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Abstract: Plant diseases pose a severe threat to crop yield. This necessitates the rapid identification
of diseases affecting various crops using modern technologies. Many researchers have developed
solutions to the problem of identifying plant diseases, but it is still considered a critical issue due to
the lack of infrastructure in many parts of the world. This paper focuses on detecting and classifying
diseases present in the leaf images by adopting a hybrid learning model. The proposed hybrid
model uses k-means clustering for detecting the disease area from the leaf and a Convolutional
Neural Network (CNN) for classifying the type of disease based on comparison between sampled
and testing images. The images of leaves under consideration may be symmetrical or asymmetrical
in shape. In the proposed methodology, the images of various leaves from diseased plants were
first pre-processed to filter out the noise present to get an enhanced image. This improved image
enabled detection of minute disease-affected regions. The infected areas were then segmented using
k-means clustering algorithm that locates only the infected (diseased) areas by masking the leaves’
green (healthy) regions. The grey level co-occurrence matrix (GLCM) methodology was used to
fetch the necessary features from the affected portions. Since the number of fetched features was
insufficient, more synthesized features were included, which were then given as input to CNN for
training. Finally, the proposed hybrid model was trained and tested using the leaf disease dataset
available in the UCI machine learning repository to examine the characteristics between trained
and tested images. The hybrid model proposed in this paper can detect and classify different types
of diseases affecting different plants with a mean classification accuracy of 92.6%. To illustrate the
efficiency of the proposed hybrid model, a comparison was made against the following classification
approaches viz., support vector machine, extreme learning machine-based classification, and CNN.
The proposed hybrid model was found to be more effective than the other three.

Keywords: CNN; GLCM; image processing; k-means clustering; leaf diseases

1. Introduction

More money has been spent on the detection and prevention of crop diseases. Often
farmers solve this without appropriate scientific and technical knowledge, resulting in
deprived yield and also harm to their land’s fertility. In tropical regions, crop damage
increases dramatically due to reasons that include environmental situations, minimum
expenditure for crop health monitoring, and low revenue. Even though large-scale plant
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breeders put effort into increasing crop yield, the impact of deprived yield for below-par
farmers has been alarming due to lack of resources.

Nowadays, technology is playing a vital role in modernizing agro-based industries
and farms. About 70% of the world industries are dependent on farming, either directly
or indirectly. Crop diseases have turned into a nightmare, as they significantly reduce
yield. It is a tedious task to monitor and identify plant diseases manually at the initial stage.
It requires a lot of human resources and often is inefficient. Today’s agriculture sector
is modernized using automation technology, which helps to enhance the yield quantity
and quality. Modern technology enables farmers to increase crop yield by minimizing
crop damage due to environmental conditions, thereby, improving the farmers’ revenue.
Recent developments in image processing offer methods and solutions to mitigate some of
the problems faced in agriculture. The agricultural sector employs image processing and
computer vision techniques for a variety of reasons—viz., to detect diseased leaves, stems,
and fruits; detect areas affected by diseases; and find the shape and color of affected areas.
This paper focuses on creating a fully automated system, using a combination of image
processing techniques, to detect diseases on leaves that are symmetric along the midrib and
to classify them and display solutions. As a preventive measure, a notification message
is sent to the farmers, alerting them about the diseases and possible follow-up actions to
minimize the damage. Generally, plant diseases are classified into three categories—viz.,
bacterial, fungal, and viral, as shown in Figure 1 [1]. This paper focuses on the identification
of plant diseases that affect plants on a large scale. Fungi obtain their energy from the plant
they live upon and are responsible for significant amounts of damage. A study suggests
that about 85% of all plant diseases are caused by fungi [2]. The main contributions of this
paper include the following:

• Development of a hybrid learning model that uses a blend of image processing
techniques for detecting and classifying leaf diseases.

• Performance evaluation of the proposed hybrid learning model.
• Comparison of the hybrid model with support vector machine, extreme learning

machine-based classification, and CNN.
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Section 2 explains related work. Section 3 elaborates the proposed architecture of the
hybrid learning model. Section 4 describes the materials used to assess the proposed model,
and the results of the approach. In Section 5, discussion of the performance evaluation and
comparison with other methods are presented.
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2. Related Work

Prakash et al. [3] used image processing methods for the speedy classification of plant
diseases. The main drawback of these techniques is that no step is provided to suppress
the background noise that can affect accuracy. Prajakta et al. [4] developed a system to
find diseases and provided mechanisms for prevention. They performed classification
using SVM classifier. However, SVM classifiers have drawbacks such as high memory
requirements, high computational time, and high algorithmic complexity. Pramod et al. [5]
addressed the problem of diagnosing infections in crops detected in high-quality images
based on shape, color, and texture. This method automatically identifies leaf diseases and
provides quick and robust solutions to farmers through digital media. Sachin et al. [6]
proposed a four-stage system: enhancement, segmentation, feature extraction, and clas-
sification. This method can detect only specific types of diseases and specific disorders.
Smita Naikwadi et al. [7] introduced Otsu’s method for masking green pixels. They experi-
mentally demonstrated that their technique is more accurate in identifying the diseases
in plant leaves. However, Otsu’s method partitions the grayscale histogram into two
classes, but real-world segmentation problems generally deal with images having more
than two classes of segments. As observed from the abovementioned related work by
various researchers, several image processing techniques are available to detect diseases in
plant leaves. However, there is still a gap between research and practical implementation.
This prompts investigation into new deep learning models with fewer parameters that are
more suitable to deploy in real-life scenarios to detect plant leaf diseases. In this work, a
hybrid learning model to detect plant diseases and segregate the affected regions using
the k-means clustering algorithm and CNN is proposed. Monishanker Halder et al. [8]
proposed the smart city for real life problems. As population is ever increasing, it is
necessary to grow a sufficient amount of crops to provide for the population. Plants are
being infected with different diseases, which affects productivity. The economy of major
countries is dependent on agricultural produce. Automatic, early, and large-scale detection
of plant diseases is needed for helping the farmers.

3. Methods
3.1. Hybrid Learning Model for Detecting Leaf Diseases

This work presents a novel hybrid learning model for identifying and categorizing
various leaf diseases, as shown in Figure 2. This architecture segregates the affected
portion of the leaf by finding the Region Of Interest (ROI) using the k-means clustering
algorithm. The texture is a critical feature commonly employed in image classification
to help discriminate various classes with analogous spatial characteristics. The textural
information offers additional details for classification, which enhances the accuracy [9].
To cater to this requirement, researchers have developed GLCM [10] for textural feature
extraction. Intra- and inter-level redundancy among the features is a common concern
in image classification. GLCM with different window sizes derives numerous recurrent
features. These recurrent features degrade classification accuracy; it necessitates feature
selection techniques to choose the most pertinent features for generating efficient learning
models [11–13]. The conventional and widely employed Principal Component Analysis
(PCA) along with Whale Optimization Algorithm (WOA) was proposed by Gadekallu
et al. [14] to inspect redundancies in the GLCM feature set and scrutinize only the pertinent
features [15–17]. Finally, Extreme Learning Machine (ELM), multi-class SVM, and CNN
with an Adam optimizer were applied to classify various leaf diseases.

3.2. K-Means Clustering Algorithm for Image Segmentation

The first step in our proposed model was to segregate the disease-affected region and
unaffected region in a leaf. Clustering algorithms can be employed to achieve the needed
segregation. Many clustering algorithms such as clustering based on density, k-means
clustering, fuzzy k-means clustering, hierarchical clustering, and so on are available. As
our approach deals with segregating numerous pixels, the k-means clustering algorithm
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was chosen [18]. K-means clustering was chosen because it enables faster clustering of
many variables and constructs tighter clusters.

Symmetry 2021, 13, x FOR PEER REVIEW 4 of 13 
 

 

available. As our approach deals with segregating numerous pixels, the k-means clus-
tering algorithm was chosen [18]. K-means clustering was chosen because it enables 
faster clustering of many variables and constructs tighter clusters. 

A pre-processed image was fed into the k-means clustering algorithm, categorizing 
the leaf into two parts—viz., infected portion and non-infected portion. The k-means clus-
tering method categorizes an image based on the number of feature classes. First, pixels 
are segmented and then categorized into corresponding feature classes by computing the 
Euclidean distance values. Based on the calculated feature classes, the image is segmented 
into various groups containing k types of ROI. When k is 2, it segregates the affected re-
gion in one cluster and the unaffected area in another cluster. If k > 2, it can identify the 
type of disease, and each cluster corresponds to one kind of disease. This segmentation 
helps to identify the diseased area in a leaf, as shown in Figure 3, and helps to analyze the 
disease type and severity. Figure 3 shows the formed clusters when k is set to 3. 

 
Figure 2. Hybrid learning model for categorizing diseases in leaf. 

 
Figure 3. K-means clustering with k = 3. 
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A pre-processed image was fed into the k-means clustering algorithm, categorizing
the leaf into two parts—viz., infected portion and non-infected portion. The k-means
clustering method categorizes an image based on the number of feature classes. First, pixels
are segmented and then categorized into corresponding feature classes by computing the
Euclidean distance values. Based on the calculated feature classes, the image is segmented
into various groups containing k types of ROI. When k is 2, it segregates the affected region
in one cluster and the unaffected area in another cluster. If k > 2, it can identify the type of
disease, and each cluster corresponds to one kind of disease. This segmentation helps to
identify the diseased area in a leaf, as shown in Figure 3, and helps to analyze the disease
type and severity. Figure 3 shows the formed clusters when k is set to 3.

3.3. GLCM Algorithm for Feature Extraction

The features were fetched from the segmented ROI employing the GLCM technique,
which uses second-order statistical texture features. For an image I having G gray levels,
the GLCM of I is represented in matrix form with G rows and columns. Each element in the
matrix P (i, j|∆x, ∆y) represents the relative frequency in which two pixels with intensities
i and j are (∆x, ∆y) apart.Usually, the abovementioned spatial relationship specifies the
relationship between the pixel of interest and its neighboring eligible pixels. Nevertheless,
there may be other spatial relationships existing between two pixels. An offset array
is specified concerning the gray co-matrix function, which generates multiple GLCM.
The above-generated offsets express relationships among pixels in varying distance and
orientation. For example, the matrix element may also denote the second-order statistical
probability values P (i, j|d, ө) for changes between the intensities at a specific distance
‘d’ and at a given orientation ‘ө’. Various features such as contrast, correlation, energy,
homogeneity, kurtosis, RMS, mean, variance, standard deviation, and skew are computed
from the generated GLCM matrix. Apart from the above-said features that are extracted
from the image, one should also consider the moisture level of the leaf as a necessary
feature. Typically, the leaves will swell when the amount of water present within the plant
exceeds a specific maximum limit.
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Similarly, when the amount of water present within the plant is minimal, the leaves
will shrink. In these two cases, plants are more prone to disease. Hence, the amount of
water present within the plant, i.e., moisture level, is an essential parameter in predicting
diseases at the earlier stages. In both scenarios, the boundaries of the leaf characterize the
level of moisture, so we used an edge detection algorithm to assess the moisture level in
the plant.

Any classification algorithm works well only when it is applied to the essential
independent parameters. Therefore, a combination of PCA and WOA was employed in the
proposed approach to choose the relevant and optimal features.

3.4. Classification of Leaf Diseases

The final step was to categorize the disease present in the leaf and assess the severity
of the disease. ELM, multi-class SVM and CNN were employed to categorize the disease
present in the leaves.

3.4.1. Extreme Learning Machine

ELM is basically a feed forward network where hidden neurons are placed in a hidden
central layer, as shown in Figure 4. There are d input vectors that can be classified under
c output classes using L hidden neurons. The neurons present in the hidden layer are
represented as h(x) = [h1(x), . . . , hL(x)]. Each hidden neuron performs a nonlinear mapping
of features emerging from input neurons to the output neurons using the weight and bias
as given in the Equation (1).

L

∑
j=1

β jg
(
wjxi + bj

)
= ti, i = 1, 2 . . . N. (1)

where x is the input feature vector, t is the output vector, wj is the amount of contribution
of ith input to jth neuron, b is the bias, and β j = [β1, . . . βc]

T . is the weights among the
hidden neuron j and the output class c.
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3.4.2. Multi-Class SVM

The second algorithm implemented for classifying the various leaf diseases wasthe
multi-class SVM, which is a supervised classification algorithm. At the baseline SVM
is a two class classification algorithm where each feature vector is projected onto an
n-dimensional space, where the number of dimensions equals the number of features
included in the feature vector. Then, a hyperplane is constructed that separates the data
points into two classes. N-dimensional hyperplane is suitable only when the data points
are distributed in a uniform linear fashion. This necessitates the use of functional kernels
in SVM to discriminate the points that is distributed randomly in nonlinear fashion. These
functional kernels transform the lower dimensional data points to a higher dimension
where the points can be linearly separable. Then, a binary classification process is carried
out by constructing a suitable hyperplane that distinguishes the leaf into two classes—viz.,
normal and diseased. However, our main objective is to identify the type of disease present
in the leaf. In this scenario, one-against-all SVM is applied, which has the ability to classify
into n classes. This approach iterates through n number of SVM simulations. Each iteration
corresponds to a particular class; the SVM model is trained to label that class as correct and
the other class as incorrect. The OAA SVM model training is mathematically expressed
as given in Equation (2), where x represents the dataset used for training, ∅(x) is the
functional kernel thattransforms x into a higher dimension, (wn)T . denotes the feature
vector, and b is a scalar value. The class (x). gives the predicted class with higher functional
value that is mathematically denoted in Equation (3).(

w1
)T

∅(x) + b1 . . . (wn)T∅(x) + bn (2)

class(x) = arg
max

i = 1 . . . n

(
(wn)T∅(x) + bn

)
(3)

3.4.3. Convolutional Neural Networks

The architecture of CNN [18] used to categorize the disease and predict the severity
is shown in the Figure 5. CNN is the most efficient and accurate classifier, with several
advantages over other classifiers in terms of memory and training time. In CNN, the
convolution layer is the vital part that encompasses a set of filters. These filters work
independently and obtain the feature maps using convolution operation. The convolution
operation is performed by applying a non-linear function on linear filter and input maps by
including a bias and receiving an output feature map. Finally, it is expressed mathematically,
as given in Equation (4):

X I
j = f

∑
i∈Ij

X I−1
i ∗W I

ij + bI
j

. (4)

where f (.) represents the activation function, Ij represents the set of input maps, ‘l’ denotes
the layer number, W I

ij denotes the convolutional kernel, and bj represents bias. The most
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frequently used activation functions are tanh, sigmoid, and rectified linear unit (ReLU). In
this work, ReLU was employed as the activation function, along with the Adam optimizer.
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4. Materials and Results

The proposed hybrid learning model was evaluated using the leaf disease dataset
adapted from the UCI machine learning repository [19]. Since the features fetched from
the available dataset were not enough to train CNN, more features were generated by
synthesizing the extracted features.

Initially, the RGB color value of the image provided in the diseased leaf dataset
wasconsidered as input. The input image was improved in terms of contrast and size, as
shown in Figures 6 and 7. Finally, the k-means clustering algorithm was used to segment
the image into three segments—viz., disease-affected ROI, unaffected ROI, and background
ROI. Figures 8 and 9 depict how the disease-affected areas were segmented for various
disease types.
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Figure 9. Segmentation of the disease-affected ROI for leaves affected by bacterial blight.

Out of the three segments, only the disease-affected ROI was analyzed to categorize
the nature of the disease and assess the severity and extent of the diseased part. To
accomplish this, features of the disease-affected ROI were fetched by constructing the
GLCMs. In this matrix, disease symptoms were maintained by computing the values
of the features—namely energy, entropy, mean, variance, standard deviation, skewness
contrast, smoothness, correlation, kurtosis, homogeneity, root-mean-square (RMS) error
and inverse differential moment (IDM), as shown in Figure 10. The sample GLCM values
computed from the segmented image are presented in Table 1. Based on the calculated
feature values, these features were matched against the values present in the training
dataset. The extracted features were concatenated with the segmented leaf image into a
single image matrix which was then fed into CNN to categorize the class of disease by
comparing it with the existing disease classes. The model parameters used to train the
CNN are depicted in Table 2.

Table 1. Feature set for bacterial blight on leaves.

GLCM Properties ‘S’ ‘H’

Energy 0.6863 0.6949
Homogeneity 0.9276 0.9592

Correlation 0.7666 0.7283
Contrast 1.7162 0.1061
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Table 2. CNN model parameters.

Layer# Type of Layer Shape of Output Parameters

1 Conv2d [−32 224 224] 896

2 ReLU [−1 32 224 224] 0

3 BatchNorm2d [−1 32 224 224] 64

4 Conv2d [−1 32 224 224] 9248

5 ReLU [−1 32 224 224] 0

6 BatchNorm2d [−1 32 224 224] 64

7 Maxpool2d [−1 32 224 224] 0

8 Conv2d [−1 32 224 224] 18,496

9 ReLU [−1 32 224 224] 0

10 BatchNorm2d [−1 32 224 224] 128

11 Conv2d [−1 32 224 224] 36,928

12 ReLU [−1 32 224 224] 0

13 BatchNorm2d [−1 32 224 224] 128

14 Maxpool2d [−1 64 56 56] 0

15 Conv2d [−1128 56 56] 73,856

16 ReLU [−1128 56 56] 0

17 BatchNorm2d [−1128 56 56] 256

18 Conv2d [−1128 56 56] 147,584

19 ReLU [−1128 56 56] 0

20 BatchNorm2d [−1128 56 56] 256

21 Maxpool2d [−1128 56 56] 0

22 Conv2d [−1128 56 56] 295,168

23 ReLU [−1128 56 56] 0

24 BatchNorm2d [−1128 56 56] 512

25 Conv2d [−1128 56 56] 590,080

26 ReLU [−1128 56 56] 0

27 BatchNorm2d [−1128 56 56] 512

28 Maxpool2d [−1128 56 56] 0

29 Dropout [−1 50716] 0

30 Linear [−1 1024] 51,381,248

31 ReLU [−1 1024] 0

32 Dropout [−1 1024] 0

33 Linear [−1 39] 39,975

Total Parameters: 52,595,399
Trainable Parameters: 52,595,399

Non-trainable Parameters: 0
No. of epochs: 25

Input size(Mb): 0.62
Forward/Backward pass size: 151.62

Param size (Mb): 200.64
Estimated Total size (Mb): 352.26
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The result after applying CNN is shown in Figure 11. It also displays the symptoms,
causes, and the methods to control the occurrence of the detected disease cercospora. The
severity and extent of the disease we reassessed using the number of pixels present in
disease-affected ROI expressed in Equation (5):

Total % a f f ectedarea =
# o f a f f ectedlea f pixels

Total # o f pixels
∗ 100 (5)Symmetry 2021, 13, x FOR PEER REVIEW 10 of 13 
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5. Discussion

The leaf disease database available in the UCI machine learning repository comprises
of various species of different plant families. These include species with simple symmetric
leaves and leaves with complex structures. Figure 12 depicts the scientific names of each
plant family and the number of specimens of symmetric leaf images group according
to species.

Symmetry 2021, 13, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 12. Schema of Plant Leaf Disease Dataset. 

The proposed approach was tested with varying number of synthesized data. In the 
analysis, 70% of the existing images were used for training the algorithm and 30% were 
used for evaluating the model. Based on the results, the model was retrained by varying 
the multiple parameters for multiple epochs. Figure 13 depicts the accuracy of classifica-
tion with different original vs. synthesized samples. Figure 14 illustrates the results of 
the disease-wise classification for five different diseases—viz., Alternaria, common rust, 
Anthracnose, Cercospora, and bacterial blight in different combinations of original vs. 
synthesized samples. To analyze the performance of the proposed approach, SVM clas-
sifier, ELM, and CNN were implemented and experimented using the proposed training 
dataset with 20% of synthesized data, and the results are presented in Figure 15, where it 
can be observed that in comparison with other algorithms, the proposed model yielded 
better classification results. 

 
Figure 13. Classification accuracy concerning original features vs. synthesized samples. 

0
2
4
6
8

10
12
14
16
18

Nu
m

be
r o

f I
m

ag
es

Plant Species

Schema of Plant Leaf Disease Dataset

85

86

87

88

89

90

91

50:50 75:20 80:20

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 %

Original: Synthesized Ratio

Classification  Accuracy With Respect to Original 
Features vs. Synthesized Samples 

Figure 12. Schema of Plant Leaf Disease Dataset.

The proposed approach was tested with varying number of synthesized data. In
the analysis, 70% of the existing images were used for training the algorithm and 30%
were used for evaluating the model. Based on the results, the model was retrained by
varying the multiple parameters for multiple epochs. Figure 13 depicts the accuracy
of classification with different original vs. synthesized samples. Figure 14 illustrates
the results of the disease-wise classification for five different diseases—viz., Alternaria,
common rust, Anthracnose, Cercospora, and bacterial blight in different combinations of
original vs. synthesized samples. To analyze the performance of the proposed approach,
SVM classifier, ELM, and CNN were implemented and experimented using the proposed
training dataset with 20% of synthesized data, and the results are presented in Figure 15,
where it can be observed that in comparison with other algorithms, the proposed model
yielded better classification results.
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6. Conclusions and Future Work

A hybrid learning model using k-means clustering algorithm and CNN for classifying
various diseases in the leaves was proposed to classify the plant leaf images of different
classes of plant. The proposed hybrid model was compared with some existing approaches
used in plant leaf disease detection and was found to outperform the other models. In
real-life scenarios, it is quite impossible to capture individual leaf images to identify a
particular disease. This work can be extended to segregate the affected leaves from field
images. Timely detection of plant diseases is an important step in increasing crop yield. In
future study, the hybrid model can be improved further by employing transfer learning to
inform farmers on a timely basis of the diseases affecting their crops.
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