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Abstract: This study proposes a data-driven adaptive filtering method for the fault diagnosis (DDAF-
FD) of discrete-time nonlinear systems and provides a simultaneous online estimation of actuator
and sensor faults. First, dynamic linearization was adopted to transform the nonlinear system
into a quasi-linear model, which facilitated accurate modeling of the nonlinear system. Second, a
data-driven adaptive fault diagnosis method was designed under the framework of data-driven
filtering and the recursive least-squares algorithm using system I/O data only, and accurate real-time
estimation of two fault factors was achieved. In addition, the simulation results demonstrate the
effectiveness of the proposed method. The stability was verified via the Lyapunov method.

Keywords: data-driven filtering; dynamic linearization; fault diagnosis; recursive least-squares

1. Introduction

Continuous industrial development has contributed toa gradual increase in the com-
plexity and cost of systems as well as growing demands in terms of the safety and reliability
of industrial operations. Various potential abnormalities and faults must be discovered and
identified in time to minimize the potential dangers of system performance degradation.
Any fault in industrial systems, such as aerospace systems [1], power electronics [2], or
nuclear power plants [3], can result in catastrophic damage to life and property. Therefore,
fault diagnosis has high research value and is also of practical significance. Model-based
fault diagnosis was proposed by Beard in 1971 [4]. Mehra and Peschon proposed a general
method for fault detection and diagnosis of linear dynamic systems using residuals similar
to the observer structure generated by the Kalman filter [5]. In recent decades, researchers
have devoted considerable effort to fault diagnosis and achieved various results, including
a detailed overview of the development of fault diagnosis and fault-tolerant control in
recent years [6–8].

Faults are usually categorized into actuator faults, sensor faults, and object faults.
Fault diagnosis includes three tasks: fault detection, fault isolation, and fault identification.
Various types of fault diagnosis methods have been proposed, such as model-based meth-
ods [9], signal-based methods [10], and data-driven methods [11]. In one study, researchers
proposed data-driven filtering for discrete linear time-invariant systems [12]; they used
only the measured I/O data and Markov parameters, and employed a low-pass filter to
produce an asymptotically unbiased estimation of the system state for the performance of
fault diagnosis. A novel discrete-time estimator that can realize simultaneous estimations
of the system’s state and actuator/sensor faults for linear systems of vehicle lateral dynam-
ics was proposed in [13]. A fault detection and estimation method for robot actuators and
sensors was proposed in [14]. It comprised a model-based fault detection and isolation
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scheme suitable for robot actuators and sensors; without adding redundant joint sensors,
multiple faults in the robot actuator and sensor were detected, estimated, and isolated.
An adaptive system fault/state estimation algorithm for linear time-varying systems was
proposed in [15] by combining the Kalman filtering algorithm with the recursive least-
squares algorithm. The effects of different forgetting factors on state estimation have been
discussed in previous studies. The aforementioned studies focused on the fault diagnosis
of linear systems with known models.

Model-based fault diagnosis methods require accurate system models. However, the
growing complexity of actual engineering systems, as well as problems such as parame-
ter uncertainties and unknown disturbances, reduce the likelihood of obtaining accurate
mathematical descriptions of actual systems, which adversely affects fault diagnosis. Data-
driven methods do not require accurate models of objects and use only I/O data to detect
system faults. Therefore, data-driven fault diagnosis methods offer unique advantages for
dealing with complex nonlinear systems. Kalman filtering technology has been widely
used in fault diagnosis. Researchers have proposed many algorithms for the fault diag-
nosis of nonlinear systems, such as extend Kalman filtering (EKF) and unscented Kalman
filtering (UKF) [16–19].

In [16], an actuator fault diagnosis method was proposed for nonlinear systems, which
is based on the use of extended Kalman filter (EKF) to update the actuator fault estimation
iteratively. However, this approach is dependent on known nonlinear dynamic models.
A method based on EKF and a multi-model adaptive estimation was proposed in [17] for
continuous nonlinear systems of small UAVs to realize fault detection and diagnosis of the
actuators. Combined EKF with neural fuzzy networks, an adaptive estimation method is
given based on EKF and multiple models [18]. A fault detection and separation method for
a three-phase permanent magnet synchronous motor on the basis of a generalized UKF
was proposed in [19]. This method can manage the non-linear characteristics of the system
effectively, and it also offers good real-time performance, stable operation and high fault
diagnosis accuracy.

The approximation of nonlinearity will inevitably result in information loss. Dy-
namic linearization (DL) [20,21] technology can be used to linearize discrete time nonlinear
systems, and the data model can be established by using only the I/O data through the
pseudo-partial-derivative identification method. In [22], local compact dynamic lineariza-
tion (LOCAL-CFDL) was proposed to transform the original nonlinear non-affine system
into an affine structure composed of unknown residual nonlinear time-varying terms and
affine of linear parameter terms on the control input.

In this paper, a data-driven dynamic linearization (DL) approach is used to achieve
the equivalent linearization of nonlinear systems and effectively retain the dynamic charac-
teristics of the original nonlinear system. To meet the requirements of engineering practice,
this study focuses on the effective use of the I/O data measured by the system to obtain
fault diagnosis in nonlinear systems. Compared with the EKF method in [16], which needs
the model parameters of nonlinear systems and only diagnoses actuator faults, the method
based on DL only uses system I/O data and does not need a system model.

Considering the fault diagnosis problem of discrete nonlinear systems subject to
simultaneous actuator and sensor faults, we propose a data-driven adaptive filtering fault
diagnosis (DDAF-FD) method. By combining data-driven filtering technology with the
recursive least squares algorithm, the joint estimation of states, system parameters, and
fault factors is obtained. The contributions of this paper are summarized as follows:

(1) By using the dynamic linearization (DL) technique, nonlinear systems were con-
verted into equivalent quasi-linear models, and the difficulty of modeling nonlinear sys-
tems was solved. Next, a data-driven system parameter identification method was studied
via the approximation data model by using only the I/O measurement data instead of
including any information on the dynamics or structure of the controlled system.

(2) The DDAF-FD scheme proposed in this paper solves the problem of actuator and
sensor simultaneous fault and achieves the real-time online estimation of actuator and
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sensor fault factors in the system. Within the context of simultaneous faults occurring
in actuators and sensors, the stability and convergence of the estimation error dynam-
ics and the fault factors of the DDAF-FD scheme are presented rigorously through the
Lyapunov method.

The rest of this paper is organized as follows: Section 2 introduces the dynamic
linearization technology based on I/O data and establishes an equivalent linear model for
nonlinear systems. Section 3 presents the data-driven adaptive filtering algorithm, which
achieves the joint estimation of actuator and sensor fault factors. Section 4 discusses the
stability analysis using the Lyapunov method. Section 5 verifies the effectiveness of the
proposed approach via numerical simulation. Section 6 summarizes this paper.

2. Problem Definition
2.1. Dynamic Linearization

A discrete-time single-input single-output (SISO) nonlinear system with measurement
noise can be expressed as follows:

y(k + 1) = f (y(k), · · · , y(k− ny), u(k), · · · , u(k− nu)) + Fw(k) (1)

where k = 1, · · · , N represents each discrete time, u(k) ∈ < and y(k) ∈ < denote the
input and output of the system at time k, respectively, ny, nu ∈ Z+ are two unknown posi-
tive integers, f (·) : <ny+nu+2 7→ < is an unknown nonlinear function, and w(k) ∼ (0, S)
represents white Gaussian noise.

Next, two hypotheses are presented for the system (1).

Assumption 1. The system (1) is taken for a smooth nonlinear function. For all the control inputs
and control outputs, the partial derivatives are continuous, and the control input length L is a
positive constant.

Assumption 2. The system (1) is the Lipchitz system in a broad sense. ∀k1 6= k2, k1, k2 ≥ 0 and
HLy ,Lu(k1) 6= HLy ,Lu(k2),

|y(k1 + 1)− y(k2 + 1)| ≤ κ‖HLy ,Lu(k1)−HLy ,Lu(k2)‖+ |F(w(k1)− w(k2))| (2)

where y(ki + 1) = f (y(ki), · · · y(ki− ny), u(ki), · · · , u(ki− nu)),i = 1, 2, and κ is a positive con-
stant. Further, Ly, Lu are the length constants for controlling the output linearization and input lin-
earization, respectively. HLy ,Lu(k) ∈ <Ly+Lu is defined as HLy ,Lu(k) = [y(k), · · · , y(k− Ly + 1),

u(k), · · · , u(k− Lu + 1)]T , and HLy ,Lu(k) = 0Ly+Lu , k ≤ 0.

Lemma 1. [23] If system (1) satisfies Assumptions 1 and 2, we define ∆HLy ,Lu(k) = HLy ,Lu(k)−
HLy ,Lu(k − 1). When ‖∆HLy ,Lu (k)‖ 6= 0, there must be a time-varying parameter vector
Φ f ,Ly ,Lu (k) ∈ <Ly+Lu that transforms system (1) into the following full-format dynamic lin-
earization model:

∆y(k + 1) = ΦT
f ,Ly ,Lu(k)∆HLy ,Lu(k) + Fw(k) (3)

The nonlinear function relation of input and output is contained in the time-varying parameter vector
ΦT

f ,Ly ,Lu(k). For each moment k, Φ f ,Ly ,Lu(k) = [Φ1(k), · · · , ΦLy(k), ΦLy+1(k), · · · , ΦLy+Lu(k)]
T

has an upper bound c. Further, w(k) = w(k)− w(k− 1) represents white Gaussian noise with
zero mean.
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2.2. Modeling

Lemma 2. [24] The dynamic linearization model provided by (3) can be transformed into a linear
time-varying system of order n + 2:

n+1

∑
i=0

ai(k)y(k− i + 1) =
n+1

∑
j=0

bj(k)u(k− j + 1) + Fw(k) (4)

where

n = max
{

Ly, Lu
}

,

a0(k) = 1
a1(k) = −(1 + Φ1(k))
a2(k) = −(Φ2(k)−Φ1(k))

...
aLy(k) = −(ΦLy

(k)−ΦLy−1(k))
aLy+1(k) = ΦLy

(k)

(5)



b0(k) = 0
b1(k) = ΦLy+1(k)
b2(k) = ΦLy+2(k)−ΦLy+1(k)

...
bLu(k) = ΦLy+Lu(k)−ΦLy+Lu−1(k)
bLu+1(k) = −ΦLy+Lu(k)

(6)

The selection of Ly and Lu is based on the complexity of the system, the values of the two
parameters become larger while more complexity of the system.

Lemma 3. [25] The state vector is selected as follows:

x1(k) = y(k− n)
x2(k) = y(k− n + 1)

...
xn(k) = y(k− 1)
xn+1(k) = y(k)

(7)

that is:
x(k) = [x1(k), x2(k), · · · , xn+1(k)]

T ∈ <n+1

u(k) = [u(k), u(k− 1), · · · , u(k− n)]T ∈ <n+1

w(k) = [0, · · · , 0, w(k)]T ∈ <n+1

Thus, the linear time-varying system provided by system (1) can be transformed into the
following state space expression:{

x(k + 1) = A(k)x(k) + B(k)u(k) + Fw(k)
y(k) = Cx(k)

(8)

where

A(k) =


0
0
...
0

−an+1(k)

1
0
...
0

−an(k)

· · ·
· · ·
. . .
· · ·
· · ·

0
0
...
1

−a1(k)

 (9)
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B(k) =


0
...
0

b1(k)

0
...
0

b2(k)

· · ·
. . .
· · ·
· · ·

0
...

0
bn+1(k)

 (10)

C =
[

0 · · · 0 1
]

(11)

Therefore, a general SISO discrete nonlinear system with measurement noise can be trans-
formed into an equivalent quasi-linear time-varying system (8).

3. Data-Driven Adaptive Filtering
3.1. System Identification

To adaptively identify the system matrix A(k) and input matrix B(k) of the quasi-
linear time-varying system given by system (8), this study introduces the DDF-PI algorithm
for parameter identification.

The following equation can be obtained from Equation (4):

y(k + 1) = ΩT(k)X(k) + Fw(k) (12)

X(k) ∈ <2n+2 represents the unknown parameter vector that satisfies

X(k) = [−a1(k),−a2(k), · · · ,−an+1(k) , b1(k), b2(k), · · · , bn+1(k)] (13)

Ω(k) ∈ <2n+2 represents the known I/O data vector that satisfies

Ω(k) =[y(k), y(k− 1), · · · , y(k− n) , u(k), u(k− 1), · · · , u(k− n)] (14)

For the given unknown time-invariant vector (13) and measurement vector (14), the
following DDF-PI algorithm can be used for parameter identification.

KI(k) = PI(k− 1)Ω(k)(FSFT + ΩT(k)PI(k− 1)Ω(k))
−1

(15)

PI(k) = (I−KI(k)ΩT(k))PI(k− 1) (16)

X̂(k + 1) = X̂(k) + KI(k)(y(k + 1)−ΩT(k)X̂(k)) (17)

Through the DDF-PI algorithm provided by Equations (15)–(17), Â(k) and B̂(k) can
be easily obtained from the unknown parameter estimation vector. Thus, the parameters in
system (8) can be identified using the DDF-PI algorithm.

3.2. State-Parameter Joint Estimation

System (8) can be rewritten as{
x(k + 1) = Â(k)x(k) + B̂(k)u(k) + Φa(k)θ1(k) + Fw(k)
y(k) = Cx(k) + Φb(k)θ2(k) + v(k)

(18)

When simultaneous actuator and sensor faults occur, the system input u(k) deviates
from the expected value, and the measured value y(k) also deviates from the expected
value. Φa(k)θ1(k) represents the actuator fault, and Φb(k)θ2(k) represents the sensor fault,
where 0 ≤ θ1 < 1, 0 ≤ θ2 < 1, θ1 represents the actuator fault factor, and θ2 represents
the sensor fault factor. When the actuator and sensor include faults (such as gain loss),
the fault factors vary from 0 to 1. Here, y(k) is the output value of the system with

measurement noise, where Φa(k) = −B̂(k)u(k), Φb(k) = −Cx(k). Let f(k) =
[

θ1(k)
θ2(k)

]
,

∑1(k) = [Φa(k), 0(n+1)×1], ∑2(k) = [01×1, Φb(k)].
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Equation (18) can be rewritten as{
x(k + 1) = Â(k)x(k) + B̂(k)u(k) + ∑1(k)f(k) + Fw(k)
y(k + 1) = Cx(k + 1) + ∑2(k + 1)f(k) + v(k + 1)

(19)

The proposed DDAF-FD algorithm is divided into three parts according to the recur-
sive sequence stated below:

P−(k + 1) = Â(k)P(k)ÂT
(k) + Q(k) (20)

x̂−(k + 1) = Â(k)x̂(k) + B̂(k)u(k) + ∑1(k)f̂(k) (21)

KE(k + 1) = P−(k + 1)CT(CP−(k + 1)CT + R(k))
−1

(22)

P(k + 1) = (In+1 −KE(k + 1)C)P−(k + 1) (23)

The recursion provided by Equations (20)–(23) is a part of Kalman filtering, which
calculates the covariance matrix P(k + 1) and state estimation gain matrix KE(k + 1), and
prepares for the next part to calculate the auxiliary variables G(k + 1), O(k + 1), H(k + 1),
and S(k + 1) as well as the parameter estimation gain matrix Λ(k + 1).

G(k + 1) = (In+1 −KE(k + 1)C)Â(k)G(k) + (In+1 −KE(k + 1)C)∑1(k)−KE(k + 1)∑2(k + 1) (24)

O(k + 1) = CÂ(k)G(k) + C ∑1(k) + ∑2(k + 1) (25)

H(k + 1) = [λ(CP−(k + 1)CT + R(k)) + O(k + 1)S(k)OT(k + 1)]
−1

(26)

Λ(k + 1) = S(k)OT(k + 1)H(k + 1) (27)

S(k + 1) = λ−1S(k)− λ−1S(k)OT(k + 1)H(k + 1)O(k + 1)S(k) (28)

Inspired by the recursive least-squares estimation with the exponential forgetting
factor, the recursion provided by Equations (24)–(28) calculates the parameter estimation
gain matrix Λ(k+ 1) and auxiliary variables G(k+ 1) to prepare for the next fault parameter
estimation and state estimation, where λ ∈ (0, 1).

ỹ(k + 1) = y(k + 1)− Cx̂−(k + 1)−∑2(k)f̂(k) (29)

f̂(k + 1) = f̂(k) + Λ(k + 1)ỹ(k + 1) (30)

x̂(k + 1) = x̂−(k + 1) + KE(k + 1)ỹ(k + 1) + G(k + 1)[f̂(k + 1)− f̂(k)] (31)

The recursive update given by Equations (29)–(31) is an adaptive Kalman filter, where
x̂(k), f̂(k) are updated at each time k, the residual ỹ(k) is calculated, the fault parameter
estimation is updated according to Equation (30), and the state estimation is updated
according to Equation (31).

4. Stability Analysis

In this section, the Lyapunov method [26] is used to prove the convergence of the
proposed DDAF-FD algorithm, i.e., when k→ ∞ , the estimation error of the state and the
fault factor tend to zero. The following hypotheses are presented:

Assumption 3. For k ≥ 0, the matrices A(k), B(k), C, ∑1(k), ∑2(k), Q(k), R(k) and the input
matrix u(k) have upper bounds, Q(k) is a symmetric positive semi-definite matrix, and R(k) is a
symmetric positive definite matrix with a positive lower bound.

Assumption 4.
[
Â(k), C

]
is completely observable, and

[
Â(k), Q1/2(k)

]
is completely control-

lable. When ζ(k) satisfies
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ζ(k + 1) = [In+1 −KE(k + 1)C]Â(k)ζ(k) (32)

ζ(k) converges exponentially.

Assumption 5. The fault f(k) is a slowly changing fault, i.e., |f(k + 1)− f(k)| → 0 .

Assumption 6. Assuming that under the excitation of ∑1(k), ∑2(k), there are constants β > 0
and α > 0, for k ≥ 0, the matrix O(k) satisfies

β−1

∑
i=0

OT(k + i)∆−1(k + i)O(k + i) ≥ αI (33)

where ∆(k) = CP−(k + 1)CT + R(k).

The above assumptions are a previous study [15]. Assuming that there is a matrix
Λ(k) that satisfies Equations (26)–(28), under the condition of Assumption 6, for the initial
condition S(0) = vI(v > 0) the matrix S(k) is strictly positive definite.

Theorem 1. Based on the above assumptions, for the dynamically linearized system (19), the
adaptive filtering method (20)–(31) can be applied to achieve the effective estimation of state and
fault factors, and the state and fault estimation errors converge to zero.

Proof of Theorem 1. The state and fault parameter estimation errors are defined as

x̃(k) , x(k)− x̂(k) (34)

f̃(k) , f(k)− f̂(k) (35)

The following equation is introduced:

ξ(k) = x̃(k)−G(k)̃f(k) (36)

Equations (19), (34) and (35) are substituted into Equation (29) to obtain the follow-
ing equation:

ỹ(k + 1) = CÂ(k)x̃(k) + C ∑1(k)̃f(k)
+ C(Fw(k)) + ∑2(k + 1)̃f(k) + v(k + 1)

(37)

From Equations (19), (31), (34), (35) and (37), we can obtain

x̃(k + 1) = [In+1 −KE(k + 1)C]Â(k)x̃(k) + [In+1 −KE(k + 1)C]∑1(k)̃f(k)
+ [In+1 −KE(k + 1)C](Fw(k))−KE(k + 1)v(k + 1)−KE(k + 1)∑2(k + 1)̃f(k)
+ G(k + 1)(̃f(k + 1)− f̃(k))

(38)

The following equation is obtained from Equations (30), (35) and (37):

f̃(k + 1) = f̃(k)−Λ(k + 1)C[Â(k)x̃(k) + ∑1(k)̃f(k) + Fw(k)]
−Λ(k + 1)[∑2(k + 1)̃f(k) + v(k + 1)]

(39)

By substituting Equation (38) into Equation (36), we can obtain

ξ(k + 1) = [In+1 −KE(k + 1)C]Â(k)ξ(k) + [In+1 −KE(k + 1)C](Fw(k))−KE(k + 1)v(k + 1)
+
{
[In+1 −KE(k + 1)C]Â(k)G(k) + [In+1 −KE(k + 1)C]∑1(k)

−KE(k + 1)∑2(k + 1)−G(k + 1)}̃f(k)
(40)

In Equation (40), the term {· · · } is zero and Equation (40) can be written as

ξ(k + 1) = [In+1 −KE(k + 1)C]Â(k)ξ(k) + [In+1 −KE(k + 1)C](Fw(k))−KE(k + 1)v(k + 1) (41)
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Since w(k), v(k) are uncorrelated zero-mean white Gaussian noise terms, the mathe-
matical expectation of Equation (41) can be obtained as follows:

E{ξ(k + 1)} = [In+1 −KE(k + 1)C]Â(k)E{ξ(k)} (42)

where E{· · · } is the mathematical expectation.
According to Assumption 4, for any initial value E{ξ(0)}, E{ξ(k)} → 0 .
By substituting Equation (36) into Equation (39), we can obtain

f̃(k + 1) = [In+1 −Λ(k + 1)O(k + 1)]̃f(k)−Λ(k + 1)CÂ(k)ξ(k)
−Λ(k + 1)C(Fw(k))−Λ(k + 1)v(k + 1)

(43)

where

E
{

f̃(k + 1)
}
= [In+1 −Λ(k + 1)O(k + 1)]E

{
f̃(k)

}
(44)

Set M(k) = S(k)−1, it has

M(k + 1) = ΛM(k)[In −Λ(k + 1)O(k + 1)]−1 (45)

The candidate Lyapunov function is expressed as

V(k + 1) , (E
{

f̃(k + 1)
}
)

T
M(k + 1)E

{
f̃(k + 1)

}
(46)

V(k + 1) = (E
{

f̃(k)
}
)

T
[In+1 −Λ(k + 1)O(k + 1)]TλM(k)E

{
f̃(k)

}
= λ(E

{
f̃(k)

}
)

T
M(k)E

{
f̃(k)

}
− λ(E

{
f̃(k)

}
)

T
N(k + 1)E

{
f̃(k)

} (47)

where

N(k + 1) , O(k + 1)TΛ(k + 1)TM(k)
= O(k + 1)TH(k + 1)TO(k + 1)S(k)S(k)−1

=O(k + 1)TH(k + 1)O(k + 1)
(48)

Since H(k), N(k) are both positive definite matrices, the following equation can be obtained:

V(k + 1) = λV(k)− λ(E
{

f̃(k)
}
)

T
N(k + 1)E

{
f̃(k)

}
≤ λV(k)

(49)

It can be seen that V(k) tends to 0 exponentially. As M(k) is strictly positive definite,
E
{

f̃(k)
}

tends to 0 exponentially. From Equation (36), we can obtain

E{x̃(k)} = E{ξ(k)}+ G(k)E
{

f̃(k)
}
= G(k)E

{
f̃(k)

}
(50)

Therefore, it can be proven that E{x̃(k)}, E
{

f̃(k)
}

tend to 0 exponentially, and the
proposed DDAF-FD algorithm is convergent. Thus, the proof is complete. �

5. Numerical Simulations

Consider a discrete nonlinear system in which the state equation of the system contains
the cubic term of the state.

u(k) = 2 ∗ cos(0.2 ∗ (k))
x(k + 1) = −0.06 ∗ x3(k) + 1.2 ∗ x(k) + u(k) + w(k)
y(k) = 2 ∗ x(k) + v(k)

(51)

where w(k) ∼ (0, Π), Π = 0.1; v(k) ∼ (0, R), R = 0.05.
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The simulation setting ranges from k = 0 to k = 100. The actuator fault factor parameter
θ1 changes from 0 to 0.4 at k = 10. The sensor fault factor parameter θ2 changes from 0
to 0.35 at k = 10. For the simulation of this model, second-order dynamic linearization is

selected. Hence, Â(k) =
[

0 1
−â2(k) −â1(k)

]
, B̂(k) =

[
0 0

b̂1(k) b̂2(k)

]
, C =

[
0 1

]
.

Figure 1 reflects the effectiveness of the DDF-PI algorithm. The system identification
output has a very small deviation from the ideal output. Hence, the proposed system
identification algorithm (DDF-PI) is sufficiently accurate.
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Figure 2 shows the process of identifying the parameters of the DDF-PI algorithm. As
can be observed, the four system parameters eventually stabilized.
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Figures 3 and 4 compare the DDAF-FD algorithm with the UKF and EKF algorithms
in terms of the state estimation effects. In order to quantitatively analyze the estimation
effects of the three algorithms, Mean Absolute Error (MAE) was defined as

MAE =
1
T

N

∑
k=1
|x̂(k)− x(k)| (52)

where, x(k) and x̂(k) respectively represent the actual state and estimated state of the
system. The mean absolute error pairs of DDAF-FD, UKF and EKF methods are shown
in Table 1.
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According to the average absolute error in Table 1, the proposed DDAF-FD algorithm
is superior to the UKF and EKF algorithms in terms of state estimation for a system with
faults. The DDAF-FD algorithm can also perform fault estimation.

Figures 5 and 6 show that the parameter estimation performance of the DDAF-FD
algorithm depends on the forgetting factor Λ. The DDAF-FD algorithm can estimate steady
faults, and it can be clearly observed that when the system fails, the proposed DDAF-FD
algorithm can effectively track the fault factor. As the forgetting factor decreases, the
estimated convergence speed increases. Thus, the smaller the forgetting factor, the greater
the sensitivity of the algorithm to system faults.
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A time-varying fault is introduced:

θ1 =
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0, k < 10
0.1 + 0.1 ∗ sin(0.1 ∗ (k− 20)), 10 <= k < 25
0.2, 25 <= k < 40
0.3− 0.001 ∗ (k− 80), 40 <= k < 60
0.3, 60 <= k < 80
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θ2 =



0, k < 10
0.15, 10 <= k < 25
0.3, 25 <= k < 45
0.15 + 0.01 ∗ cos(0.1 ∗ k), 45 <= k < 60
0.25, 60 <= k < 75
0.25 + 0.01 ∗ sin(0.1 ∗ (k− 20)), 75 <= k < 85
0.2, 85 <= k < 100

Figure 7 shows that the DDAF-FD method can estimate time-varying faults. In
addition, it can achieve simultaneous online estimation of actuator and sensor faults.
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tion, it can achieve simultaneous online estimation of actuator and sensor faults. 
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Figure 8 shows that when there are time-varying faults in the system, and when a
fault changes abruptly, the fault estimation value also changes abruptly; however, the fault
estimation error curve rapidly approaches zero, which implies that the DDAF-FD method
can adaptively estimate time-varying faults. This proves the effectiveness of the proposed
DDAF-FD algorithm.
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6. Conclusions

In this paper, a data-driven method was adopted to effectively combine system
parameter identification and state estimation by using only system I/O data without a
system model, and a data-driven adaptive filtering method is proposed for the actuator
and sensor fault diagnosis of a class of SISO nonlinear discrete systems. The simultaneous
online estimation of actuator and sensor fault factors is achieved. Both the theoretical
analysis via Lyapunov theory and the numerical simulation validate the effectiveness and
accuracy of the proposed method. At present, there are few studies on data-driven fault
diagnosis for nonlinear systems, which will be further studied in the future.
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