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Abstract: Influential observations (IOs), which are outliers in the x direction, y direction or both,
remain a problem in the classical regression model fitting. Spatial regression models have a peculiar
kind of outliers because they are local in nature. Spatial regression models are also not free from the
effect of influential observations. Researchers have adapted some classical regression techniques
to spatial models and obtained satisfactory results. However, masking or/and swamping remains
a stumbling block for such methods. In this article, we obtain a measure of spatial Studentized
prediction residuals that incorporate spatial information on the dependent variable and the residuals.
We propose a robust spatial diagnostic plot to classify observations into regular observations, vertical
outliers, good and bad leverage points using a classification based on spatial Studentized prediction
residuals and spatial diagnostic potentials, which we refer to as ISRs− Posi and ESRs− Posi. Obser-
vations that fall into the vertical outliers and bad leverage points categories are referred to as IOs.
Representations of some classical regression measures of diagnostic in general spatial models are
presented. The commonly used diagnostic measure in spatial diagnostics, the Cook’s distance, is
compared to some robust methods, H2

i (using robust and non-robust measures), and our proposed
ISRs − Posi and ESRs − Posi plots. Results of our simulation study and applications to real data
showed that the Cook’s distance, non-robust H2

si1 and robust H2
si2 were not very successful in detect-

ing IOs. The H2
si1 suffered from the masking effect, and the robust H2

si2 suffered from swamping in
general spatial models. Interestingly, the results showed that the proposed ESRs− Posi plot, followed
by the ISRs− Posi plot, was very successful in classifying observations into the correct groups, hence
correctly detecting the real IOs.

Keywords: spatial regression model; influential observation; outlier; leverage; prediction residual;
masking and swamping; diagnostic

1. Introduction

Belsley et al. [1] defined an influential observation (IO) as one which, either individu-
ally or together with several other observations, has a demonstrably large impact on the
calculated values of various estimates. An influential observation could be an outlier in the
X-space (leverage points) or outlier in the Y-space (vertical outlier). Leverage points can be
classified into good (GLPs) and bad leverage points (BLPs). Unlike BLPs, GLPs follow the
pattern of the majority of the data; hence, they are not considered as IOs as they have little
or no influence on the calculated values of numerous estimates [2,3]. In this connection,
Rashid et al. [2] stated that IOs could be vertical outliers (VO) or BLPs. Thus, it is very
crucial to identify IOs as they are responsible for misleading conclusions about the fitted
regression models and various other estimates. Once the IOs are identified, there is a need
to study their impact on the model and subsequent analyses. There is a handful of studies
on the diagnostic of IOs in linear regression; some examples are [1,3–12]. Other articles
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in the literature deal with regressions with correlated residuals, e.g., [13–17]. However,
only a few articles deal with the detection of IOs in spatial regression models; some ex-
amples include [18–22]. Some robust estimation methods in spatial regression are [23–25].
Christensen et al. [18] and Haining [19] adapted one of the diagnostic measures in [3] to
detect influential observations in spatial error autoregression model. They achieved this
by defining correlated errors through the spatial weight matrix and coefficient of spatial
autocorrelation in the error term. They also presented the spatial Studentized prediction
residuals and the spatial leverage terms that contain error terms in spatial information.

The presence of high or low attribute value in the neighbourhood of a spatial location
may result in the inability to detect the true spatial outlier, or the false identification of a
good observation as an outlier [26]. Hadi [27] has also noted that spatial outlier detection
methods inherit the problem of masking and swamping. Masking occurs when outlying
observations are incorrectly declared as inliers. Swamping on the other hand, occurs when
clean observations are incorrectly classified as outliers [28]. Aggarwal [29] observed that
spatial outlier breaks the spatial autocorrelation and continuity of spatial locations. Spatial
autocorrelation is a systematic pattern in attribute values that are recorded in several
locations on a map. Attribute values in one location that are associated with values at
neighbouring locations indicate the presence of autocorrelation. Positive autocorrelation
indicates similar values that are clustered together. Negative autocorrelation indicates low
attribute values in the neighbourhood of high attribute values and vice-versa [30].

Robust estimation methods mostly focus on estimations that are not influenced much
by the effects of outliers. Anselin [23] has extended the bootstrap estimation to mixed
regressive spatial autoregressive models, where pseudo error terms are generated by
sampling from the vector of error terms. The spatial structure of the data is maintained
through the generation of error terms. Politis et al. [31] and Heagerty and Lumley [32]
also adopted the bootstrap method on blocks of contiguous locations to generate replicates
of the estimates of the asymptotic standard error of statistics. Cerioli and Riana [24]
argued that a robust estimator of the spatial autocorrelation parameters did not exist
based on all datasets. They proposed a forward search algorithm based on blocks of
contagious spatial locations (BFS). The BFS algorithm are drawn in such a way that the
blocks retain the spatial dependence structure of the original data. Yildirim [25] proposed a
robust estimation method of the log-likelihood with influence function in the spatial error
model. This is achieved iteratively using scoring algorithm to estimate the parameters.
Though they succeeded in obtaining robust estimates, identifying spatial outliers, which
is vital in spatial statistics [26], was not achieved. Popular graphical techniques to detect
spatial outliers are the scatterplot [33], the Moran’s scatterplot [30] and the pockets of
nonstationarity [34]. Besides being prone to the problem of masking and swamping [26],
they focused mainly on spatial outliers in the Y- space only.

Diagnostic works on models that have both spatial autocorrelations in dependent
variable and residual terms are missing in the literature. The problem of masking and
swamping is prevalent in spatial regression model diagnostics, which may be due to the
presence of vertical outliers as well as leverage points, as in the case of linear regression
([27]). This motivates us to represent the spatial Studentized prediction residuals and
spatial leverage values in the general spatial model, and to adapt and extend some robust
diagnostic measures of detection of outliers and IOs in linear regression, such as Hadi’s
potential (poii), Cook’s distance (CDi) [3], the overall potential influence (H2

i ) [10], and
the external (ESRs) and internal (ISRs) Studentized residuals [1,9,10], to spatial regression
models in order to minimize the problem of masking and swamping in spatial models.

In this article, we propose a robust spatial diagnostic plot and adapt some diagnostic
measures in the linear regression model. Representations of the diagnostic measures in
the spatial regression model are obtained, with a special emphasis on the general spatial
regression model (GSM) that performs autoregression on both the dependent variable and
error terms.
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The main objective of this study is to propose a robust spatial diagnostic plot. Other
objectives are: (1) to represent the leverage values of the hat matrix of the linear regression
in the GSM model; (2) to extend the ISR of the linear regression to the GSM model; (3) to
extend the ESR of the linear regression to the GSM model; (4) to extend the Cook’s distance
and the overall potential influence of the linear regression to the GSM model (5) to develop
a method of identification of the influential observations of the GSM model by proposing a
procedure of classification of the observations into regular observations, vertical outliers,
good and bad leverage points, and hence IOs; (6) to evaluate the performances of the
proposed methods by using simulation studies; (7) to apply the proposed methods on
gasoline price data for retail sites in Sheffield, UK, COVID-19 data in Georgia, USA, and
the life expectancy data from USA counties. The significance of this study is that it can
contribute to the development of a method of identification of influential observations in
spatial regression models.

2. Identification of Influential Observations in a Linear Regression Model

Consider a k-variable regression model:

y = Xβ+ ε (1)

where y is an n× 1 vector of observations of dependent variables, X is an n× k matrix of
independent variables, β is a k× 1 vector of unknown regression parameters, ε is an n× 1
vector of random errors with identical normal distributions, that is, ε ∼ NID

(
0,σ2).

The ordinary least squares (OLS) estimates in Equation (1) are given by:

^
β =

(
XTX

)−1
XTy (2)

The vector of predicted values can be written as:

ŷ = X
^
β= X

(
XTX

)−1
XTy= Py,

where P = X
(
XTX

)−1XT is the hat/leverage matrix. The diagonal elements of the leverage
matrix are called the hat values, denoted as pii, and given by:

pii = xT
i

(
XTX

)−1
xi, i = 1, 2, · · · , n.

The hat matrix is often used as diagnostics to identify leverage points. Leverage is the
amount of influence exerted by the observed response yi on the predicted variable ŷi. As a
result, a large leverage value indicates that the observed response has a large effect on the
predicted response.

Hoaglin and Welsh [3] suggested that an observation which exceeds 2k
n , where 2k

n
is the average value of pii, is considered as a leverage point, while Vellman and Welsch
suggested 3k

n as a cut-off point for leverage points. Huber [7] suggested that the ranges
pii ≤ 0.2, 0.2 < pii ≤ 0.5 and pii > 0.5 are safe, risky and to be avoided, respectively, for
leverage values.

Unfortunately, the hat matrix suffers from the masking effect. As a result, pii often
fails to detect high leverage points. Hadi [10] suggested a single-case-deleted measure
called potentials or Hadi’s potentials. The diagonal element of a potential denoted as poii,
is given by:

p0ii = xT
i

(
XT
(i)X(i)

)
xi, i = 1, 2, · · · , n (3)

where X(i) is the matrix X with the ith row deleted. We can rewrite p0ii as a function of
pii as:

p0ii =
pii

1− pii
, i = 1, 2, · · · , n.
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The vector of the residuals, r, can be written as:

r = y− ŷ= (I− P)y= Qy,

The Studentized residuals (internally Studentized residuals) denoted as ISRs and
R-Student residuals (externally Studentized residuals) denoted as ESRs are widely used
measures for the identification of outliers (see [7]). The ISR, denoted as ti, is defined as:

ti =
ri

σ̂
√

1− pii

where σ̂ is the standard deviation of the residuals, ri and pii are the ith residual and
diagonal element of the matrix P, respectively (see [9] for details). Meanwhile, Chatterjee
and Hadi [9] defined ESR denoted as t∗i and given by:

t∗i =
ri

σ̂(i)
√

1− pii

where σ̂(i) is the residuals mean square excluding the ith case. The ESR follows a Student’s
t-distribution with (n− k− 1) degrees of freedom [9].

One of the most employed measures of influence in linear regression is the Cook’s
distance [3]. It measures the influence on the regression coefficient estimate or the predicted
values. The Cook’s distance is given by

ˆCDi

(
XTX, kσ̂2

)
=

(
^
β

(−i)

−
^
β

)T(
XTX

)(^
β

(−i)

−
^
β

)
kσ̂2 , (4)

where β̂ is the vector of estimates of β using the full data, β̂(−i) is the vector of estimates
of β with the ith observation of yi and xi omitted, k is the number of parameters and σ̂2

is the estimate of variance. Any ith observation is declared influential observation (IO)
if ˆCDi > F[0.5; k, (n− k)]. Meloun [12] noted that any observation in which CDi > 1 is
considered as an influential observation. The Cook’s distance can also be written as [8,9]:

ˆCDi

(
XTX, kσ̂2

)
=

(ŷ− ŷi)
T(ŷ− ŷi)

kσ̂2 (5)

Computing the ˆCDi
(
XTX, kσ̂2) does not require fitting a regression equation for each

of the ith observations and the full model; instead, Equation (3) can further be simplified
as ([3,8,9]):

ˆCDi

(
XTX, kσ̂2

)
=

1
k

t2
i

pii
qii

(6)

where ti = ei
σ̂
√

qii
is the ISR and pii

qii
(qii = 1− pii) is referred to as the potential [7–9].

Interestingly, the Cook’s distance is a measure of influence based on the potential ( pii
qii

) and
Studentized residual (ti).

Hadi [10] demonstrated the drawback of methods that are multiplicative of func-
tions, such as the Cook’s distance [3], Andrews–Pregibon statistic [5], Cook and Weisberg
statistic [8], etc. (see [10] for details), and proposed a method that is additive of the func-
tions. Though both the multiplicative and additive methods are functions of residuals and
leverage values, the former diminishes towards zero for smaller value of any of the two
functions or both, while in the latter case, the measure is large if one of the two functions or
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both are large. He proposed a measure of overall potential influence, denoted as H2
i , and

defined as follows:

H2
i =

k
m

eT
I (Im − PI)

−1eI

eTe− eT
I eI

+
1
m

tr
(

PI(Im − PI)
−1
)

, (7)

with k, the number of the parameters in the model, I = {i1, i2, · · · , im} the set of indices of
observations of length m, and PI the leverage indexed by I.

For m = 1 and I = i, Equation (7) simplifies to:

H2
i =

k
(1− pii)

e2
i(

eTe− e2
i
) + pii

1− pii
=

k
(1− pii)

d2
i(

1− d2
i
) + pii

1− pii
, (8)

where ∑ pii = k, ∑ d2
i = 1, d2

i =
e2

i
eTe is the square of the ith normalized residual.

Hadi [10] suggested a cut-off point for Hadi’s potential (poii ) and , H2
i denoted as (l1)

which is given as follows:

l1 = mean(poi) + c
√

Var(poi)

=
k
n
+ c

√
ns− k2

n(n− 1)
,

where c = 2, 3, s = ∑ pii and poi is the vector of Hadi’s potential. Since both the mean
and the standard deviation are easily affected by outliers, he suggested to employ such a
confidence-bound type of cut-off points by replacing the mean and the standard deviation
by robust estimators, namely the median and normalized median absolute deviation,
respectively. The resulting cut-off point is denoted as l2;

l2 = Med(poi) + cMAD(poi),

3. Influential Observations in Spatial Regression Models

The general spatial autoregressive model (GSM) ([21,35,36]) includes the spatial lag
term and spatially correlated error structure. The data generating process (DGP) of the
general spatial model is given by:

y = ρW1y + Xβ+ ξ, ξ = λW2ξ+ ε, ε ∼ N
(

0,σ2In

)
, (9)

where y is an n× 1 vector of dependent variables. X is an n× k matrix of explanatory
variables. W1 and W2 are n× n spatial weight matrices. In is an n× n identity matrix. ξ is
the spatially correlated error term, and ε is the random residual term. The parameter ρ is
the coefficient of the spatially lagged dependent variables W1y, and λ is the coefficient of
the spatially correlated errors.

The general spatial autoregressive model in Equation (9) can be rewritten as:

Ay = Xβ + B−1ε, (10)

where A = In − ρW1, ξ = B−1ε, B = In − λW2, ξ ∼ N
(
0,σ2V

)
, and V =

(
BTB

)−1.
Estimation of the parameters is achieved using the maximum likelihood estimation method.

The log-likelihood function (L) is given by:

L = −n
2

ln
(
σ2
)
+ ln|A|+ ln|B| − 1

2σ2 (Ay−Xβ)TBTB(Ay−Xβ) (11)

Let ρ̂, λ̂, σ̂2,
^
β be the maximum likelihood estimates (MLEs) of ρ, λ,σ2, β, respectively.

The MLEs are obtained iteratively using numerical methods in the maximum likelihood
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estimation. Anselin [35] and LeSage [36] discussed the maximum likelihood estimation
procedure of the parameters.

3.1. Leverage in Spatial Regression Model

Denote the vector of parameters in Equation (11) as βay. The estimate of βay,
^
βay, is

given by:
^
βay =

(
XTV̂−1X

)−1
XTV̂−1Ây.

The model (11) is viewed as fitting a general linear model, Ay on X, that has correlated
residual terms. Set z = Ay, where var(Ay) = σ2V. Therefore,

ẑ = X
^
βay = X

(
XTV̂−1X

)−1
XTV̂−1z = Payz

The hat matrix, in this case, is given by Pay,

Pay = X
(

XTV̂−1X
)−1

XTV̂−1.

Let Qay = In − Pay. Though Pay and Qay have satisfied the idempotence property
and their sum of diagonal elements equals k and n− k, respectively, they are not symmetric.
As a result, they are not positive semi-definite, and as such, the diagonal elements of Pay
will have negative values. The hat matrices Pay and Qay are not symmetric, and their
diagonal values do not lie between 0 and 1 (inclusive).

Martins [15] proposed a measure of leverage that is orthogonal, in the models with
correlated residuals, whose diagonal values lie in the interval [0, 1], which we denote by
P∗ay, such that:

P∗ay = V̂−1Pay = V̂−1X
(

XTV̂−1X
)−1

XTV̂−1

Let Q∗ay = In − P∗ay. P∗ay and Q∗ay are idempotent, symmetric and orthogonal with
respect to V, i.e.,

1. P∗ayV̂P∗ay = P∗ay

2. Q∗ayV̂Q∗ay = Q∗ay

3. P∗ayV̂Q∗ay = 0

Note that the sum of the diagonal elements of P∗ay and Q∗ay, the leverage, does not
sum to k and n− k.

Again, consider a new set of dependent variables obtained by pre-multiplying Equa-
tion (11) by the matrix B (B as defined in Equation (10)) so that z∗ = BAy. Schall
and Dunne [14] defined the matrix V−1 as a singular value decomposition such that
V−1 = B∆BT; where B is of the same order as V−1 and ∆ is a diagonal matrix. The trans-
formation z∗ is the principal component score. Puterman [13] and Haining [19] defined
it as canonical variates such that BX

(
XTV−1X

)
XTBT is positive semi-definite. By setting

z∗ = BAy, Equation (9) is rewritten in a generalized least squares (GLS) form as:

z∗ = X∗βs + ε, ε ∼ N
(

0,σ2In

)
(12)

where X∗ = BX.

The estimate
^
βs of βs is now given by:

^
βs =

(
X∗TX∗

)−1
X∗Tz∗

Thus,

ẑ∗ = X∗
(

X∗TX∗
)−1

X∗Tz∗ (13)
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where, Â = In − ρ̂W1 and B̂ = In − λ̂W2. Note that ŷ is deduced from Equation (13)
as follows:

B̂Âŷ = B̂X
(

XTB̂TB̂X
)−1

XTB̂TB̂Ây

yields→ ŷ = Â−1X
(

XTV̂−1X
)−1

XTV̂−1Ây

Denote the projection matrix in the transformed spatial regression model as Ps, then:

Ps = X∗
(

X∗TX∗
)−1

X∗T

= B̂X
(

XTV̂−1X
)−1

XTB̂T, V̂ =
(

B̂TB̂
)−1

The properties of the leverage in the transformed spatial model in Equation (13) are:
Property I: idempotent and symmetric.
Property Ia: idempotence

P2
s = B̂X

(
XTV̂−1X

)−1
XTB̂TB̂X

(
XTV̂−1X

)−1
XTB̂T

= B̂X
(

XTV̂X
)−1

XTB̂T

= Ps

Hence, Ps is idempotent.
Property Ib: symmetric

PT
s =

(
B̂X
(

XTV̂−1X
)−1

XTB̂T
)T

= B̂X
(

XTV̂−1X
)−1

XTB̂T

= Ps

The matrix Ps is symmetric. Therefore, Ps in the transformation z∗ = B̂Ây is both
idempotent and symmetric.

Property II: the sum of the diagonal terms of the projection matrix is k, the number of
parameters including the constant term.

trace(Ps) = trace
(

B̂X
(

XTV̂−1X
)−1

XTB̂T
)

= trace
(

B̂TB̂X
(

XTV̂−1X
)−1

XT
)
(cyclic permutation o f trace o f matrix)

= trace
(

XTV̂−1X
(

XTV̂−1X
)−1

)
(cyclic permutation o f trace o f matrix)

= trace(Ik)

= k,

where Ik is an k× k identity matrix.

Therefore,
k
∑

i=1
psii = k. psii is the ith diagonal element of the leverage Ps.

Property III: bounds on the spatial leverage.
The bound on the leverage of the classical regression is 0 ≤ pii ≤ 1 due to the fact that

the hat matrix P satisfies all the orthogonal properties, including symmetry. As such, it is
positive semi-definite. However, the spatial leverage Pay is not symmetric because positive
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semi-definite matrix is symmetric [37–39]. The transformation in Equation (11) yields the
projection Ps that satisfies the symmetry condition.

From the idempotent property of Ps,

Ps = P2
s .

Equating diagonal terms of LHS and RHS, we have:

psii = ps2
ii + ∑

j 6=i
psij psji, ∑

j 6=i
psij psji ≥ 0, (14)

where psij are the off-diagonal terms. Equation (14) implies that psii ≥ 0. Therefore,

psii ≥ ps2
ii

yields→ psii ≤ 1.

Note that Ps and Qs are orthogonal:

1. PsPs = Ps
2. QsQs = Qs
3. PsQs = 0

The model in Equation (9) gives rise to different special spatial regressions in accor-
dance with different restrictions. Such special spatial regression models are the spatial
autoregressive-regressive model (SAR) and the spatial error model (SEM). While the former
has spatial autoregression in the response variable, the latter has spatial autoregression in
the model residual; model (9) (GSM) combines both features.

The spatial autoregressive-regressive model is obtained when the coefficient of the
lagged spatial autoregression in the residuals of Equation (9) is zero, i.e., λ = 0. Thus, the
SAR model is given by:

y = ρW1y + Xβ+ ε, ε ∼ N
(

0,σ2In

)
. (15)

The Ps corresponding to the model in Equation (13) reduces to:

Ps = X
(

XTX
)−1

XT,

with the transformation in Equation (11) simplifying to z∗ = Ay, since V =
(
BTB

)−1 and
B = In, when λ = 0. Clearly, the hat matrix in the SAR model preserves the features of the
hat matrix in the classical regression model.

In the spatial error model (SEM), the coefficient of the spatial autoregression on the
lagged dependent variable is zero, i.e., ρ = 0. This yields the model:

y = Xβ+ ξ, ξ = λW2ξ+ ε, ε ∼ N
(

0,σ2In

)
(16)

The transformation in Equation (11) simplifies to z∗ = By, and the projection
matrix remains:

Ps = BX
(

XTV−1X
)−1

XTBT.

It can be observed that the leverage measure in the spatial regression model is domi-
nated by the autocorrelation in the residual term.

Works on spatial regression diagnostics in the literature mainly focus on the autocorre-
lation in the residuals, mostly using a time series analogy [13–15]. Some remarkable works
on the spatial regression model can be found in [18,19,21].



Symmetry 2021, 13, 2030 9 of 20

3.2. Influential Observations in Spatial Regression Model

The leverages Ps and Qs in Equation (11) satisfy all the properties of a projection
matrix, including that the sum of the diagonal terms of Ps and Qs equal k and n − k,
respectively. It also incorporates the autocorrelation in the dependent variables, Wy. Hence,
it can be used as a diagnostic measure of leverage points in a spatial regression model.

By extending the results of linear regression to spatial regression with slight modifica-
tion, the Cook’s distance in the spatial regression of Equation (13), denoted as CDsi, can be
formulated as follows:

ĈDsi =

(
^
βs

(−i) −
^
βs

)T(
X∗TX∗

)(^
βs

(−i) −
^
βs

)
kσ̂2

=

(
^
βs

(−i) −
^
βs

)T(
(BX)T(BX)

)(^
βs

(−i) −
^
βs

)
kσ̂2

=

(
^
βs

(−i) −
^
βs

)T(
XTBTBX

)(^
βs

(−i) −
^
βs

)
kσ̂2

=

(
^
βs

(−i) −
^
βs

)T(
XTV−1X

)(^
βs

(−i) −
^
βs

)
kσ̂2 ,

where:
^
βs

(−i) = X(i)

(
XT
(i)V̂

−1
(i,i)X(i)

)−1
XT
(i)V̂

−1
(i,i)Â(i,i)Y(i).

V̂(i,i) and Â(i,i) denote V̂ and Â with the ith row and the ith column deleted, respectively.
The spatial Cook distance, CDsi, is declared large if CDsi > 0.70 [19]. In its simplified

form, the Cook’s distance in spatial regression is written as

ˆCDsi

(
XTV−1X, kσ̂2

)
=

1
k

t2
si

psi
qsi

, (17)

where tsi is the spatial Studentized prediction residual (also called spatial internally Stu-
dentized residual), psi is the spatial leverage, which is the ith diagonal element of Ps, and
qsi = 1− psi. Let rsi = yi − ŷi, then:

tsi =
bT

i airsi

σ̂
√

qsi
, (18)

where bi and ai are the ith columns of matrices B and A, respectively. The spatial Studen-
tized residual has a cut-off point of 2 to declare a point large [19,40].

Similarly, the spatial externally Studentized residual (ESRs), is defined as:

t∗si =
rsi

σ̂(i)
√

1− psi

= tsi

√
n− k− 1
n− k− t2

si
, σ̂(i) =

^
σ

(
n− k− tsi
n− k− 1

)
.

where σ̂(i) is the residuals mean square excluding the ith case. The ESRs follow a Student’s
t-distribution with (n− k− 1) degrees of freedom. Thus, the spatial Studentized prediction
residuals contain the neighbourhood information of both the dependent variable and the
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residual of each rsi, and the leverage Ps contains the residual autocorrelation effect. The
spatial potential, which is analogous to the potential in [10], is defined in Equation (19) as:

posi =
psi
qsi

(19)

where qsi = 1− psi. Let qosi = 1− posi.
We define the spatial measure of overall potential influence as

H2
si =

k
qosi

d2
i(

1− d2
i
) + posi

qosi
(20)

When measuring the influence of an observation in a linear regression model by
using the Cook’s distance [3], the observation in question is deleted, and the model is then
refitted. In a similar way, usually a group of suspected influential observations is deleted
in the linear regression and admitted into the model if it is proven clean (BACON [41,42],
DGRP [11]). This is because IOs in linear regression are global in nature; however, in
a spatial regression model, IOs are local. Haining [20] noted that spatial outliers are
local in nature; their attribute values are outliers if they are extreme relative to the set
of values in their neighbourhood on the map. IOs in spatiotemporal statistics usually
carry vital information in applications. Kou et al. [26] further pointed out that detecting
spatial outliers can help in locating extreme meteorological events such as tornadoes and
hurricanes, identify aberrant genes or tumour cells, discover highway traffic congestion
points, pinpoint military targets in satellite images, determine possible locations of oil
reservoirs and detect water pollution incidents. Thus, measuring the influence of multiple
spatial locations requires a contiguous set of points to reveal the unusual features related
to that neighbourhood.

Although methods that detect multiple outliers in spatial regression work well
(see [21]), we refer to methods that group observations as clean or suspect, irrespective
of their positions (with reference to spatial data), and admit them into the model as clean
observations according to some conditions.

According to Hadi [10], examining each value of influence measure alone, such as
Psi, ISRs, ESRs, CDsi and H2

si, might not be successful to indicate the IOs or the source of
influence. Imon [43] and Mohammed [44] noted that one should consider both outliers and
leverage points when identifying IOs. The easiest way to capture IOs is by using diagnostic
plots. Following [43,45], we adopt their rules for the classification of observations into
four categories, namely regular observations, vertical outliers, GLPs and BLPs. Once
observations are classified accordingly, those observations that fall in the vertical outliers
and BLPs categories are referred to as IOs. However, due to the local nature of spatial
IOs, we have to make some modifications to the classification scheme. In this paper, a
new diagnostic plot is proposed by plotting the ISRs (or ESRs) on the Y-axis against the
spatial potential, Posi, on the X-axis. We consider the ISRs and ESRs because both measures
contain spatial information. On the other hand, the potentials that are obtained from the
transformed model in Equation (13) are considered in order to reflect spatial dependence.
Hence, the proposed diagnostic plots are denoted as ISRs− Posi and ESRs− Posi plot, and
they are based on the following classification schemes:

(a) ISRs− Posi

i ith observation is declared RO if |ISRs| < 2.0 and posi < l2.
ii ith observation is GLP if |ISRs| < 2.0 and posi > l2.
iii ith observation is BLP if |ISRs| > 2.0 and posi > l2.
iv ith observation is IO if |ISRs| ≥ 2.0 and posi ≤ l2.

Figures 1 and 2 show the classification of the observations as RO, GLP and IOs
according to ISRs− Posi and ESRs− Posi, respectively.
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(b) ESRs− Posi

i ith observation is declared RO if |ESRs| < tn−k−1 and posi < l2.
ii ith observation is GL if |ESRs| < tn−k−1 and posi > l2.
iii ith observation is IO if |ESRs| > tn−k−1 and psi > l2.
iv ith observation is IO if |ESRs| ≥ tn−k−1 and psi ≤ l2.

4. Results and Discussions

In this section, the performance of all the proposed methods, i.e., the Cook’s Distance
( ˆCDsi), H2

si(H2
si1(non-robust) and H2

si2(robust)), ISRs− Posi and ESRs− Posi, is evaluated
using a simulation study, artificial data and real datasets of gasoline price data in the
southwest area of Sheffield, UK, COVID-19 data in the counties of the State of Georgia,
USA and the life expectancy data in counties of the USA.

Simulated Data

We simulated the spatial regression model in Equation (9) for a square spatial grid
with sample size, n = 400, ρ = 0.4, λ = 0.5 and W1 = W2, using row-standardized Queen’s
contiguity spatial weights. x0 = 1, x1 ∼ N(0, 1), β0 = 0, β1 = 1 (bold face 0 and 1 refer to
column vectors of values zeros and ones, respectively). The contamination is taken at two
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percent in each of X and y directions. The contamination in the y direction is taken from
the Cauchy distribution because of its fat tails. Contamination in the X direction is taken
from the following multivariate distribution,

X ∼
([

0
2

]
,
[

1 0
0 1

])
However, it is important to note that during the contamination, some of the contami-

nations may have attributes similar to those in their neighbourhood, as noted by Dowd [46],
and spatial simulation is conditioned to a real dataset.

Figure 3 shows the graph of average attribute values in the neighbourhood of locations
against their attribute values with added contamination. It can be observed that some of
the added contamination, in black dots, are in the middle of clean data points while some
stand out from the bulk of the data (i.e., away from their average neighbourhood values),
which clearly indicates outlyingness.
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Figure 3. Graph of average attribute values in neighbourhood of locations against the attribute values
in the locations with contamination (black points).

Table 1 presents the values of ISRs, ESRs and posi, where values in parentheses are their
corresponding cut-off points. It shows seven locations with large Studentized residuals
according to ISRs and ESRs. There are 54 observations with large potentials (>0.0078).
Two out of the fifty-four potentials correspond to Studentized residuals greater than the
thresholds of ISRs and ESRs (locations 51 and 201).

Table 1. ISRs, ESRs and posi of locations with large Studentized residuals in the simulated GSM
model, with their cut-off points in parentheses.

Location ISRs
(2.00)

ESRs
(1.97)

posi
(0.0078)

1 15.0378 22.8179 0.0008
4 4.5847 4.7046 0.0033
35 −7.1434 −7.6397 0.0026
51 −4.4695 −4.5801 0.0430
91 4.7613 4.8965 0.0068

201 −6.9336 −7.3840 0.0280
265 −2.2644 −2.2762 0.0068
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In order to confirm the outlyingness of the locations classified as spatial IOs, the
threshold of each outlier neighbourhood given by

medi + 3MADi

is computed for the Studentized residuals of the classified location and its immediate
neighbourhood, where medi is the median of the Studentized residuals and MADi is the
median absolute deviation. The absolute value of the Studentized residuals is compared to
the neighbourhood threshold for confirmation as an outlier.

The CDsi detected location 201, which has large ISRs, ESRs and psi. ISRs− Posi and
ESRs− Posi classified locations 1, 4, 35, 51, 91, 201 and 265 as IOs. As noted on Figure 4,
ISRs − Posi and ESRs − Posi classified locations 1, 4, 35, 91 and 265 as outliers in the
y direction, and locations 51 and 201 in both X and y directions. The cut-off limits of
ESRs− Posi are narrower than 2 for the 5% cut-off point of the Student’s t-distribution,
which is around 1.96 for large sample sizes.
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Figure 4. Graph of IO classification according to GLP, BLP and vertical outlier in ISRs – Posi and ESRs – Posi for simulated
data. (a) ISRs – Posi; (b) ESRs – Posi.

H2
si1 classified location 1 only as IO. Location 1 has large ISRs and ESRs with small

posi. It is an outlier in the y direction. H2
si2 identified 60 locations as IOs, including all

the locations classified by the other methods. However, a diagnostic examination of the
53 other locations classified by H2

si2 alone reveals that all locations that have small ISRs and
ESRs with large potential values are classified as IOs. Moreover, the locations with small
Studentized residuals, which show no difference with their neighbourhood, are classified
as IOs. This is a clear case of swamping, perhaps due the local nature of the spatial IOs.

In a 1000-run of the simulation described above at different error variances of 0.01, 0.1,
0.2 and 0.3 as shown in Table 2, the CDsi consistently maintained low classification of influ-
ential observations with consistent swamping rates of 0%. The ISRs− Posi demonstrated a
high detection to the tune of 98% while ESRs− Posi had 100% accurate classification of the
IOs, both with swamping rates of 0%. H2

si1 had less than 40% accurate classification with
zero swamping rate, while the H2

si2 had up to 99% accurate IO classification, but usually
with very high swamping rates.
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Table 2. Influential observations classification rate based on large prediction Studentized residuals
and large potentials.

σ2 Method Accurate Classification (%) Swamping (%)

CDsi 22.25 0.0
ISRs− Posi 98.54 0.0

0.01 ESRs− Posi 100.00 0.0
H2

si1 39.45 0.0
H2

si2 99.71 81.41

CDsi 20.64 0.0
ISRs− Posi 98.36 0.0

0.1 ESRs− Posi 100.00 0.0
H2

si1 38.09 0.0
H2

si2 99.14 76.48

CDsi 17.86 0.00
ISRs− Posi 97.51 0.00

0.2 ESRs− Posi 100.00 0.00
H2

si1 37.23 0.00
H2

si2 97.34 69.25

CDsi 16.36 0.00
ISRs− Posi 96.57 0.00

0.3 ESRs− Posi 100.00 0.00
H2

si1 36.23 0.00
H2

si2 96.00 64.42

5. Illustrative Examples
5.1. Example 1

The gasoline price data for 61 retail sites in the southwest area of Sheffield from [19]
were used in Example 1. The analysis indicated the presence of spatial interaction in the
error term with a Moran’s I of 0.239.

The fitted SEM model is given by Equation (21):

ŷM = 35.78 + 0.71XF + λ̂Wξ (21)

where, yM and XM are the March and February sales from the southwest Sheffield gasoline
sale data, respectively, λ̂ = 0.15 is the estimate of coefficient of correlation in the residuals,
W is the standardized weight matrix and ξ is the vector of correlated residuals.

Table 3 shows the results of the detected IOs in the SEM model for the gasoline data
with all the sites detected by the methods. A “yes” under a method column indicates that
the site has been detected by the method as IO and a “no” means otherwise. The values
in bold in columns ISRs, ESRs and psi indicate large Studentized residuals and potentials
greater than 0.0335, respectively. Figure 5 shows the classification of observations by
ISRs− Posi and ESRs− Posi.
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Table 3. Sites with IOs in the analysis of the southwest Sheffield gasoline data.

S/N Site ISRs
(2.00)

ESRs
(2.00)

posi
0.0335 CDsi

ISRs
− Posi

ESRs
− Posi

H2
si1 H2

si2

1. 3 −1.8879 −1.9301 0.3538 no No No no Yes
2. 9 1.4810 1.4962 0.0223 no No No no Yes
3. 22 1.0127 1.0129 0.0779 no No No no Yes
4. 25 5.4292 7.5481 0.2773 yes Yes Yes yes Yes
5. 26 1.4438 1.4573 0.1352 no No No no Yes
6. 30 2.2054 2.2813 0.2489 no No No no Yes
7. 40 1.5692 1.5890 0.0194 no No No no Yes
8. 41 1.1974 1.2058 0.0218 no No No no Yes
9. 42 −1.9150 −1.9598 0.0378 no No No no Yes

10. 46 0.1003 0.0995 0.1319 no No No no Yes
11. 55 −1.2042 −1.2089 0.0219 no No No no Yes
12. 61 −1.8011 −1.8363 0.0319 no No No no Yes
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Figure 5. Graph of the lagged residuals against the residuals, of the 61 sites of the southwest Sheffield
fitted with SEM, showing the IO points in red dots.

The CDsi, ISRs− Posi, ESRs− Posi, and H2
si1 coincidentally identified site 25 only as

IO. H2
si2 detects 11 more sites as IOs in addition to site 25. Haining [19] has made elaborate

diagnostic analysis of the data where he emphasized the effect of site 25 as IO in the data.
Our methods have classified site 30 in addition to location 25 as IO. Figure 5 shows the
graph of the lagged residuals against the residuals. It is noticeable from the graph that site
30 has also been marked as an IO.

Though the H2
si2 has detected all the suspected IOs, it is prone to swamping. The

remaining high potentials are classified as GLP by ISRs− Posi and ESRs− Posi since their
Studentized values are small.

Figure 6 shows the graph of classification of the ISRs− Posi (a) and ESRs− Posi (b)
indicating the outliers in red dots, where both are classified as outliers in both the X and
y directions.
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5.2. Example 2

The data for example 2 were the COVID-19 data for the 159 counties of the State of
Georgia, USA, as of 30 June 2020 (http://dph.georgia.gov/covid-19-daily-status-report;
accessed on 30 June 2020) and the health ranking (http://www.countyheathrankings.org;
accessed on 30 June 2020). The case-rate per 100,000 of COVID-19 was the dependent
variable. The independent variables were the population of black race in the county (X1),
population of Asians (X2), population of Hispanic (X3), population of people that are
65 years and above (X4), population of female in the county (X5) and life expectancy (X6).

The model was fitted with the SAR model (model with the lowest Akaike information
criteria (AIC) value of 2192). The SAR model is presented in Equation (22):

ŷ = ρ̂Wŷ +
^
β0 +

6

∑
i=1

^
βiXi (22)

where ρ̂ = 0.6967,
^
β0 = 1087.7388,

^
β1 = 9.7831,

^
β2 = −6.2210,

^
β3 = −54.1405,

^
β4 = −28.5874,

^
β5 = 4.8288 and

^
β6 = 40.3323. X1, X3 and ρ̂ are significant at 5%,

while X2 and X5 are significant at 10%. X4 and X6 are not significant.
The Cook’s distance only classified county 50 as an IO. The ISRs− Posi and ESRs− Posi

coincided in detecting counties 3, 26, 49, 50, 70, 120, 135, 141 and 142 as IOs. The H2
si1

(non-robust) detected 26 and 50 as IOs. The H2
si2 (robust) detected 3, 26, 50, 58, 67, 70, 98,

118, 120, 128, 131, 134, 135, 139, 141, 142, 153 and 155 counties. Table 4 shows the detected
locations by the various methods with large ISRs, ESRs and high potentials in bold font.

The IOs identified by ISRs− Posi and ESRs− Posi both have large Studentized resid-
uals and large potentials as can be observed in Table 4. Figure 7 shows the outliers in X,
y and both X and y directions. The CDsi detected the largest Studentized residual with a
high potential as IO. The H2

si1 identified two observations with large Studentized values
and high potential values. The H2

si2 detected all suspected IOs, but with many having both
small values of Studentized residuals and potential values.

http://dph.georgia.gov/covid-19-daily-status-report
http://www.countyheathrankings.org
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Table 4. Detected IOs counties by different methods in the Georgia COVID-19 data.

County ISRs
(2.00)

ESRs
(1.98)

psi
0.0851 CDsi ISRs – Posi ESRs – Posi H2

si1 H2
si2

3 2.2245 2.2539 0.0257 no no no no Yes
26 4.5733 4.9060 0.1956 no yes yes yes Yes
49 2.7685 2.8313 0.0265 no yes Yes no Yes
50 5.7504 6.4737 0.2298 yes yes Yes yes Yes
58 0.7090 0.7079 0.6893 no no No yes Yes
67 0.1018 0.1015 0.3524 no no No no Yes
70 3.1334 3.2285 0.0895 no yes Yes no Yes
98 −1.8549 −1.8699 0.0105 no no No no Yes

118 −1.5657 −1.5731 0.0827 no no No no Yes
120 3.0168 3.1006 0.0544 no yes Yes no Yes
128 −2.0152 −2.0359 0.4557 no yes yes no Yes
131 −1.6718 −1.6862 0.0565 no no No no Yes
134 −1.6168 −1.6253 0.0818 no no No no Yes
135 2.1674 2.1942 0.0338 no yes Yes no Yes
141 2.6726 2.7283 0.0163 no Yes yes no Yes
142 2.1805 2.2079 0.0174 Yes yes no no Yes
153 −1.2693 −1.2718 0.2234 No No no no Yes
155 −1.2334 −1.2359 0.2472 No No no no Yes
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Figure 7. Graph of IO classification according to GLP, BLP and vertical outlier in the State of Georgia, USA COVID-19 data.
(a) ISRs− Posi; (b) ESRs− Posi.

While examining the outlyingness of the classified counties, we find that county 50 is
clearly an IO since it has both large Studentized residual and a large potential value. It is
outside the threshold value of its neighbourhood.

Four of the counties classified by ISRs − Posi and ESRs − Posi (i.e., 26, 50, 70 and
128) are classified as vertical outliers while the counties 3, 49, 120, 135, 141 and 142 have
large potential values and Studentized values greater than their threshold values and are
classified as BLPs and hence IOs.

Besides the counties classified by ISRs− Posi and ESRs− Posi, all the other counties
detected by H2

si2 have their Studentized difference residuals below their neighbourhood
threshold. Though their potential values are mostly large, their prediction Studentized
residuals are small in both ISRs and ESRs.

5.3. Example 3

In example 3, the life expectancy of the counties of the US was measured by population
density (X1), fair/poor health status (X2), obesity (X3), population in rural area (X4),
inactivity rate (X5), population of smokers (X6), population of black people (X7), population
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of Asians (X8) and population of Hawaiians (X9). The data were obtained from the
Kaggle website (https://www.kaggle.com/johnjdavisiv/us-counties-covid19-weather-
sociohealth-data; accessed on 13 December 2020).

The spatial error model (SEM) had the lowest AIC value and was fitted to the data.
The model was significant at the 5% level with a significant Moran’s I of 0.2160. X1 and X4
were not significant at the 5%. All the other estimates were significant at the 5% level.

The fitted model is given by:

ŷ =
^
β0 +

9

∑
i=1

^
βiXi + λ̂Wξ

where λ̂ = 0.4343,
^
β0 = 88.4885,

^
β1 = 0.0000,

^
β2 = −0.0954,

^
β3 = −0.0377,

^
β4 = 0.0040,

^
β5 = −0.0630,

^
β6 = −0.3892,

^
β7 = −0.0113,

^
β8 = 0.1437,

^
β9 = −0.2016. Counties with

fair/poor health facility had a 0.1 lower life expectancy for an increase in the population.
Counties with a larger number of obese people had a decrease in life expectancy of 0.03.
Similarly, those counties with a large number of people with inactivity had a life expectancy
decreased by 0.06, and counties with a larger number of smokers had a life expectancy
decreased by 0.04 per increase in the population. Countries with a higher number of black
people and Hawaiians had a life expectancy decreased by 0.01 and 0.2, respectively, while
those with a higher number of Asians had an increased rate of 0.14 in population.

The ISRs− Posi classified 139 counties as IOs, while ESRs− Posi classified eight more
counties, making a total of 147. H2

si1 and H2
si2 have classified 24 and 324 counties as IOs,

respectively. CDsi classified no county as IO.

6. Conclusions

In this article, we demonstrated the application of influential observations (IOs) detec-
tion techniques from the classical regression to the spatial regression model. Measures that
contained spatial information in the spatial autoregression in the dependent variables and
residuals were obtained. We also evaluated the performance of some methods employed
in classical regression to their spatial counterparts. Though the methods work well in
classical regression models, they are mostly prone to either masking or swamping in spatial
applications. This is attributable to the local nature of spatial outliers. Hence, we proposed
new ISRs− Posi and ESRs− Posi plots to classify observations into four categories: regular
observations, vertical outliers, good leverage points and bad leverage points, whereby
IOs are those observations which fall in the vertical and bad leverage point categories.
Interestingly, the proposed ESRs− Posi diagnostic plot was very successful in classifying
observations into the correct categories followed by the ISRs− Posi, as demonstrated by
the results obtained from a simulation study and real data examples. Thus, the newly
established ESRs − Posi plot can be a suitable alternative to identify IOs in the spatial
regression model.
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