subset.

Now we present the main results of the paper.

Theorem 5. Given an arbitrary finite set S of atoms, there exist at most finitely many S-supported
relations between ℘n(A) and ℘m(A), where m, n ∈ N? and ℘k(A) denotes the family of all k-sized
subsets of A.

Proof. A relation between ℘n(A) and ℘m(A) is a subset of ℘n(A)× ℘m(A). Therefore,
such a relation R is of form R = {(X, Y) |X ∈ F , Y ∈ G} with F ⊆ ℘n(A) and G ⊆ ℘m(A).
Clearly, if S is the empty set, the only equivariant relation between ℘n(A) and ℘m(A) is
{(X, Y) |X ∈ ℘n(A), Y ∈ ℘m(A)}. Let us assume that |S| ≥ 1 (the claims are also valid
for S = ∅). The first term in a pair from a relation R is X = {a1, . . . , ai, bi+1, . . . , bn} with
a1, . . . , ai ∈ S and bi+1, . . . , bn ∈ A \ S, and the second term in a pair from a relation R
is Y = {c1, . . . , cj, dj+1, . . . , dm} with c1, . . . , cj ∈ S and dj+1, . . . , dm ∈ A \ S. For any
b ∈ A \ S, b 6= bi+1, . . . , bn, we have that (b bi+1) ∈ Inv(S) and, since S supports R, we get
that {a1, . . . , ai, b, bi+2, . . . , bn} = (b bi+1) ? X should also be the first term in a pair from R.
By repeatedly applying this procedure, for any different atoms xi+1, . . . , xn ∈ A \ S, we get
that {a1, . . . , ai, xi+1, . . . , xn} should also be the first term in a pair from R. More formally, let
us consider the arbitrary different atoms xi+1, . . . , xn ∈ A \ S. We may reorder the finitely
many elements bi+1, . . . , bn and xi+1, . . . , xn (choice is not involved since we order finite
families) such that either {bp| p ∈ {i + 1, . . . , n}} ∩ {xp| p ∈ {i + 1, . . . , n}} = ∅, or we get
an index k ∈ {i + 1, . . . , n} having the properties that bp = xp for all p ∈ {i + 1, . . . , k} and
{bp | p ∈ {k+ 1, . . . , n}}∩ {xp | p ∈ {k+ 1, . . . , n}} = ∅. We define a (finite) permutation π
of A by taking π(bp) = xp for all p ∈ {i + 1, . . . , n}, π(a) = a for a ∈ A \ {bi+1, . . . , bn} if
the index k does not exist, or, respectively, by taking π(bp) = xp for all p ∈ {k + 1, . . . , n},
π(a) = a for a ∈ A \ {bk+1, . . . , bn} if the index k exists. Clearly, π ∈ Inv(S) and π is finitely
supported since it interchanges only finitely many elements from A. Since S supports R,
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we get {a1, . . . , ai, xi+1, . . . , xm} = π ? X should be the first term in a pair from R. Thus,
the choice of X is completely determined by the choice of a1, . . . , ai ∈ S. Similarly, the choice
of Y is completely determined by the choice of c1, . . . , cj ∈ S. The number P of possibilities
to choose the pair (X, Y) is:

(C0
|S| + C1

|S| + . . . + Cn
|S|) · (C

0
|S| + C1

|S| + . . . + Cm
|S|) if n, m ≤ |S|;

(C0
|S| + C1

|S| + . . . + Cn
|S|) · 2

|S| if n ≤ |S| and |S| < m;

2|S| · (C0
|S| + C1

|S| + . . . + Cm
|S|) if m ≤ |S| and |S| < n;

2|S| · 2|S| = 22|S| if |S| < m, n ,
where, by definition, Cl

x = x!
l!(x−l)! for x ≥ l, and y! = 1 · 2 · . . . · y for y ≥ 1, 0! = 1. Finally,

there are at most 2P relations between ℘n(A) and ℘m(A) supported by S.

Theorem 6. Given an arbitrary finite set S of atoms, there exist at most finitely many S-supported
relations between Ak and Al , where k, l ∈ N?.

Proof. A relation between Ak and Al is a subset of Ak × Al . There exists an equivariant
bijection between ℘ f s(Ak × Al) and ℘ f s(Ak+l). According to Corollary 2, since ℘ f s(Ak+l)

does not include a uniformly supported infinite subset, it results that ℘ f s(Ak × Al) does
not include a uniformly supported infinite subset. Therefore, there are at most finitely
many elements from ℘ f s(Ak × Al) (i.e., at most finitely many subsets of Ak × Al) that are
supported by S.

Theorem 7. Given an arbitrary finite set S of atoms, there exist at most finitely many S-supported
relations between Tn(A) and Tm(A), where m, n ∈ N? and Tk(A) denotes the family of all k-sized
injective tuples of A.

Proof. This result is a direct consequence of Theorem 6 because there exists the equivariant
identity injection between Tk(A) and Ak whenever k ∈ N?. However, it could also involve a
similar approach as in Theorem 5 to provide the precise number of the related S-supported
relations. More exactly, a relation R between Tn(A) and Tm(A) is of form R = {(X, Y) |X ∈
F , Y ∈ G} with F ⊆ Tn(A) and G ⊆ Tm(A). The only equivariant relation between Tn(A)
and Tm(A) is {(X, Y) |X ∈ Tn(A), Y ∈ Tm(A)}. Let X be the left term in a pair from
an S-supported relation R. Assume |S| ≥ 1 (for notation reasoning although the claims
are obviously valid for S = ∅), and suppose there are p columns of the injective tuple X
that are occupied by certain fixed different elements from A \ S. By applying appropriate
transpositions, all the injective tuples from Tn(A) having the related p columns occupied
by arbitrary different elements from A \ S should be terms occupying the left position
in tuples from R. Therefore, the choice of X is completely determined by the choice of
the n − p columns occupied by elements of S and by the choice of the elements of S

occupying the related n− p columns. We get 2∑n
i=1 Ci

n Ai
|S| ·∑

m
j=1 Cj

m Aj
|S| S-supported relations,

where Ak
n = n(n− 1) . . . (n− k + 1) if n ≥ k and Ak

n = 0 if n < k.

Theorem 8. Let m, n ∈ N?. Given an arbitrary finite set S of atoms, there exist at most finitely
many S-supported relations between ℘n(A) and Am, and at most finitely many S-supported
relations between An and ℘m(A).

Proof. A relation between An and ℘m(A) is a subset of the Cartesian product An ×
℘m(A). We have |℘ f s(An × ℘m(A))| = 2|A

n×℘m(A)| = 2(|A
n |·|℘m(A)|) = (2|℘m(A)|)|A

n | =

(|℘ f s(℘m(A))|)|An | = |(℘ f s(℘m(A)))An

f s |. Thus, there is a finitely supported bijection be-

tween ℘ f s(An × ℘m(A)) and (℘ f s(℘m(A)))An

f s .
We claim that ℘ f s(℘m(A)) does not include a uniformly supported infinite subset,

and so, by Corollary 1, we have that (℘ f s(℘m(A)))An

f s does not include a uniformly sup-
ported infinite subset. Let F be a subset of ℘ f s(℘m(A)) uniformly supported by a cer-
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tain finite set of atoms T. The elements of F are subsets of ℘m(A). We want to prove
that F is finite, i.e., there are at most finitely many subsets of ℘m(A) supported by T.
Assume that |T| ≥ 1, otherwise the problem is trivial (there is only one equivariant sub-
set of ℘m(A), namely ℘m(A)). Let G be a subset of ℘m(A) supported by T. Let X ∈ G,
X = {a1, . . . , ai, bi+1, . . . , bm} with a1, . . . , ai ∈ T and bi+1, . . . , bm ∈ A \ T. Let us consider
the arbitrary different atoms xi+1, . . . , xm ∈ A \ T. We may reorder the finitely many
elements bi+1, . . . , bm and xi+1, . . . , xm (choice is not involved since we order finite families)
such that either {bj | j ∈ {i + 1, . . . , m}} ∩ {xj | j ∈ {i + 1, . . . , m}} = ∅, or we obtain an
index k ∈ {i + 1, . . . , m} having the properties that bj = xj for all j ∈ {i + 1, . . . , k} and
{bj | j ∈ {k + 1, . . . , m}} ∩ {xj | j ∈ {k + 1, . . . , m}} = ∅. We define a (finite) permutation π
of A by taking π(bj) = xj for all j ∈ {i + 1, . . . , m}, π(a) = a for a ∈ A \ {bi+1, . . . , bm} if
the index k does not exist, or, respectively, by taking π(bj) = xj for all j ∈ {k + 1, . . . , m},
π(a) = a for a ∈ A \ {bk+1, . . . , bm} if the index k exists. Clearly π ∈ Inv(T) and π
is finitely supported since it interchanges only finitely many elements from A. Since T
supports G, we get {a1, . . . , ai, xi+1, . . . , xm} = π ? X ∈ G.

Therefore, G is completely determined by the choice of the elements from T belonging

to the members of G. We have therefore at most 2∑m
i=1 Ci

|T| (we consider Cl
p = 0 if p < l) ways

to define G such that G is supported by T. Our claim is proved. Thus, we finally obtain
that ℘ f s(An × ℘m(A)) does not include a uniformly supported infinite subset, and so it
contains at most finitely many elements supported by S. The second part of this theorem
follows in a similar way because |℘ f s(℘n(A)× Am))| = |℘ f s(Am × ℘n(A))|.

Theorem 9. Let X and Y be two finitely supported subsets of an invariant set Z such that neither X
nor Y contain a uniformly supported infinite subset. Given an arbitrary finite set S of atoms, there
exist at most finitely many S-supported finite relations between X and Y.

Proof. A finite relation between X and Y is a finite subset of X × Y, i.e., an element of
℘ f in(X × Y). Denote L = X × Y. According to Theorem 3, set L does not include a
uniformly supported infinite subset. By contradiction, assume that the set ℘ f in(L) includes
an infinite subset F such that all the elements of F are supported by the same finite
set T. Thus, supp(K) ⊆ T for all K ∈ F . Considering an arbitrary K ∈ F , we have
supp(K) = ∪

x∈K
supp(x) (from Proposition 1), and so K has the property supp(x) ⊆ T for all

x ∈ K. Given that K has been arbitrarily chosen from F , it results that every element from
each set belonging to F is supported by T, and so ∪

K∈F
K is a uniformly supported subset

of L (all elements being supported by T). Obviously, ∪
K∈F

K is infinite since F is infinite.

This is contrary to the hypothesis that L does not include a uniformly supported infinite
subset. Finally, we conclude that for a given subset S of atoms there are only finitely many
elements of ℘ f in(L) supported by S.

Theorem 10. Given an arbitrary, non-empty, finite set S of atoms, there exist at most finitely many
S-supported functions from Am to ℘ f in(A) (where m is an arbitrary positive integer), but there are
infinitely many S-supported relations between S and ℘ f in(A).

Proof. The first part results from Corollary 1, because ℘ f in(A) does not include a uniformly
supported infinite subset (for any finite set S of atoms, the finite subsets of A supported
by S are precisely the subsets of S). Now, considering a ∈ A, for any n ∈ N, the relation
Rn = {(a, X) |X ∈ ℘n(A)} (with ℘n(A) the family of all n-sized subsets of A) is {a}-
supported, and so it is S-supported due to the fact that a ∈ S. This is because ℘n(A) is
equivariant for any n ∈ N (since permutations of A are bijective, an n-sized subset of A
is transformed into another n-sized subset of A by using a permutation of A), and so
for π ∈ Inv({a}) we have π ⊗ (a, X) = (π(a), π ? X)) = (a, π ? X) with π ? X ∈ ℘n(A),
for any X ∈ ℘n(A). Thus, π ⊗ (a, X) ∈ Rn for all (a, X) ∈ Rn, and so π ? Rn = Rn.
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Theorem 11. Given an arbitrary, non-empty, finite set S of atoms, there are at most finitely many
S-supported functions from Am to Tf in(A) (where m is an arbitrary positive integer), but there
exist infinitely many S-supported relations between S and Tf in(A), where Tf in(A) is the set of all
finite injective tuples of atoms.

Proof. Tf in(A) does not include a uniformly supported infinite subset because the finite
injective tuples of atoms supported by a finite set S are only those injective tuples formed
by elements of S, being at most 1 + A1

|S| + A2
|S| + . . . + A|S||S| such tuples. The first part of the

result now follows from Corollary 1. Now, let us consider a ∈ A. For any n ∈ N, the relation
Rn = {(a, X) |X ∈ Tn(A)} with Tn(A) the family of all n-sized injective tuples of A is
{a}-supported (and so it is S-supported since a ∈ S). This is because Tn(A) is equivariant
for any n ∈ N (since permutations of A are bijective, an n-sized injective tuple of A is
transformed into another n-sized injective tuple of A by using a permutation of A), and so
for π ∈ Inv({a}) we have π ⊗ (a, X) = (π(a), π ? X)) = (a, π ? X) with π ? X ∈ Tn(A),
for any X ∈ Tn(A). Thus, π ⊗ (a, X) ∈ Rn for all (a, X) ∈ Rn, and so π ? Rn = Rn.

Theorem 12. Given an arbitrary, non-empty, finite set S of atoms, there are at most finitely many
S-supported functions from Am to ℘ f s(A) (where m is an arbitrary positive integer), but there
exist infinitely many S-supported relations between S and ℘ f s(A).

Proof. ℘ f s(A) does not include a uniformly supported infinite subset because the elements
of ℘ f s(A) supported by a finite set S are precisely the subsets of S and the supersets of
A \ S. The first part of the result follows from Corollary 1, and the second part follows
from Theorem 10.

4. Conclusions

In this article we work in the framework of finitely supported structures and present
some counting properties for finitely supported binary relations between infinite atomic
sets. Firstly, we presented some finiteness properties of sets which seem to be very large.
We proved that function spaces ℘ f in(A)Am

f s , Tf in(A)Am

f s , ℘ f s(A)Am

f s (where m is an arbitrary

positive integer) do not contain uniformly supported infinite subsets. More generally, ZAm

does not contain a uniformly supported infinite subset for each m ∈ N, whenever Z is a
finitely supported set that does not contain a uniformly supported infinite subset. Then we
proved that the set of all finitely supported relations between Ak and Al , the set of all finitely
supported relations between ℘k(A) and ℘l(A), and the set of all finitely supported relations
between ℘k(A) and Al (for k, l positive integers) do not contain uniformly supported
infinite subsets.

Uniformly supported sets are of interest because they involve boundedness properties
of supports, meaning that the support of each element in a uniformly supported set is
contained in the same finite set of atoms; in this way, all the individuals in an infinite
uniformly supported family can be characterized by involving only the same finitely
many characteristics. If any uniformly supported subset of a set is finite, the related set
can be easier handled in a computable manner [6]. In fact, the sets that do not contain
uniformly supported infinite subsets (i.e., the sets mentioned above) are Dedekind-finite in
the framework of finitely supported structures, i.e., they do not contain finitely supported
countably infinite subsets. Therefore, these sets satisfy the properties of Dedekind-finite
sets presented in [8,20] (e.g., Theorem 6 in [8]). Thus, we proved that ℘ f s(X×Y) and ZAm

are Dedekind-finite whenever X and Y are chosen from the sets Ak, ℘m(A), ℘n(A) and Al ,
k, l.m, n ∈ N, and Z is a finitely supported Dedekind-finite set.

Finally, we proved that the sets of finitely supported relations between A and ℘ f in(A),
as well as between A and Tf in(A) are both Dedekind-infinite in the framework of finitely
supported structures, namely they contain uniformly supported infinite subsets.
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