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Abstract

:

We obtain functional inequalities for functions which are metric-preserving with respect to one of the following intrinsic metrics in a canonical plane domain: hyperbolic metric or some restrictions of the triangular ratio metric, respectively, of a Barrlund metric. The subadditivity turns out to be an essential property, being possessed by every function that is metric-preserving with respect to the hyperbolic metric and also by the composition with some specific function of every function that is metric-preserving with respect to some restriction of the triangular ratio metric or of a Barrlund metric. We partially answer an open question, proving that the hyperbolic arctangent is metric-preserving with respect to the restrictions of the triangular ratio metric on the unit disk to radial segments and to circles centered at origin.
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1. Introduction


Metric-preserving functions have been studied in general topology from a theoretical point of view and have applications in fixed point theory [1,2], as well as in metric geometry to construct new metrics from known metrics, as the metrics   d  1 + d   ,   log  1 + d    and the   α −   snowlake   d α  ,   α ∈  0 , 1    associated to each metric d [3,4,5]. The theory of metric-preserving functions, that can be traced back to Wilson and Blumenthal, has been developed by Borsík, Doboš, Piotrowski, Vallin [6,7,8,9] and others, being recently generalized to semimetric spaces and quasimetric spaces [10] (see also [11,12,13]). As we will show below, there is a strong connection between metric-preserving functions and subadditive functions. The theory of subadditive function is well-developed [14,15], the functional inequality corresponding to subadditivity being viewed as a natural counterpart of Cauchy functional equation [16,17].



Given a function   f :    0 , ∞    →    0 , ∞   , it is said that f is metric-preserving if for every metric space   X , d   the function   f ∘ d   is also a metric on X, i.e., f transfers every metric to a metric The function   f :    0 , ∞    →    0 , ∞    is called amenable if    f  − 1     0   =  0   . If there exists some metric space   X , d   such that the function   f ∘ d   is also a metric on X, then   f :    0 , ∞    →    0 , ∞    is amenable. The symmetry axiom of a metric is obviously satisfied by   f ∘ d   whenever d is a metric. Given f amenable, f is metric-preserving if and only if   f ∘ d   satisfies triangle inequality whenever d is a metric.



Each of the following properties is known to be a sufficient condition for an amenable function to be metric-preserving [10,11]:




	
f is concave;



	
f is nondecreasing and subadditive;



	
f is tightly bounded (that is, there exists   a > 0   such that   f  x  ∈  a , 2 a    for every   x > 0  ).








For instance, every function   f :    0 , ∞    →    0 , ∞    with   f  0  = 0   for which    f ( t )  t   is nonincreasing on   0 , ∞   is subadditive. In particular, if   f :    0 , ∞    →    0 , ∞    with   f  0  = 0   is concave, then f is nondecreasing [18] and Jensen inequality shows that    f ( t )  t   is nonincreasing on   0 , ∞  ; hence f is nondecreasing and subadditive.



One proves that every metric-preserving function   f :  0 , ∞  →  0 , ∞    is subadditive, using a particular choice of the metric d, e. g. the usual metric on  R . However, a subadditive amenable function   f :  0 , ∞  →  0 , ∞    need not be metric-preserving, as in the case of   f  ( t )  =  t  1 +  t 2      [11]. Recall that a function   f :  0 , ∞  →  0 , ∞    which is convex and vanishes at the origin is subadditive if and only if f is linear ([11] Theorem 3.5).



We are interested in the following problem: given a particular metric d on a subset A of the complex plane, find necessary conditions satisfied by amenable functions   f :  0 , ∞  →  0 , ∞    for which   f ∘ d   is a metric. In other terms, we look for solutions of the functional inequality


  f  d ( x , z )  ≤ f  d ( x , y )  + f  d ( y , z )   for  all  x , y , z ∈ A .   











If we can find for every   a , b ∈  0 , ∞    some points   x , y , z ∈ A   such that   d ( x , y ) = a  ,   d ( y , z ) = b   and   d ( x , z ) = a + b  , then f is subadditive on   0 , ∞  . For some metrics d it could be difficult or impossible to find such points.



We will consider the cases where d is a hyperbolic metric, a triangular ratio metric or some other Barrlund metric. Recall that all these metrics belong to the class of intrinsic metrics, which is recurrent in the study of quasiconformal mappings [4].



The hyperbolic metric   ρ D   on the unit disk  D  is given by


  tanh    ρ D   x , y   2  =   x − y   1 −  x ¯  y   ,  








that is,    ρ D   x , y  = 2 arctanh  p D   x , y   , where    p D   x , y  =   x − y   1 −  x ¯  y     is the pseudo-hyperbolic distance and we denoted by  arctanh  the inverse of the hyperbolic tangent tanh [19]. The hyperbolic metric   ρ H   on the upper half plane  H  is given by


  tanh    ρ H   x , y   2  =   x − y   x −  y ¯    .   








For every simply-connected proper subdomain  Ω  of  C  one defines, via Riemann mapping theorem, the hyperbolic metric   ρ Ω   on  Ω . We prove that, given   f :  0 , ∞  →  0 , ∞   , if   f ∘  ρ Ω    is a metric on  Ω , then f is subadditive. In the other direction, if   f :  0 , ∞  →  0 , ∞    is amenable, nondecreasing and subadditive, then   f ∘  ρ Ω    is a metric on  Ω .



The triangular ratio metric   s G   of a given proper subdomain   G ⊂ C   is defined as follows for   x , y ∈ G   [20]


   s G   ( x , y )  =  sup  z ∈ ∂ G     | x − y |   | x − z | + | z − y |    .  



(1)







For the triangular ratio metric   s H   on the half-plane, it is known that    s H   x , y  = tanh    ρ H   x , y   2    for all   x , y ∈ H  . If   F :  0 , 1  →  0 , ∞    and   F ∘  s H    is a metric on the upper half-plane  H , we show that   F ∘ tanh   is subadditive on   0 , ∞  .



The triangular ratio metric    s D   x , y    on the unit disk can be computed analytically as    s D   x , y  =   | x − y |    | x −   z 0   | + |   z 0   − y |     , where    z 0  ∈ ∂ D   is the root of the algebraic equation


    x y  ¯   z 4  −   x ¯  +  y ¯    z 3  +  x + y  z − x y = 0  








for which   | x − z | + | z − y |   has the least value [21]. However, a simple explicit formula for    s D   x , y    is not available in general.



As   arctanh  s H    is a metric on the upper half-plane  H , it is natural to ask if   arctanh  s D    is a metric on the unit disk  D . The answer is unknown, but we prove that some restrictions of   arctanh  s D    are metrics, namely the restriction to each radial segment of the unit disk and the restriction to each circle    z  = ρ < 1  . Given   f :  0 , 1  →  0 , ∞    such that the restriction of   f ∘  s D    to some radial segment of the unit disk  D  is a metric, we prove that   f ∘ tanh   is subadditive on   0 , ∞  . If a continuous amenable function   F :  0 , 1  →  0 , ∞    is metric-preserving with respect to the restriction of the triangular ratio metric   s D   to every circle    z  = r < 1  ,   r ∈  0 , 1   , we prove that for every   a , b ∈  0 , ∞    we have


  F    sinh  a  + sinh  b     1 +   sinh  a  + sinh  b   2      ≤ F  tanh  a   + F  tanh  b   .  











For a proper subdomain   G ⊂   R  n  ,   for a number   p ≥ 1  ,   and for points   x , y ∈ G  ,   let


   b  G , p    ( x , y )  =  sup  z ∈ ∂ G     | x − y |      | x − z |  p  +   | z − y |  p   p    .  



(2)







The above formula defines a metric, as shown by A. Barrlund [22] for   G =   R  n  \  0    and by P. Hästö [5] in the general case. This metric is called a Barrlund metric and is studied in [23]. In addition, the limit case   p = ∞   is considered and it is shown that the formula


   b  G , ∞    ( x , y )  =  sup  z ∈ ∂ G     | x − y |   max  | x − z | , | z − y |    ,  x , y ∈ G   








defines a metric. Note that   b  G , p    is invariant to similarities for every   p ∈  1 , ∞    and that for   p = 1   the Barrlund metric coincides with the triangular ratio metric. We will consider Barrlund metrics with   p = 2   on canonical domains in plane, the upper half plane and the unit disk, that have explicit formulas [23]. For   G ∈  H ,  D   , assuming that   F ∘  b  G , 2     is a metric on some subset   A ⊂ G   which is a ray, a line or a circle, we obtain a functional inequality satisfied by F, under the form of the subadditivity of a composition   F ∘ φ  , where the function  φ  depends only on A.




2. The Case of Hyperbolic Metrics


Let  D  be the unit disk with the hyperbolic metric   ρ D  .



Let   f :  0 , ∞  →  0 , ∞    be amenable. If f is subadditive and nondecreasing, then   f ∘  ρ D    is a metric on the unit disk  D .



Proposition 1.

If   f :  0 , ∞  →  0 , ∞    and   f ∘  ρ D    is a metric on the unit disk  D , then f is subadditive.





Proof. 

Let   f :  0 , ∞  →  0 , ∞    such that   f ∘  ρ D    is a metric on the unit disk  D .



Denote   g  t  = f  2 arctanh  t    ,   t ∈  0 , ∞   . Then   g :  0 , ∞  →  0 , ∞    satisfies


  g   p D   x , y   ≤ g   p D   x , z   + g   p D   z , y    for  all  x , y , z ∈ D .   











Since the pseudo-hyperbolic metric is invariant to the Möbius automomorphisms of the unit disk, it suffices to consider the case   z = 0  . In conclusion,   g ∘  p D    satisfies the triangle inequality if and only if


  g   p D   x , y   ≤ g   p D   x , 0   + g   p D   0 , y    for  all  x , y ∈ D .   



(3)




However,    p D   x , 0  =  x   ,    p D   0 , y  =  y   ; hence,   g   p D   x , 0   + g   p D   0 , y   = g   x   + g   y    .



On the other hand,    p D    x , y  2  =    x − y  2     x − y  2  +  1 −   x  2    1 −   y  2     =     x  2  +   y  2  − 2  x  ·  y  cos α   1 +   x  2  ·   y  2  − 2  x  ·  y  cos α    , where   α : = ∡  x 0 y   .



Let   x , y ∈ D  . Since


   d  d α        x  2  +   y  2  − 2  x  ·  y  cos α   1 +   x  2  ·   y  2  − 2  x  ·  y  cos α    =   2  x   y   1 −   x  2    1 −   y  2      1 +   x  2  ·   y  2  − 2  x  ·  y  cos α  2   sin α ,  








the function   α ↦     x  2  +   y  2  − 2  x  ·  y  cos α   1 +   x  2  ·   y  2  − 2  x  ·  y  cos α     is nonincreasing on   [ − π , 0 ]   and nondecreasing on   [ 0 , π ]  .



Then   α ↦     x  2  +   y  2  − 2  x  ·  y  cos α   1 +   x  2  ·   y  2  − 2  x  ·  y  cos α     attains its maximum if and only if   cos α = − 1  , in which case    p D   x , y  =    x  +  y    1 +  x   y     .



If (3) holds, then


  g    r + s   1 + r s    ≤ g  r  + g  s   for  all  r , s ∈  0 , 1  .  



(4)







Conversely, if (4) holds and g is nondecreasing, then (3) is satisfied.



Let   φ : C \  − 1  → C \  − 1   ,   φ  w  =   1 − w   1 + w    . Then    φ  − 1   = φ   and   φ     z 1  +  z 2    1 +  z 1   z 2     = φ   z 1   φ   z 2     for every    z 1  ,  z 2  ∈ C \  − 1    with    z 1   z 2  ∈ C \  − 1   . Note that   φ   0 , 1   =  ( 0 , 1 ]   .



Denoting   ρ = φ  r    and   σ = φ  s   , (4) is equivalent to


   g ∘ φ   ρ · σ  ≤  g ∘ φ   ρ  +  g ∘ φ   σ   for  all  ρ , σ ∈  ( 0 , 1 ]  .  








Now, denoting   ln ρ = − u   and   ln σ = − v  , we see that the above condition reduces to


   g ∘ φ ∘ exp   − u − v  ≤  g ∘ φ ∘ exp   − u  +  g ∘ φ ∘ exp   − v   for  all  u , v ∈  0 , ∞  .  








Denote   h  t  : =  g ∘ φ ∘ exp   − t   ,   t ∈  0 , ∞   . Condition (4) holds if and only if h is subadditive on   0 , ∞  .



We note that    φ ∘ exp   − t  = tanh  t 2    for   t ∈  0 , ∞   . Then for all   t ∈  0 , ∞    we have   h  t  = g  tanh  t 2   = f  ( t )   .



We proved that f is subadditive. □





Remark 1.

The functional equation associated to the inequality (4)   g    r + s   1 + r s    = g  r  + g  s   ,   r , s ∈  0 , 1    reduces via the substitution   h  t  = g  tanh  t 2    )    to the Cauchy equation   h  u + v  = h  ( u )  + h  ( v )   ,   u , v ∈  0 , ∞   . Extending h to an odd function, we may assume that h is additive on  R . If g is bounded on one side on a set of positive Lebesgue measure, then h is linear [16]; hence, there exists some positive constant c such that   g  t  = c arctanh  t   ,   t ∈  0 , ∞   .





Let  H  be the upper half-plane with the hyperbolic metric   ρ H  . We are interested in the amenable functions   f :  0 , ∞  →  0 , ∞    for which   f ∘  ρ H    is a metric on  H . Consider the Cayley transform   T : H → D  ,   T  z  =   z − i   z + i    , which is a bijective conformal map. Noting that for all   x , y ∈ H   we have    ρ H   x , y  =  ρ D   T  x  , T  y    , it follows that   f ∘  ρ H    is a metric on  H  if and only if   f ∘  ρ D    is a metric on  D . From Proposition 1 we get the following



Corollary 1.

If   f :  0 , ∞  →  0 , ∞    is amenable and   f ∘  ρ H    is a metric on upper half-plane  H , then f is subadditive.





More generally, for every proper simply-connected subdomain  Ω  of  C  there exists, by Riemann mapping theorem, a conformal mapping    T Ω  : Ω → D  . The hyperbolic metric   ρ Ω   on  Ω  is defined by    ρ Ω   x , y  =  ρ D    T Ω   x  ,  T Ω   y    .



Clearly,   f ∘  ρ Ω    is a metric on  Ω  if and only if   f ∘  ρ D    is a metric on  D . Now Proposition 1 leads to following generalization of itself.



Theorem 1.

Let Ω be a proper simply-connected subdomain of  C  and   ρ Ω   be the hyperbolic metric on Ω. If   f :  0 , ∞  →  0 , ∞    and   f ∘  ρ Ω    is a metric on Ω, then f is subadditive.





Corollary 2.

Let Ω be a proper simply-connected subdomain of  C  and   ρ Ω   be the hyperbolic metric on Ω. Let   f :  0 , ∞  →  0 , ∞    amenable and nondecreasing. Then   f ∘  ρ Ω    is a metric on Ω if and only if f is subadditive on   0 , ∞  .






3. The Case of Unbounded Geodesic Metric Spaces


We can give another proof of Theorem 1, based on geometric arguments in geodesic metric spaces. The main idea is that in a geodesic metric space the distance is additive along geodesics.



A topological curve   γ : I → X   in a metric space   X , d  , where   I ⊂ R   is an interval, is called a geodesic if   L    γ    t 1  ,  t 2     = d  γ   t 1   , γ   t 2      for every subinterval     t 1  ,  t 2   ⊂ I  , i.e., the length of every arc of the geodesic is equal to the distance between the endpoints of the arc. A metric space is called a geodesic metric space if every pair of its points can be joined by a geodesic path.



Lemma 1.

In a geodesic metric space   X , d   that is unbounded, for every positive numbers a and b there exists some points   x , y , z ∈ X   such that   d  x , y  = a  ,   d  y , z  = b   and   d  x , z  = a + b  .





Proof. 

Let   a , b   be positive numbers. Fix an arbitrary point   x ∈ X  . As   X , d   is unbounded, there exists a point   w ∈ X   such that   d ( x , w ) > a + b  . As   X , d   is a geodesic metric space, there exists a geodesic path joining x and w in X. We may assume that this path is parameterized by arc-length, let us denote it by   γ :  0 , L  → X  , where   L = L  γ  = d  x , w   . Then the length of the restriction of  γ  to   0 , t   is   L    γ   0 , t    = t  , where   t ∈  0 , L   . Since   L = d  x , w  > a + b  , we may consider   γ  a  = : y   and   γ  a + b  = : z  . By the definition of a geodesic curve,   d  x , y  = L    γ   0 , a    = a  ,   d  x , z  = L    γ   0 , a + b    = a + b   and   d  x , y  = L    γ   a , a + b    = b  . □





Proposition 2.

If the geodesic metric space   X , d   is unbounded, then every function   f :  0 , ∞  →  0 , ∞    which is metric-preserving with respect to d must be subadditive on   0 , ∞  .





Proof. 

Let   X , d   be a geodesic metric space that is unbounded. Assume that   f :  0 , ∞  →  0 , ∞    is metric-preserving with respect to d.



We have to prove that   f  a + b  −  f  a  + f  ( b )   ≤ 0   for all nonnegative numbers a and b. If   a = 0   and   b = 0   this inequality is obvious. Let a and b be positive numbers. By Lemma 1, there exists some points   x , y , z ∈ X   such that   d  x , y  = a  ,   d  y , z  = b   and   d  x , z  = a + b  . Then   f  a + b  −  f  a  + f  ( b )   =  f ∘ d   ( x , z )  −   f ∘ d   ( x , y )  +  f ∘ d   ( y , z )      ≤ 0  , since   f ∘ d   satisfies triangle inequality. □





Remark 2.

The metric space   Ω ,  ρ Ω   , where Ω is a proper simply-connected subdomain of  C  and   ρ Ω   is the hyperbolic metric on Ω, is a geodesic metric space and is unbounded. By Proposition 2 we get another proof for Theorem 1. Note that the pseudo-hyperbolic distance on Ω is not additive along geodesics of   Ω ,  ρ Ω    [19].






4. The Case of Triangular Ratio Metric on a Canonical Plane Domain


The triangular ratio metric   s G   of a given proper subdomain   G ⊂   R  n    is defined as follows for    z 1  ,  z 2  ∈ G   [20]


   s G   (  z 1  ,  z 2  )  =  sup  z ∈ ∂ G      |   z 1  −  z 2   |     |   z 1   − z | + | z −   z 2   |    .  



(5)







Note that    s G   (  z 1  ,  z 2  )  ≤ 1   for all    z 1  ,  z 2  ∈ G  . If no segment joining two points in G intersects the boundary   ∂ G  , as it is the case if G is convex, then    s G   (  z 1  ,  z 2  )  < 1   for all    z 1  ,  z 2  ∈ G  .



We have    s G   (  z 1  ,  z 2  )  =    |   z 1  −  z 2   |     inf  z ∈ ∂ G     |   z 1   − z | + | z −   z 2   |       and the infimum    inf  z ∈ ∂ G     |   z 1   − z | + | z −   z 2   |     is always attained. A point   u ∈ ∂ G   is called a Ptolemy–Alhazen point for    z 1  ,  z 2  ∈ G   if a light ray from   z 1   is reflected at u on the circle, such that the reflected ray goes through the point   z 2  . Every point at which    inf  z ∈ ∂ G     |   z 1   − z | + | z −   z 2   |     is attained is a Ptolemy–Alhazen point for    z 1  ,  z 2  ∈ G  .



For a subset A of a convex domain G we may study the functional inequality


  F   s G   x , y   ≤ F   s G   x , z   + F   s   G    z , y    for  all  x , y , z ∈ A ,   



(6)




where   F :  0 , 1  →  0 , ∞   .



4.1. The Triangular Ratio Metric on the Upper Half-Plane


Recall that    s H   x , y  = tanh    ρ H   x , y   2  =   x − y   1 −  x ¯  y     for all   x , y ∈ H  , that is   s H   coincides with the pseudo-hyperbolic distance   p H  .



Using the subadditivity of functions preserving the hyperbolic metric of the upper half-plane, we get the following



Proposition 3.

If   F :  0 , 1  →  0 , ∞    and F is metric-preserving with respect to   s H   on the upper half-plane  H , then   F ∘ tanh   is subadditive on   0 , ∞  .





Proof. 

  F   s H   x , y   = F  tanh    ρ H   x , y   2   = G   ρ H   x , y     for all   x , y ∈ H  , where we denoted   G  t  : = F  tanh  t 2    ,   t ∈  0 , ∞   .



Note that   F ∘  s H    is a metric on  H  if and only if   G ∘  ρ H    is a metric on  H .



If   F ∘  s H    is a metric on  H , by Corollary 1, it follows that G is subadditive on   0 , ∞  . Then   H = F ∘ tanh   is also subadditive on   0 , ∞  , as   H  t  = G  2 t    for all   t ∈  0 , ∞   . □





Remark 3.

Note that tanh maps   0 , ∞   onto   0 , 1   and is subadditive on   0 , ∞  . If   F :  0 , 1  →  0 , ∞    is subadditive on   0 , 1  , then   F ∘ tanh   is subadditive on   0 , ∞  . The converse is not true, as it is shown in the case   F  ( t )  = arctanh  t   ,   t ∈  0 , 1   . Note that


   arctanh  a  + arctanh  b  = arctanh    a + b   1 + a b    ≤ arctanh  a + b   for  all  a , b ∈  0 , 1  .    














4.2. The Triangular Ratio Metric on the Unit Disk


There is an open conjecture stating that   arctanh  s D    is a metric on the unit disk [23]. Note that   arctanh  s D    is a metric on   A ⊂ D   if and only if


   s D   x , z  ≤    s D   x , y  +  s D   y , z    1 +  s D   x , y   s D   y , z     for  all  x , y , z ∈ A .  



(7)







We will prove that  arctanh  is metric-preserving with respect to the restrictions of the triangular ratio metric on the unit disk to radial segments, respectively, to circles centered at the origin.



Lemma 2

([23] Theorem 2.2). For   x , y ∈ D  ,    s D   x , y  ≤   x − y   2 −  x + y     . Equality holds if and only if   0 , x   and y are collinear.





Lemma 3.

The following addition formula holds: if   − 1 < r ≤ s ≤ t < 1  , then


   arctanh  s D   r , t  = arctanh  s D   r , s  + arctanh  s D   s , t  .   








The restriction of   arctanh  s D    to each diameter of the unit disk is a metric.





Proof. 

Recall that   arctanh  u  =  1 2  log   1 + u   1 − u     for all   u ∈  − 1 , 1   . In particular, if   − 1 < u ≤ v < 1  , then


  arctanh  s D   u , v  =  1 2  log   1 +   ( v − u )   2 −  v + u      1 −   ( v − u )   2 −  v + u      =  1 2  log   1 − u   1 − v    











Let   − 1 < r ≤ s ≤ t < 1  . Then


     arctanh  s D   r , s  + arctanh  s D   s , t     =     1 2  log   1 − r   1 − s   +  1 2  log   1 − s   1 − t         =     1 2  log   1 − r   1 − t   = arctanh  s D   r , t  .     











Since   s D   is invariant to rotations around the origin (more generally,   s D   is invariant to similarities), it suffices to prove that the restriction of   arctanh  s D    to the intersection of the unit disk with the real axis is a metric. This follows from the above addition formula, observing that   0 ≤ max  arctanh  s D   r , s  , arctanh  s D   s , t   ≤ arctanh  s D   r , t  .   □





We prove that the restriction of the triangular ratio metric of the unit disk   s D   to each radial segment of the unit disk takes all values between 0 and 1.



Lemma 4.

For every   λ ∈  0 , 1    and   r ∈  0 ,  1 2    , there exists   s ∈  r ,  1 2     such that    s D   r , s  = λ  .





Proof. 

Let   λ ∈  0 , 1    and   r ∈  0 ,  1 2    .



Assume that   s ∈  r , 1   . Then    s D   r , s  = λ   if and only if     s − r   1 −  s + r    = λ  , i.e.,   s =    1 − λ  r + λ   1 + λ    .



Note that   s =    1 − λ  r + λ   1 + λ     implies   s − r =   λ  1 − 2 r    1 + λ   > 0   and   s −  1 2  =    ( 1 − λ )   2 r − 1    2  1 + λ    < 0  . □





Proposition 4.

Let   f :  0 , 1  →  0 , ∞   .



(1) If the restriction of   f ∘  s D    to some radial segment of the unit disk  D  is a metric, then   f ∘ tanh   is subadditive on   0 , ∞  .



(2) If f is amenable and   f ∘ tanh   is subadditive and nondecreasing on   0 , ∞  , then the restriction of   f ∘  s D    to every diameter of the unit disk  D  is a metric.





Proof. 

(1) Let   F : = f ∘ tanh :  0 , ∞  →  0 , ∞   .



As   s D   is invariant to rotations around the origin, we may assume that the restriction of   f ∘  s D  = F ∘ arctanh  s D    to   x + i y : x ∈  0 , 1  ,  y = 0   is a metric.



Since   F  0  = 0  , it suffices to prove that F is subadditive on   0 , ∞  .



Let   a , b ∈  0 , ∞   . We prove that   F  a + b  ≤ F  ( a )  + F  ( b )   .



Denote   tanh a = λ   and   tanh b = μ  .



Fix   r ∈  0 ,  1 2    . By Lemma 4, there exists   s ∈  r ,  1 2    such that   s D   r , s  = λ .   Applying again Lemma 4, we get   t ∈  s ,  1 2    such that   s D   s , t  = μ  .



The addition formula   arctanh  s D   r , t  = arctanh  s D   r , s  + arctanh  s D   s , t    shows that   arctanh  s D   r , t  = a + b  .



Since the restriction of   F ∘ arctanh  s D    to   x + i y : x ∈  0 , 1  ,  y = 0   is a metric,


  F  arctanh  s D   r , t   ≤ F  arctanh  s D   r , s   + F  arctanh  s D   s , t   ,  








i.e.,   F  a + b  ≤ F  ( a )  + F  ( b )   , q.e.d.



(2) The function   F : = f ∘ tanh :  0 , ∞  →  0 , ∞    is amenable, subadditive and nondecreasing self-mapping of   0 , ∞  ; therefore, F is metric-preserving. By Lemma 3, the restriction of   arctanh  s D    to every diameter of the unit disk  D  is a metric. Then the restriction of   f ∘  s D  = F ∘ arctanh  s D    to every diameter of the unit disk  D  is a metric. □





Remark 4.

Let   f :  0 , 1  →  0 , ∞   . If f is amenable, subadditive and nondecreasing on   0 , 1  , then   f ∘  s D    is a metric on the entire unit disk  D  and obviously   f ∘ tanh   is amenable, subadditive and nondecreasing on   0 , ∞  .





We prove that each restriction of   arctanh  s D    to a circle centered at origin and contained in the unit disk is a metric.



If   x , y ∈ D   with    x  =  y  = ρ < 1   it is known from ([24] Remark 3.14) that, denoting    ω 0  : = 2 arccos ρ   and   2 α : = ∡ ( x , 0 , y )  , we have


   s D   ( x , y )  =      ρ ,  if  2 α >  ω 0          ρ sin α    1 +  ρ 2  − 2 ρ cos α    ,  if  2 α ≤  ω 0       .  



(8)







If   2 α =  ω 0   , then     ρ sin α    1 +  ρ 2  − 2 ρ cos α    =   ρ   1 −  ρ 2       1 +  ρ 2  − 2  ρ 2     = ρ  .



We will see that the restriction of the triangular ratio metric of the unit disk   s D   to any circle    z  = ρ < 1   takes all values from 0 and  ρ .



Lemma 5.

Let   ρ ∈  0 , 1   . Denote    ω 0  : = 2 arccos ρ   and let   f :  0 ,   ω 0  2   → R   be defined by   f  θ  =   ρ sin θ    1 +  ρ 2  − 2 ρ cos θ     . Then:



(1) f is increasing on   0 ,   ω 0  2    and    f  ′ ′    θ  < 0   for all   θ ∈  0 ,   ω 0  2    . In particular,



  f  θ  ≤ f    ω 0  2   = ρ   for all   θ ∈  0 ,   ω 0  2     and for every   λ ∈  0 , ρ    there exists an unique   θ ∈  0 ,   ω 0  2     such that   f  θ  = λ  .



(2) The function   h :  0 ,   ω 0  2   → R   defined by   h  θ  : =    f ′   ( θ )    1 −  f 2   θ      is decreasing on   0 ,   ω 0  2   .



(3) For every   k ∈  0 ,  ω 0     the function    R k   θ  : =   f  θ  + f  k − θ    1 + f  θ  f  k − θ     , with



  max  0 , k −   ω 0  2   ≤ θ ≤ min  k ,   ω 0  2    , is increasing on   max  0 , k −   ω 0  2   ,  k 2    and decreasing on     k 2  , min  k ,   ω 0  2    .  





Proof. 

(1) We have


   f ′   ( θ )  =   ρ  cos θ − ρ   1 − ρ cos θ     1 +  ρ 2  − 2 ρ cos θ   3 2    ,  θ ∈  0 ,   ω 0  2   .  











We note that   θ ∈  0 ,   ω 0  2     implies   cos θ − ρ ≥ 0  ; hence,    f ′   ( θ )  ≥ 0  , with equality if and only if   θ =   ω 0  2   . Then f is increasing on   0 ,   ω 0  2   ; therefore,   f  θ  ≤ f    ω 0  2     for all   θ ∈  0 ,   ω 0  2    . Note that   f    ω 0  2   = ρ  .



By the intermediate value property and the monotonicity of f, for every   λ ∈  0 , ρ  =  f  ( 0 )  , f    ω 0  2      there exists an unique   θ ∈  0 ,   ω 0  2     such that   f  θ  = λ  . Moreover, in this case   cos θ = t ∈  ρ , 1    is the unique root from   ρ , 1   of the quadratic function   Q  ( t )  =  ρ 2   t 2  − 2  λ 2  ρ t +  λ 2  −  ρ 2  +  λ 2   ρ 2   .



Furthermore,


   f  ′ ′    θ  =   − ρ sin θ     ρ 2  − 2  cos θ  ρ + 1   5 2      ρ 2    ρ − cos θ  2  +  1 −  ρ 2    1 − ρ cos θ   ≤ 0  








for all   θ ∈  0 ,   ω 0  2    , with equality if and only if   θ = 0 .  



(2) By computation we get


  h  θ  =   ρ  cos θ − ρ     1 − ρ cos θ    1 +  ρ 2  − 2 ρ cos θ     ≥ 0 ,  








for all   θ ∈  0 ,   ω 0  2    . Then    ρ  − 2     h  θ   2  = H  cos θ   , where


  H  t  =    t − ρ  2     1 − ρ t  2   1 +  ρ 2  − 2 ρ t    ,  t ∈  [ ρ , 1 ]  .  











We have


   H ′   t  =   2  t − ρ      1 − ρ t  3    1 +  ρ 2  − 2 ρ t  2      1 −  ρ 2    1 +  ρ 2  − 2 ρ t  + ρ  ρ − t   ρ t − 1   .  











Then,    H ′   t  ≥ 0   for all   t ∈ [ ρ , 1 )  , with    H ′   t  = 0   only for   t = ρ  , therefore, H is increasing on   [ ρ , 1 ]  . This shows that h is decreasing on   0 ,   ω 0  2   .



(3) Let   k ∈  0 ,  ω 0    . Denote   a = max  0 , k −   ω 0  2     and   b = min  k ,   ω 0  2    . Note that   a < b   and    R k   θ    is well-defined on   a , b  . Moreover,    k 2  ∈  a , b   . If   k ∈  0 ,   ω 0  2    , then   a = 0   and   b = k  . If   k ∈    ω 0  2  ,  ω 0    , then   a = k −   ω 0  2    and   b =   ω 0  2   .



The derivative


      R  k  ′   θ     =       1 −   f  θ   2    1 −   f  k − θ   2      1 + f  θ  f  k − θ   2       f ′   ( θ )    1 −   f  θ   2    −    f ′   ( k − θ )    1 −   f  k − θ   2           =       1 −   f  θ   2    1 −   f  k − θ   2      1 + f  θ  f  k − θ   2    h ( θ ) − h ( k − θ )      








vanishes if and only if   θ = k − θ  , i.e.,   θ =  k 2   . Since h is decreasing on    0 ,   ω 0  2   ⊃  a , b   , we have    R  k  ′   θ  > 0   for   θ ∈  a ,  k 2     and    R  k  ′   θ  < 0   for   θ ∈   k 2  , b   ; hence,   R k   is increasing on   a ,  k 2    and decreasing on    k 2  , b  . □





Remark 5.

The maximum of   R k   on   a , b   is    2 f   k 2     1 +  f 2    k 2     . The minimum of   R k   on   a , b   is


   min   R k   a  ,  R k   b   =      f  ( k )  ,  if  k ∈  0 ,   ω 0  2           f    ω 0  2   + f  k −   ω 0  2     1 + f    ω 0  2   f  k −   ω 0  2     ,  if  k ∈    ω 0  2  ,  ω 0        .   













Theorem 2.

The restriction of   arctanh  s D    to each circle    z  = ρ < 1   is a metric.





Proof. 

Let   x , y , z ∈ D   with    x  =  y  =  z  = ρ < 1  .



Denote   2 α : = ∡ ( x , 0 , y )  ,   2 β : = ∡ ( y , 0 , z )   and   2 γ : = ∡ ( z , 0 , x )  , where



  α , β , γ ∈ ( 0 , π / 2 ]  . Set     ρ ˜  α  : =  s D   ( x , y )   ,     ρ ˜  β  : =  s D   ( y , z )    and     ρ ˜  γ  : =  s D   ( z , x )   . Without loss of generality, we may assume that the triangle   Δ x y z   is positively oriented.



Note that   max    ρ ˜  α  ,   ρ ˜  β  ,   ρ ˜  γ   ≤ ρ < 1  .



The expression


      arctanh  s D   ( x , y )  + arctanh  s D   ( y , z )  − arctanh  s D   ( x , z )  =         1 2   ln  1 +    2  1 +   ρ ˜  α    ρ ˜  β      1 −   ρ ˜  α    1 −   ρ ˜  β    1 +   ρ ˜  γ            ρ ˜  α  +   ρ ˜  β    1 +   ρ ˜  α    ρ ˜  β     −   ρ ˜  γ         








has the same sign as   E  α , β , γ  : =   ρ ˜  α  +   ρ ˜  β  −   ρ ˜  γ  −   ρ ˜  α    ρ ˜  β    ρ ˜  γ   .



By symmetry,   E  α , β , γ  = E  β , α , γ   ,   E  α , γ , β  = E  γ , α , β    and   E  β , γ , α  = E  γ , β , α   .



We have to prove that   E  α , β , γ   ,   E  β , γ , α    and   E  α , γ , β    are always nonnegative.



We will consider   f :  0 ,   ω 0  2   → R   be defined by   f  θ  =   ρ sin θ    1 +  ρ 2  − 2 ρ cos θ      as in the previous lemma.



Case 1. Assume that   2  α + β  ≤  ω 0   .



Obviously,   2 α ≤  ω 0   ,   2 β ≤  ω 0    and   2 γ = 2  α + β  ≤  ω 0   ; hence,     ρ ˜  φ  = f  φ    for   φ ∈  α , β , γ   .



We have   0 < α < γ ≤   ω 0  2    and   0 < β < γ ≤   ω 0  2   ; therefore,     ρ ˜  α  <   ρ ˜  γ    and     ρ ˜  β  <   ρ ˜  γ   , since f is increasing on   0 ,   ω 0  2   .



Then   E  α , γ , β  =   ρ ˜  α   1 −   ρ ˜  β    ρ ˜  γ   +   ρ ˜  γ  −   ρ ˜  β  > 0   and   E  β , γ , α  =   ρ ˜  β   1 −   ρ ˜  α    ρ ˜  γ   +   ρ ˜  γ  −   ρ ˜  α  > 0 .  



We may write


  E  α , β , γ  =  1 + f  α  f  γ − α      f  α  + f  γ − α    1 + f  α  f  γ − α    − f  γ   ,  








where   0 < α < γ  .



Fix   γ ∈  0 ,   ω 0  2    . With the notation from Lemma 5 (3), we have


  E  α , β , γ  =  1 + f  α  f  γ − α     R γ   α  − f  γ   .  








Since   R γ   is increasing on   0 ,  γ 2    and decreasing on    γ 2  , γ  , we have    R γ   θ  >  R k   0  =  R k   γ  = f  γ    for all   θ ∈  0 , γ   .



Then   E  α , β , γ  > 0  .



Case 2. Assume that   2 α ≤  ω 0    and   2 β ≤  ω 0    and   2  α + β  >  ω 0   .



Subcase 2.1. Assume that   2  α + β  ≤ π  .



Then   2 γ = 2  α + β  >  ω 0   ; hence,     ρ ˜  γ  = ρ ≥ max    ρ ˜  α  ,    ρ ˜  β    .



We see that   E  α , γ , β  =   ρ ˜  α   1 −   ρ ˜  β    ρ ˜  γ   +   ρ ˜  γ  −   ρ ˜  β  > 0   and



  E  β , γ , α  =   ρ ˜  β   1 −   ρ ˜  α    ρ ˜  γ   +   ρ ˜  γ  −   ρ ˜  α  > 0  .   Now


     E  α , β , γ     =    E  α , β ,   ω 0  2   = f  α  + f  β  − ρ − ρ f  α  f  β        =    f  β   1 − ρ f  α   + f  α  − ρ .     








Since f is increasing on   0 ,   ω 0  2    and     ω 0  2  − α < β ≤   ω 0  2   , we have   E  α , β ,   ω 0  2      > E  α ,   ω 0  2  − α ,   ω 0  2   .  



Let    α ′  = α  ,    β ′  =   ω 0  2  − α   and    γ ′  =   ω 0  2   . As   2   α ′  +  β ′   =  ω 0   , according to Case 1 we have   E   α ′  ,  β ′  ,  γ ′   > 0  , i.e.,   E  α ,   ω 0  2  − α ,   ω 0  2   > 0 .  



The latter two inequalities show that   E  α , β , γ  > 0  .



Subcase 2.2. Assume that   2  α + β  > π  .



Then   2 γ = 2 π − 2  α + β   . We compare   2 γ   to   ω 0  .



Subcase 2.2.1. Assume that   2 γ ≤  ω 0   .



Note that    ω 0  ≥   2 π  3   , that is   0 < ρ ≤  1 2   .



For each   φ ∈  α , β , γ    we have   2 φ ≤  ω 0   ; hence,     ρ ˜  φ  = f  φ   .



Since   β = π − γ − α  , we have   E  α , β , γ  =  1 + f  α  f  π − γ − α     R  π − γ    α  − f  γ    , where   0 < π − γ −   ω 0  2  ≤ α ≤   ω 0  2  ≤ π − γ  . We have     π − γ  2  =   α + β  2  ≤   ω 0  2    with equality only if   2 α = 2 β =  ω 0   . In addition,     π − γ  2  ≥ π − γ −   ω 0  2   , with equality only if   2 α = 2 β =  ω 0   .



If   2 α = 2 β =  ω 0   , then     ρ ˜  α  =   ρ ˜  β  = ρ  ; hence,   E  α , β , γ  = 2 ρ −   ρ ˜  γ  −  ρ 2    ρ ˜  γ  = ρ  1 − ρ   ρ ˜  γ   + ρ −   ρ ˜  γ  > 0  



and   E  α , γ , β  = E  β , γ , α  = ρ +   ρ ˜  γ  − ρ −  ρ 2    ρ ˜  γ  =   ρ ˜  γ   1 −  ρ 2   > 0 .  



Letting aside the case   2 α = 2 β =  ω 0   , we get


  0 < π − γ −   ω 0  2  <   π − γ  2  <   ω 0  2  .   








Fix   γ ∈  0 ,   ω 0  2    . From Lemma 5 (3),   R  π − γ    is increasing on   π − γ −   ω 0  2  ,   π − γ  2    and decreasing on     π − γ  2  ,   ω 0  2   .



The minimum of   R  π − γ    on   π − γ −   ω 0  2  ,   ω 0  2    is    f    ω 0  2   + f  π − γ −   ω 0  2     1 + f    ω 0  2   f  π − γ −   ω 0  2     , attained at both endpoints of the interval.



It follows that    R  π − γ    θ  − f  γ  ≥   f    ω 0  2   + f  π − γ −   ω 0  2     1 + f    ω 0  2   f  π − γ −   ω 0  2     − f  γ  > f    ω 0  2   − f  γ  > 0  



for every   θ ∈  π − γ −   ω 0  2  ,   ω 0  2    ; hence,   E  α , β , γ  > 0  .



Due to the symmetry of the assumptions   2 φ ≤  ω 0    for   φ ∈  α , β , γ    and   α + β + γ = π  , it follows similarly that   E  α , γ , β  > 0   and   E  β , γ , α  > 0  .



Subcase 2.2.2. Assume that   2 γ >  ω 0   . Then     ρ ˜  γ  = ρ  .



We have   E  α , γ , β  =   ρ ˜  α  +   ρ ˜  γ  −   ρ ˜  β  −   ρ ˜  α    ρ ˜  β    ρ ˜  γ  =   ρ ˜  α   1 − ρ   ρ ˜  β   + ρ −   ρ ˜  β  > 0   and   E  β , γ , α  =   ρ ˜  β   1 − ρ   ρ ˜  α   + ρ −   ρ ˜  α  > 0  .



Note that   2 α ≤  ω 0   ,   2 β ≤  ω 0    and   2  α + β  > π   imply    ω 0  >  π 2   .



We have   2 α ≤  ω 0   ,   2 β ≤  ω 0    and    π 2  < α + β = π − γ ≤ min   ω 0  , π −   ω 0  2    . Here   min   ω 0  , π −   ω 0  2   =  ω 0    if    π 2  <  ω 0  ≤   2 π  3    and   min   ω 0  , π −   ω 0  2   = π −   ω 0  2    if     2 π  3  ≤  ω 0  < π  .



We write


  E  α , β , γ  =  1 + f  α  f  π − γ − α     R  π − γ    α  − ρ  ,  








where   π − γ −   ω 0  2  ≤ α ≤   ω 0  2  < π − γ  . In addition,   π − γ −   ω 0  2  ≤   π − γ  2  ≤   ω 0  2   .



Note that   π − γ −   ω 0  2  =   π − γ  2    if and only if   2 α = 2 β =  ω 0   , in which case     ρ ˜  α  =   ρ ˜  β  = ρ  ; hence,


  E  α , β , γ  = 2 ρ − ρ −  ρ 3  = ρ  1 −  ρ 2   > 0 .  











Similarly,     π − γ  2  =   ω 0  2    if and only if   2 α = 2 β =  ω 0   .



We may assume that   π − γ −   ω 0  2  <   π − γ  2  <   ω 0  2   . Fix   γ ∈    ω 0  2  ,  π 2    .



As in Subcase 2.2.1.   R  π − γ    is increasing on   π − γ −   ω 0  2  ,   π − γ  2    and decreasing on     π − γ  2  ,   ω 0  2   .



The minimum of   R  π − γ    on   π − γ −   ω 0  2  ,   ω 0  2    is     f    ω 0  2   + f  π − γ −   ω 0  2     1 + f    ω 0  2   f  π − γ −   ω 0  2     .  



It follows that    R  π − γ    θ  − ρ ≥   f    ω 0  2   + f  π − γ −   ω 0  2     1 + f    ω 0  2   f  π − γ −   ω 0  2     − ρ > f    ω 0  2   − ρ = 0  



for every   θ ∈  π − γ −   ω 0  2  ,   ω 0  2    , in particular   E  α , β , γ  > 0  .



Case 3. Assume that   2 α ≥  ω 0    or   2 β ≥  ω 0   .



We may consider that   2 α ≥  ω 0   , the other case being analogous. Then     ρ ˜  α  = ρ ≥ max    ρ ˜  β  ,   ρ ˜  γ    .



We have   E  α , β , γ  =   ρ ˜  β   1 − ρ   ρ ˜  γ   + ρ −   ρ ˜  γ  > 0   and   E  α , γ , β  =   ρ ˜  γ   1 − ρ   ρ ˜  β   + ρ −   ρ ˜  β  > 0 .  



It remains to analyze the sign of   E  β , γ , α  =   ρ ˜  β  +   ρ ˜  γ  − ρ − ρ   ρ ˜  β    ρ ˜  γ   .



Case 3.1. Assume that   2 β ≥  ω 0    or   2 γ ≥  ω 0   .



If   2 β ≥  ω 0   , then     ρ ˜  β  = ρ   and   E  β , γ , α  = ρ +   ρ ˜  γ  − ρ −  ρ 2    ρ ˜  γ  =   ρ ˜  γ   1 −  ρ 2   > 0  .



Similarly, if   2 γ ≥  ω 0   , then     ρ ˜  γ  = ρ   and   E  β , γ , α  =   ρ ˜  β  + ρ − ρ −  ρ 2    ρ ˜  β  =   ρ ˜  β   1 −  ρ 2   > 0  .



Case 3.2. Assume that   2 β ≤  ω 0    and   2 γ ≤  ω 0   .



We cannot have   2  α + β  ≤ π  , since this implies   2 γ = 2  α + β  > 2 α ≥  ω 0   , a contradiction. Then   2  α + β  > π   and   2 γ = 2 π − 2  α + β   .



In Subcase 2.2.2. we proved that   E  α , β , γ  > 0   under the following assumptions:   2  α + β + γ  = 2 π  ,   2 α ≤  ω 0   ,   2 β ≤  ω 0    and   2 γ ≥  ω 0   .



In the present case,   2  α + β + γ  = 2 π  ,   2 β ≤  ω 0   ,   2 γ ≤  ω 0    and   2 α ≥  ω 0   ; hence   E  β , γ , α  > 0  . □





Corollary 3.

Let   F :  0 , 1  →  0 , ∞    with    F  − 1     0   =  0   . If   F ∘ tanh   is subadditive and nondecreasing on   0 , ∞  , then the restriction of   F ∘  s D    to every circle    z  = r < 1   is a metric. Moreover, if F is subadditive and nondecreasing on   0 , 1  , then the restriction of   F ∘  s D    to the entire unit disk is a metric.





Proof. 

Let   r ∈  0 , 1   . Theorem 2 shows that the restriction of   arctanh  s D    to the circle    z  = r   is a metric.



The function   G : = F ∘ tanh   is metric-preserving. Therefore,   F ∘  s D  = G ∘ arctanh  s D    is a metric on the circle    z  = r  . □





Remark 6.

Triangle inequality for the restriction of   arctanh  s D    to any circle    z  = r   with   r ∈  0 , 1    is always strict, as we see from the proof of Theorem 2. Therefore, given   a , b ∈  0 , ∞    we cannot find   x , y , z   on a circle    z  = r  ,   r ∈  0 , 1    such that   arctanh  s D   x , y  = a  ,   arctanh  s D   y , z  = b   and   arctanh  s D   x , z  = a + b  . This prevents us from obtaining the subadditivity of   F ∘ tanh   under the assumption that   F :  0 , 1  →  0 , ∞    with    F  − 1     0   =  0    is metric-preserving with respect to the restriction of the triangular ratio metric   s D   to every circle    z  = r < 1  .





We prove a functional inequality similar to (4) satisfied by continuous functions   F :  0 , 1  →  0 , ∞    with    F  − 1     0   =  0    which are metric-preserving with respect to the restriction of the triangular ratio metric   s D   to every circle    z  = r < 1  .



Theorem 3.

Assume that the continuous amenable function   F :  0 , 1  →  0 , ∞    is metric-preserving with respect to the restriction of the triangular ratio metric   s D   to every circle    z  = r < 1  ,   r ∈  0 , 1   .Then, for every   λ , μ ∈  0 , 1   , the following inequality holds:


   F    λ   1 −  μ 2    + μ   1 −  λ 2         λ   1 −  μ 2    + μ   1 −  λ 2     2  +  1 −  λ 2    1 −  μ 2       ≤ F  λ  + F  μ  .   



(9)




Equivalently, for every   a , b ∈  0 , ∞    we have


   F    sinh  a  + sinh  b     1 +   sinh  a  + sinh  b   2      ≤ F  tanh  a   + F  tanh  b   .   



(10)









Proof. 

For   λ = 0   or   μ = 0   the inequality is trivial. Fix    λ , μ ∈  0 , 1   .



Denote by   C r   the circle    z  = r < 1  .



For every   r   with   max  λ , μ  < r < 1   there exist   x r  ,   y r  ,    z r  ∈  C r    such that, denoting   2 α : = ∡ (  x r  , 0 ,  y r  )   and   2 β : = ∡ (  y r  , 0 ,  z r  )  , the following conditions are satisfied:



(i)   α , β ∈  0 ,  1 2  arccos r   ;



(ii)   d   x r  ,  y r   = λ   and   d   y r  ,  z r   = μ  .



Using the Formula (8) we look for   α ∈  0 ,  1 2  arccos r   , i.e., with   cos α ∈     1 + r  2   , 1   , such that


    r sin α    1 +  r 2  − 2 r cos α    = λ .  











The above requirements are satisfied if and only if   cos α =  1 r    λ 2  +    1 −  λ 2     r 2  −  λ 2       . Then we compute   sin α =  λ r    1 −  r 2      1 −  λ 2    +    r 2  −  λ 2       . Taking    x r  ∈  C r    arbitrary and    y r  =  x r   e  i α    , it follows that   d   x r  ,  y r   = λ  .



Similarly, we find an unique   β ∈  0 ,  1 2  arccos r    such that     r sin β    1 +  r 2  − 2 r cos β    = μ   and obtain



  cos β =  1 r    μ 2  +    1 −  μ 2     r 2  −  μ 2        and   sin β =  μ r    1 −  r 2      1 −  μ 2    +    r 2  −  μ 2       . Now, taking    z r  =  y r   e  i β    , it follows that   d   y r  ,  z r   = μ  .



Denote   2 γ : = ∡ (  z r  , 0 ,  x r  )  . Since   α , β ∈  0 ,  1 2  arccos r   , it follows that   2  α + β  ∈  0 , 2 arccos r  ⊂  0 , π   ; therefore,   2 γ = 2  α + β  < 2 arccos r  . Using (8), it follows that


  d   x r  ,  z r   =   r sin  α + β     1 +  r 2  − 2 r cos  α + β     .  








Computing   sin  α + β    and   cos  α + β   , and using the notations



  H  r , τ  =   1 −  τ 2    +    r 2  −  τ 2      and   K  r , τ  =  τ 2  +    1 −  τ 2     r 2  −  τ 2      , we obtain


  d  (  x r  ,  z r  )  =   1 −  r 2   r    A ( r , λ , μ )   B ( r , λ , μ )    








where


  A  ( r , λ , μ )  = λ   K ( r , μ )   H  r , λ    + μ   K ( r , λ )   H  r , μ     








and


  B  ( r , λ , μ )  =   1 +  r 2  −  2 r  K  r , λ  K  ( r , μ )  − λ μ   ( 1 −  r 2  )  2   1  H  r , λ  H  r , μ      1 / 2   .  








Let the function   F :  0 , 1  →  0 , ∞    be amenable and metric-preserving with respect to the restriction of the triangular ratio metric   s D   to every circle    z  = r < 1  .



Let   r   satisfying   max  λ , μ  < r < 1  . The triangle inequality   F  d   x r  ,  z r    ≤ F  d   x r  ,  y r    + F  d   y r  ,  z r      may be written as


  F    1 −  r 2   r    A ( r , λ , μ )   B ( r , λ , μ )    ≤ F  λ  + F  μ  .  



(11)




We compute


   lim  r ↗ 1     1 −  r 2   r    A ( r , λ , μ )   B ( r , λ , μ )   =   λ   1 −  μ 2    + μ   1 −  λ 2       2 λ μ    1 −  λ 2    1 −  μ 2     + 1 −  λ 2   μ 2     .  








We have     λ   1 −  μ 2    + μ   1 −  λ 2       2 λ μ    1 −  λ 2    1 −  μ 2     + 1 −  λ 2   μ 2     =   λ   1 −  μ 2    + μ   1 −  λ 2         λ   1 −  μ 2    + μ   1 −  λ 2     2  +  1 −  λ 2    1 −  μ 2      ∈  0 , 1    whenever   λ , μ ∈  0 , 1   .



If F is continuous on   0 , 1  , then letting r tend to 1 from below in inequality (11) we get (9).



Let   a , b ∈  0 , ∞   . Denote   λ = tanh  a    and   μ = tanh  b   . Then



    λ   1 −  μ 2    + μ   1 −  λ 2       2 λ μ    1 −  λ 2    1 −  μ 2     + 1 −  λ 2   μ 2     =   sinh  a  + sinh  b     1 +   sinh  a  + sinh  b   2      . Since the function   tanh :  0 , ∞  →  0 , 1    is surjective, the inequalities (9) and (10) are equivalent. □





Remark 7.

Since sinh is supradditive and the function   x ↦  x   1 +  x 2       is increasing on  R , we have


     sinh  a  + sinh  b     1 +   sinh  a  + sinh  b   2     ≤   sinh  a + b     1 +   sinh  a + b   2     = tanh  a + b  .    








If F is nonincreasing, then inequality (10) implies the subadditivity of the function   F ∘ tanh   on   0 , ∞  . If F is nondecreasing, then inequality (10) is implied by the subadditivity of the function   F ∘ tanh   on   0 , ∞  .





Numerical experiments show that    sinh  a  + sinh  b     1 +   sinh  a  + sinh  b   2      and   tanh  a + b    are close to each other for all   a , b ∈  0 , ∞   .



Lemma 6.

For every   a , b ∈  0 , ∞    we have


   0 ≤ tanh  a + b  −   sinh  a  + sinh  b     1 +   sinh  a  + sinh  b   2     ≤   2    t 0    t 0  − 1      2  t 0  − 1   −   2    t 0  − 1      4  t 0  − 3    ,   








where   t 0   is the unique real positive root of the polynomial   P  ( t )  = 16  t 4  − 16  t 3  − 56  t 2  + 80 t − 27  .



Equivalently, for all   λ , μ ∈  0 , 1   


   0 ≤   λ + μ   1 + λ μ   −   λ   1 −  μ 2    + μ   1 −  λ 2         λ   1 −  μ 2    + μ   1 −  λ 2     2  +  1 −  λ 2    1 −  μ 2      ≤   2    t 0    t 0  − 1      2  t 0  − 1   −   2    t 0  − 1      4  t 0  − 3      













Proof. 

Let   E  ( x , y )  = tanh  x + y  −   sinh  x  + sinh  y     1 +   sinh  x  + sinh  y   2      , where   x , y ∈  0 , ∞   . We observe that   E ( x , y )   tends to zero as   x → 0   or   y → 0  , respectively, as   x → ∞   or   y → ∞  . Then there exists the maximum of E on    0 , ∞  ×  0 , ∞   , attained at some point     x 0  ,  y 0   ∈  0 , ∞  ×  0 , ∞   .



The partial derivatives     ∂ E   ∂ x    x , y  =  1   cosh ( x + y    )  2    −   cosh  x     1 +   sinh  x  + sinh  y   2    3 / 2      and     ∂ E   ∂ y    x , y  =  1   cosh ( x + y    )  2    −   cosh  y     1 +   sinh  x  + sinh  y   2    3 / 2      vanish at    x 0  ,  y 0   ; hence,    x 0  =  y 0    and    x 0  > 0   is a solution of the equation


   1   cosh ( 2 x    )  2    =   cosh  x     1 + 4   sinh  x   2    3 / 2    .  








Using the change of variable    cosh ( x    )  2  = t  , the above equation transforms into   t   2 t − 1  4  =   ( 4 t − 3 )  3   . However,   t   2 t − 1  4  −   ( 4 t − 3 )  3  =  t − 1  P  ( t )    and    cosh (  x 0     )  2  > 1   is a root of P. It turns out that P has one positive root   t 0  , one negative root and two complex nonreal roots. Then   cosh  (  x 0  )  =   t 0     and


     max  E  ( x , y )  :  ( x , y )  ∈  0 , ∞  ×  0 , ∞      =    E   x 0  ,  x 0   = tanh  2  x 0   −   2 sinh   x 0      1 + 4   sinh   x 0    2           =      2    t 0    t 0  − 1      2  t 0  − 1   −   2    t 0  − 1      4  t 0  − 3    .     











□





Remark 8.

Using the approximate value    t 0  ≅ 1 .  663  8   we get     2    t 0    t 0  − 1      2  t 0  − 1   −   2    t 0  − 1      4  t 0  − 3    ≅ 0.05070  5  .







5. The Case of Barrlund Metric with p = 2 on a Canonical Plane Domain


We will consider Barrlund metrics on canonical domains in plane: the upper half plane and the unit disk. For   p = 2   and   G ∈  H ,  D    explicit formulas for   b  G , p    have been proved in [23], as follows:


   b  H , 2    (  z 1  ,  z 2  )  =    2   |  z 1  −  z 2  |      |   z 1  −  z 2    |  2  +   Im (  z 1  +  z 2  )  2      for  all   z 1  ,  z 2  ∈ H  











and


   b  D , 2    (  w 1  ,  w 2  )  =    |   w 1  −  w 2   |      2 + |   w 1    |  2   + |   w 2    |  2  − 2  |  w 1  +  w 2  |      for  all   w 1  ,  w 2  ∈ D .  











Using parallelogram’s rule, we can write


   b  D , 2    (  w 1  ,  w 2  )  =    2   |  w 1  −  w 2  |      |   w 1  −  w 2    |  2  +    2 − |   w 1  +  w 2   |   2     .  











We can see that    b  H , 2    H × H  =  0 ,  2     and    b  D , 2    D × D  =  0 ,  2    .



Next, we study the restrictions of   b  H , 2    to vertical rays    V  x 0   :  (  R e  z  =  x 0    and   I m ( z ) > 0  ),    x 0  ∈ R  , to rays through origin    O m  :  I m  z   = m R e ( z     and   I m ( z ) > 0  ),   m ∈  R ∗    and to horizontal lines    L c  :  ( I m  ( z )  = c )   ,   c ∈  0 , ∞   .



Proposition 5.

Let   F :  0 , 1  →  0 , ∞    be an amenable function and   ψ : R →  − 1 , 1   ,   ψ  t  =    e t  − 1     e  2 t   + 1     . The following are equivalent:



(1) F is metric-preserving with respect to the restriction of   b  H , 2    to every ray   V  x 0   ,    x 0  ∈ R  ;



(2) F is metric-preserving with respect to the restriction of   b  H , 2    to some ray   V  x 0   ,    x 0  ∈ R  ;



(3)   F ∘  ψ    is subadditive on  R .





Proof. 

Consider the ray    V  x 0   :   (  R e  z  =  x 0    and   I m ( z ) > 0  ),    x 0  ∈ R  . For    z 1  =  x 0  + i  y 1  ,  z 2  =  x 0  + i  y 2  ∈  R  x 0    , denoting     y 2   y 1   =  e u   ,   u ∈ R   we have


   b  H , 2     z 1  ,  z 2   =    y 1  −  y 2      y  1  2  +  y  2  2     =   1 −   y 2   y 1      1 +     y 2   y 1    2     =    e u  − 1     e  2 u   + 1    = ψ  u  .  








The functions   F ∘     b  H , 2     R  x 0       and   F ∘ ψ   are well-defined, since   ψ  u  ∈  0 , 1    for every   u ∈ R  .



For    z k  =  x 0  + i  y k  ∈  V  x 0    ,   k = 1 , 2 , 3   denote     y 2   y 1   =  e u    and     y 3   y 2   =  e v   , where   u , v ∈ R  .



With these notations, the triangle inequality


   F ∘  b  H , 2      z 1  ,  z 3   ≤  F ∘  b  H , 2      z 1  ,  z 2   +  F ∘  b  H , 2      z 2  ,  z 3    



(12)




is equivalent to


   F ∘ ψ   u + v  ≤  F ∘ ψ   u  +  F ∘ ψ   v  .   



(13)







  ( 1 ) ⇒ ( 2 )   is obvious.



  ( 2 ) ⇒ ( 3 )   Assume that F is metric-preserving with respect to the restriction of   b  H , 2    to some fixed ray   V  x 0   .



For every   u , v ∈ R   there exist    z k  =  x 0  + i  y k  ∈  R  x 0    ,   k = 1 , 2 , 3   such that     y 2   y 1   =  e u    and     y 3   y 2   =  e v   . Since    z 1  ,  z 2   ,   z 3   satisfy (12), it follows that (13) holds. Therefore,   F ∘ ψ   is subadditive on  R .



  ( 3 ) ⇒ ( 1 )   Assume that   F ∘ ψ   is subadditive on  R . Fix    x 0  ∈ R  . For every    z k  =  x 0  + i  y k  ∈  V  x 0    ,   k = 1 , 2 , 3   there exist   u , v ∈ R   such that     y 2   y 1   =  e u    and     y 3   y 2   =  e v   . Since u and v satisfy (13), we obtain the triangle inequality (12). It follows that the restriction of   F ∘  b  H , 2     to   V  x 0    is a metric, q.e.d. □





Proposition 6.

Let   O m  :   I m  z   = m R e ( z    and   I m ( z ) > 0  ),   m ∈ R \  0   . Let   F :  0 ,  2   →  0 , ∞    be an amenable function and    ϰ m  : R →  ( −  2  ,  2  )   ,    ϰ m   u  =   tanh   u 2    2       tanh   u 2    2  +   m 2    m 2  + 1       . Then F is metric-preserving with respect to the restriction of   b  H , 2    to the ray   S m   if and only if   F ∘   ϰ m     is subadditive on  R .





Proof. 

For    z 1  =  x 1  + i m  x 1  ,  z 2  =  x 2  + i m  x 2  ∈  O m   , denoting     x 2   x 1   =  e u   ,   u ∈ R   we have


      b  H , 2     z 1  ,  z 2      =       x 1  −  x 2     2 (  m 2  + 1 )       1 +  m 2      x 1  −  x 2   2  +  m 2     x 1  +  x 2   2          =      1 −   x 2   x 1      2 (  m 2  + 1 )       1 +  m 2     1 −   x 2   x 1    2  +  m 2    1 +   x 2   x 1    2          =       e u  − 1    2 (  m 2  + 1 )       1 +  m 2     1 −  e u   2  +  m 2    1 +  e u   2          =       tanh   u 2     2       tanh   u 2    2  +   m 2    m 2  + 1      =  ϰ m   u  .     








The functions   F ∘     b  H , 2     S m      and   F ∘   ϰ m     are well-defined, since     ϰ m   u   ∈  0 ,  2     for every   u ∈ R  .



For    z k  =  1 + i m   x k  ∈  O m   ,   k = 1 , 2 , 3   denote     x 2   x 1   =  e u    and     x 3   x 2   =  e v   , where   u , v ∈ R  .



With these notations, the triangle inequality


   F ∘  b  H , 2      z 1  ,  z 3   ≤  F ∘  b  H , 2      z 1  ,  z 2   +  F ∘  b  H , 2      z 2  ,  z 3    



(14)




is equivalent to


   F ∘   ϰ m     u + v  ≤  F ∘   ϰ m     u  +  F ∘   ϰ m     v  .   



(15)







If F is metric-preserving with respect to the restriction of   b  H , 2    to the ray   O m  , then for every   u ,    v ∈ R   we find    z k  =  1 + i m   x k  ∈  S m   ,   k = 1 , 2 , 3   such that     x 2   x 1   =  e u    and     x 3   x 2   =  e v    and applying (14) we get (15). Conversely, if   F ∘  ϰ m    is subadditive on  R , then for every    z k  =  1 + i m   x k  ∈  O m   ,   k = 1 , 2 , 3   we find   u ,    v ∈ R   such that     x 2   x 1   =  e u    and     x 3   x 2   =  e v    and applying (14) we get (15). □





Proposition 7.

Let   F :  0 ,  2   →  0 , ∞    and   c > 0  . Denote    φ c   ( t )  =    2  t     t 2  + 4  c 2      ,   t ∈ R  . The restriction of   F ∘  b  H , 2     to the line   I m  z  = c   is a metric if and only if   F ∘   φ c     is subadditive on  R .





Proof. 

By our assumption, for all    x 1  ,  x 2  ,  x 3  ∈ R   we have   F   b  H , 2    (  x 1  + i c ,  x 3  + i c )      ≤ F   b  H , 2    (  x 1  + i c ,  x 2  + i c )   + F   b  H , 2    (  x 2  + i c ,  x 3  + i c )    , i.e.,


  F     2   |  x 1  −  x 3  |      |   x 1  −  x 3    |  2  + 4  c 2      ≤ F     2   |  x 1  −  x 2  |      |   x 1  −  x 2    |  2  + 4  c 2      + F     2   |  x 2  −  x 3  |      |   x 2  −  x 3    |  2  + 4  c 2      .  








Let    φ c   ( t )  =    2  t     t 2  + 4  c 2      ,   t ∈  0 , ∞   . The above inequality is equivalent to


   F ∘   φ c      x 1  −  x 3   ≤  F ∘   φ c      x 1  −  x 2   +  F ∘   φ c      x 2  −  x 3    for  all   x 1  ,  x 2  ,  x 3  ∈ R .  



(16)




Note that     φ c   ( t )   ∈  0 ,  2     for every   t ∈  0 , ∞   ; therefore, the functions   F ∘     b  H , 2     I m ( z ) = c      and   F ∘   φ c     are well-defined.



We see that   F ∘   φ c     satisfies (16) if and only if   F ∘   φ c     is subadditive on  R . □





Next, we study metric-preserving functions with respect to the restriction of the Barrlund distance on the unit disk   b  D , 2    to some one-dimensional manifolds, such as radial segments, diameters or circles centered at origin.



Proposition 8.

Let   F :  0 , 1  →  0 , ∞    be an amenable function and   ψ : R →  − 1 , 1   ,   ψ  t  =    e t  − 1     e  2 t   + 1     . The following are equivalent:



(1) F is metric-preserving with respect to the restriction of   b  D , 2    to every radial segment in the unit disk;



(2) F is metric-preserving with respect to the restriction of   b  D , 2    to some radial segment in the unit disk;



(3)   F ∘  ψ    is subadditive on  R .





Proof. 

Obviously,   ( 1 ) ⇒ ( 2 )  . Using the invariance of the Barrlund distance on the unit disk with respect to rotations around the origin, it follows that   ( 2 ) ⇒ ( 1 )  , since   1   holds if and only if F is metric-preserving with respect to the restriction of   b  D , 2    to the intersection   I =  0 , 1    between the unit disk and the non-negative semiaxis.



In order to prove that (2) and (3) are equivalent, we may assume without loss of generality that the radial segment in (2) is   I =  0 , 1   . For    z 1  =  x 1  ,  z 2  =  x 2  ∈ I  , denoting     1 −  x 2    1 −  x 1    =  e u   ,   u ∈ R   we have


      b  D , 2     z 1  ,  z 2      =       x 1  −  x 2     2 +  x  1  2  +  x  2  2  − 2   x 1  +  x 2      =    1 −  x 2   −  1 −  x 1        1 −  x 2   2  +   1 −  x 1   2           =       e u  − 1     e  2 u   + 1    = ψ  u  .     








For    z k  =  x k  ∈ I  ,   k = 1 , 2 , 3   denote     1 −  x 2    1 −  x 1    =  e u    and     1 −  x 3    1 −  x 2    =  e v   , where   u , v ∈ R  .



With these notations, the triangle inequality


   F ∘  b  D , 2      z 1  ,  z 3   ≤  F ∘  b  D , 2      z 1  ,  z 2   +  F ∘  b  D , 2      z 2  ,  z 3    



(17)




is equivalent to


   F ∘  ψ    u + v  ≤  F ∘  ψ    u  +  F ∘  ψ    v  .   



(18)







Assume that F is metric-preserving with respect to the restriction of   b  D , 2    to the radial segment I. For every   u ,    v ∈ R   we find    z k  =  x k  ∈ I  ,   k = 1 , 2 , 3   such that     1 −  x 2    1 −  x 1    =  e u    and     1 −  x 3    1 −  x 2    =  e v   . Indeed, we may choose any   x 1   between   max  0 , 1 −  e  − u   , 1 −  e  − u − v      and 1. Then     1 −  x 2    1 −  x 1    =  e u    if and only if    x 2  = 1 −  e u   1 −  x 1    , but   0 < 1 −  x 1  <  e  − u    ; therefore,   0 <  x 2  < 1  . Moreover,   0 < 1 −  x 1  <  e  − u − v     implies    x 2  > 1 −  e  − v    . Since     1 −  x 3    1 −  x 2    =  e v    if and only if    x 3  = 1 −  e v   1 −  x 2    , where   0 < 1 −  x 2  <  e  − v    , it follows that   0 <  x 3  < 1  . Now applying (17) we get (18).



Conversely, if   F ∘  ψ    is subadditive on  R , then for every    z k  =  x k  ∈ I  ,   k = 1 , 2 , 3   we find   u ,    v ∈ R   such that     1 −  x 2    1 −  x 1    =  e u    and     1 −  x 3    1 −  x 2    =  e v    and applying (18) we get (17). □





We give a sufficient condition for a function to be metric-preserving with respect to the restriction of the Barrlund metric   b  D , 2    to some diameter of the unit disk, under the form of a functional inequality.



Proposition 9.

Let   F :  0 ,  2   →  0 , ∞   . Assume that the restriction of   F ∘  b  D , 2     to some diameter of the unit disk is a metric. Then


   F    r  2      r 2  + 1     ≤ 2 F   r    r 2  − 2 r + 2      for  all  r ∈  0 , 1  .   



(19)









Proof. 

Since   b  D , 2    is invariant to rotations around the origin, if a function is metric-preserving with respect to the restriction of the Barrlund metric   b  D , 2    to some diameter of the unit disk, then that function is metric-preserving with respect to the restriction of the Barrlund metric   b  D , 2    to every diameter of the unit disk. We may assume that the given diameter is on the real axis.



Note that    b  D , 2    0 , w  =  b  D , 2    0 , − w  =   | w |    2 +   | w |  2  − 2  | w |       and    b  D , 2    w , − w  =   2 | w |    2 +   | 2 w |  2     =    | w |   2     1 +   | w |  2      .



The above inequality writes as


   F ∘  b  D , 2     r , − r  ≤  F ∘  b  D , 2     0 , r  +  F ∘  b  D , 2     0 , − r   for  all  r ∈  0 , 1  ,  








which is true, due to the assumption that the restriction of   F ∘  b  D , 2     to the diameter   x + i 0 : − 1 < x < 1   of the unit circle is a metric. □





Remark 9.

Let   F :  0 ,  2   →  0 , ∞   . Assume that the restriction of   F ∘  b  D , 2     to some radial segment of the unit disk is a metric. By Proposition 8,   F ∘  ψ    is subadditive on  R , where   ψ : R →  0 , 1   ,   ψ  t  =    e t  − 1     e  2 t   + 1     . In particular,   F     e  2 a   − 1     e  4 a   + 1     ≤ 2 F     e a  − 1     e  2 a   + 1       for every   a ∈ R  . If   r ∈  0 , 1   , denoting    e a  = 1 − r  , the previous inequality becomes


   F    r  2 − r )       r − 1  4  + 1     ≤ 2 F   r    r 2  − 2 r + 2       



(20)









Note that     r  2      r 2  + 1    ≤   r  2 − r )       r − 1  4  + 1      for every   r ∈  0 , 1   . If F is nondecreasing on   0 ,  2   , then the above inequality (20) is stronger than (19).



Propositions 5 and 8 are very similar and, together with Propositions 6 and 7, have a common pattern.



Lemma 7.

Each of the functions   ψ : R →  − 1 , 1    with   ψ  t  =    e t  − 1     e  2 t   + 1     ,    ϰ m  : R →  −  2  ,  2     with    ϰ m   u  =   tanh   u 2    2       tanh   u 2    2  +   m 2    m 2  + 1        and    φ c  : R →  −  2  ,  2     with    φ c   ( t )  =    2  t     t 2  + 4  c 2      , generically denoted by φ, has the following properties: it is odd on  R , nonnegative, increasing and concave on   0 , ∞  ; hence, it is subadditive on   0 , ∞  .





Lemma 8.

If the restriction to   0 , ∞   of a function   φ : R → R   is nonnegative, nondecreasing and subadditive and if   φ   is even on  R , then   φ   is subadditive on  R .





Proof. 

We prove that    φ  a + b   ≤  φ  a   +  φ  b     for every   a , b ∈ R  . This is clear for   a , b ∈  0 , ∞   , taking into account that the restriction to   0 , ∞   of  φ  is nonnegative and subadditive. If   a , b ∈ ( − ∞ , 0 ]  , using the fact that   φ   is even on  R  and the previous case we get    φ  a + b   =  φ   − a  +  − b    ≤  φ  − a   +  φ  − b   =  φ  a   +  φ  b    . It remains to study the case where   a · b < 0  . By symmetry, it suffice to assume that   a ≤ 0 ≤ b   and   a + b ≥ 0  . Then    φ  a + b   =  φ  a −  b    = φ  a −  b   ≤ φ  a  ≤  φ  a   +  φ  b    , since  φ  is nondecreasing and nonnegative on   0 , ∞  . □





Corollary 4.

(a) If   F :  0 , 1  →  0 , ∞    is subadditive, then F is metric-preserving with respect to the restriction of   b  H ,  2    to each vertical ray   V  x 0    and with respect to the restriction of   b  D ,  2    to each radial segment of the unit disk.



(b) If   F :  0 ,  2   →  0 , ∞    is subadditive, then F is metric-preserving with respect to the restrictions of   b  H ,  2    to each oblique ray   S m   and to each horizontal line   L c  .





Proof. 

Using Lemmas 7 and 8, we see that the modulus of each of the functions  ψ ,   ϰ m   and   φ c   is a subadditive function on  R . The composition of two subadditive functions is subadditive. For (a) Then we apply Propositions 5 and 8 for (a), respectively, Propositions 6 and 7 for (b). □





Finally, we obtain a characterization of functions F which are metric-preserving with respect to the restriction of   b  D , 2    to each circle centered at origin.



Proposition 10.

Let   F :  0 ,  2   →  0 , ∞    be an amenable function,   r ∈  0 , 1    and    θ r  : R → R  ,    θ r   t  =   r  sin t   2      r 2  − 2 r  cos t  + 1     . Then the restriction of   F ∘  b  D , 2     to the circle    z  = r   is a metric if and only if   F ∘  θ r    is subadditive on  R .





Proof. 

Denote by   C r   the circle    z  = r  . For    z 1  = r  e  i  α 1    ,     z 2  = r  e  i  α 2    ∈  C r   , where   α 1  ,    α 2  ∈ R   we compute    |   z 1  −  z 2   | = 2 r   sin    α 1  −  α 2   2     and    |   z 1  +  z 2   | = 2 r   cos    α 1  −  α 2   2    , therefore denoting      α 1  −  α 2   2  = u   we have


      b  D , 2     z 1  ,  z 2      =       |   z 1  −  z 2   |      2 + |   z 1    |  2   + |   z 2    |  2  − 2  |  z 1  +  z 2  |     =   2 r  sin    α 1  −  α 2   2      2 + 2  r 2  − 4 r  cos    α 1  −  α 2   2            =      r  sin    α 1  −  α 2   2    2      r 2  − 2 r  cos    α 1  −  α 2   2   + 1    =   r  sin u   2      r 2  − 2 r  cos u  + 1    =  θ r   u  .     








For    z k  = r  e  i  α k    ∈  C r    with    α k  ∈ R   for   k = 1 , 2 , 3  , we denote      α 1  −  α 2   2  = u   and      α 2  −  α 3   2  = v  . Then   u + v =    α 1  −  α 3   2   .



With the above notations, the triangle inequality


   F ∘  b  D , 2      z 1  ,  z 3   ≤  F ∘  b  D , 2      z 1  ,  z 2   +  F ∘  b  D , 2      z 2  ,  z 3    



(21)




is equivalent to


   F ∘  θ r    u + v  ≤  F ∘  θ r    u  +  F ∘  θ r    v  .   



(22)




First we assume that   F ∘  θ r    is subadditive on  R . As above, for every    z k  = r  e  i  α k    ∈  C r    with    α k  ∈ R   for   k = 1 , 2 , 3  , we denote      α 1  −  α 2   2  = u   and      α 2  −  α 3   2  = v   and applying (22) we get (21).



Now assume that F is metric-preserving with respect to the restriction of   b  D , 2    to the circle   C r  . For arbitrary   u ,    v ∈ R   we look for    α k  ∈ R  ,   k = 1 , 2 , 3   such that      α 1  −  α 2   2  = u   and      α 2  −  α 3   2  = v  . It suffices to take    α 3  = 0  ,    α 2  = 2 v   and    α 1  = 2  u + v   . Finally, applying (21) with    z k  = r  e  i  α k    ∈  C r    for   k = 1 , 2 , 3   we get (22). □






6. Conclusions


In this paper, we investigated properties related to subadditivity of the functions transferring some special metrics to metrics, establishing connections between metric geometry and functional inequalities. For a metric space,   X , d   such that   d  x , y  ∈  [ 0 , T )    for all   x , y ∈ X  , where   0 < T ≤ ∞  , let us denote by   M P  X , d    the class of functions   f :  [ 0 , T )  →  R +  =  [ 0 , ∞ )    with the property that   f ∘ d   is a metric on d. It is known from the theory of metric-preserving functions that the intersection of all classes   M P  X , d    includes the class of all nondecreasing subadditive self-maps on   R +   and is included in the class of all subadditive self-maps on   R +  . We obtained functional inequalities satisfied by functions in   M P  X , d    in several cases, where X is some subset of   G ∈    H ,  D   and d is the restriction to X of an intrinsic metric on G, namely the hyperbolic metric, the triangular ratio metric   s G   or the Barrlund metric   b  G , 2   . We will denote by   S a  [ 0 , T )    the class of functions   f :  [ 0 , T )  →  R +    that are subadditive. In addition, denote by   X r   the circle of radius   r ∈  0 , 1    centered at origin.



We summarize in Table 1 most of our results, excepting Proposition 2 and Theorem 3, namely Theorem 1 and Propositions 3, 4, 5, 6, 7, 8 and 10. Within the table we use the abbreviation   F = M P  X , d   :



We determined the functions  ψ  (that is fixed),   ϰ m  ,   φ c   and   θ r   (each depending only on the respective parameter).



Moreover, denoting    d r  =      s D    X r   , we proved that every   f  ∈  r ∈  0 , 1    M P   X r  ,  d r     satisfies the functional inequality (10) related to the subadditivity of   f ∘ tanh  , as follows. If f is nonincreasing on   0 , 1   and satisfies (10), then   f ∘ tanh   is subadditive on   R +  . If f is nondecreasing on   0 , 1   and   f ∘ tanh   is subadditive on   R +  , then f satisfies (10).



Since   arctanh  s H  =  1 2   ρ H    is a metric on  H , it would be interesting to know if   arctanh  s D    is a metric on  D  ([23] Conjecture 2.1). We proved that   arctanh  s D    induces a metric on each diameter of  D  and on each circle of radius   r ∈  0 , 1    centered at origin. The above conjecture remains open.
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Table 1. Synthesis of the main results.






Table 1. Synthesis of the main results.





	The Set X
	The Metric d
	Result





	proper simply-connected plane domain G
	hyperbolic metric   ρ G  
	   f ∈ F ⇒ f      ∈ S a   R +     



	  H  
	   s H   
	   f ∈ F ⇒ f ∘ tanh      ∈ S a   R +     



	radial segment in  D 
	     s D    X × X    
	   f ∈ F ⇒ f ∘ tanh      ∈ S a   R +     



	vertical ray in  H :   x =  x 0   ,   y > 0  
	     b  H , 2     X × X    
	   f ∈ F ⇔ f ∘  ψ  ∈ S a  R    



	ray through origin in  H , with slope   m > 0  
	     b  H , 2       X × X     
	   f ∈ F ⇔ f ∘   ϰ m   ∈ S a  R    



	horizontal line in  H :   y = c > 0  
	     b  H , 2       X × X     
	   f ∈ F ⇔ f ∘   φ c   ∈ S a  R    



	radial segment in  D 
	     b  D , 2       X × X     
	   f ∈ F ⇔ f ∘  ψ  ∈ S a  R    



	   X r   
	     b  D , 2       X × X     
	   f ∈ F ⇔ f ∘   θ r   ∈ S a  R    
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