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Abstract: Notoriously, the two main problems of the standard ΛCDM model of cosmology are
the cosmological constant Λ and the cold dark matter, CDM. This essay shows that both the Λ
and the CDM arise as integration constants in a careful derivation of Einstein’s equations from
first principles in a Lorentz gauge theory. The dark sector of the universe might only reflect the
geometry of a spontaneous symmetry breaking that is necessary for the existence of spacetime and
an observer therein.
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1. Introduction

General relativity is the local version of special relativity. Gravity is thus understood
to be a gauge theory of the Lorentz group. The basic variable is then a Lorentz connection
1-form ωa

b, which defines the covariant derivative D, and thereby the curvature 2-form
Ra

b = dωa
b + ωa

c ∧ωc
b is subject to the 3-form Bianchi identity DRa

b = 0 inherited from
the Jacobi identity of the Lorentz algebra.

Since the beginning [1], the role of translations in the inhomogeneous Lorentz group
has been elusive. What has been clear is that in order to recover the dynamics of general
relativity, some extra structure is required besides the connection ωa

b. The standard
approach since Kibble’s work [2] has been to introduce the coframe field ea, another 1-
form valued in the Lorentz algebra. Not long ago, the more economical possibility of
introducing solely a scalar field τa was put forward by Złośnik et al. [3]. Only then
was gravity described by variables that are fully analogous to the fields of the standard
Yang–Mills theory.

The symmetry-breaking scalar τa has been called the (Cartan) Khronon because it
encodes the foliation of spacetime. The theory of Złośnik et al. is pre-geometric in the sense
that there exist symmetric solutions (say τa = 0) where there is no spacetime. Only in a
spontaneously broken phase τ2 < 0, there emerges a coframe field ea = Dτa. Furthermore,
if the coframe field is non-degenerate, a metric tensor gµνdxµ ⊗ dxν = ηabea ⊗ eb. In terms
of the two fundamental fields, the Lorentz connection and the Khronon scalar, the theory
realises the idea of observer space [4]. As the field τ picks a time-like value, thus specifying
the foliation of spacetime, the symmetry of the (complexified) Lorentz group is reduced to
the little group of rotations.

A serendipitous discovery was the fact that in the broken phase, the theory does not
quite reduce to general relativity, but to general relativity with dust [3]. The presence of
this “dust of time” could explain the cosmological observations without dark matter. In
this essay, we shall elucidate how this geometrical dark matter appears as an integration
constant at the level of field equations. In addition, we consider the next-to-simplest model
by introducing the cosmological Λ-term. This will require another symmetry-breaking
field, the (Weyl) Kairon σa, which happens to impose unimodularity.
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The conclusion we wish to present is that a minimalistic gauge theory of gravity
includes both the Λ and CDM, and they both enter into the field equations as integration
constants in the broken phase.

2. Dark Matter

Let us first make the case for dark matter. In the original, quite dense article [3], the
result was derived by a Hamiltonian analysis that may not be easy to follow in detail.
Therefore, we believe the simple derivation below could be useful.

The SO(4,C) action can be written in the quadratic form [3] (in units c = h̄ = 8πG = 1),

IG =
1
2

∫ (1
8

τ2εbd
ac + iτbτdηac

)
Ra

b ∧ Rc
d , (1)

and the variations with respect to the two fields yield (what have been called “the infer-
nal equations”),

D(+Ra
b ∧Dτb) = 0 , (2a)

1
2

D +(Dτ[a ∧Dτb]) = τ[a +Rb]
c ∧Dτc . (2b)

The anti/self-dual projections of a field Xa
b in the adjoint representation are denoted

as ±Xa
b, and defined by the property εad

bc
±Xc

d = ±2i ±Xa
b. There emerges a formal

solution to (2a),
+Ra

b ∧Dτb = Ma where DMa = 0 . (3)

To make further progress, we will assume that τ2 < 0, so that we can call Dτa = ea

and have the coframe field at hand. Then, since εad
bc

+Rc
d = 2i +Ra

b, we can write
the following:

−2Ma = iεac
bd

+Rb
c ∧ ed = i

(
+Ra

b −
1
2

δa
b
+R
)
∗ eb . (4)

We have thus recovered the Einstein field equations for the self-dual curvature, sourced by
a yet unknown 3-form Ma.

It remains to be shown that this source term behaves as idealised dust. By combining
(3) with (2b), we see that −(τ[a Mb]) = 0. At this point, we can pick the simplifying
gauge τa = τδa

0, wherein it becomes apparent that the spatial 3-forms M I = 0 vanish. By
construction (3), we have DMa = 0, which yields two further constraints, ωI

0 ∧M0 = 0
and dM0 = 0. The former implies that M0 is a spatial 3-form, M0 = −(iρ/2) ∗ e0 for some
function ρ, and the latter implies that this function ρ dilutes with the spatial volume. Thus,
ρ indeed effectively describes the energy density of dust.

Though the derivation was particularly transparent with the gauge choice τa = τδa
0,

the conclusion naturally holds in any other gauge. We have also checked that coupling
matter with (1) would not change the form of Ma.

Thus, the dust component is not put in by adding an energy-momentum tensor into the
field equations or a matter Lagrangian into the action, but it is an effective term that arises in
the generic solutions of the theory. Any physical solution imposes the distinction between
time and space, and the implied spontaneous breaking of the Lorentz symmetry introduces
a background energy density with an exact vanishing pressure. This is fundamentally
different from baryonic matter, whose finite pressure is crucial to take into account in
precision cosmology. Moreover, any hypothetical particle dark matter would only be
described ideal dust in a course-grained approximation at cosmological scales.
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3. Cosmological Constant

Simply adding the constant Λ ad hoc would not be compatible with first principles,
but do require the extension of the Lorentz to the de Sitter gauge group [5]. Instead, we
now more frugally supplement the action (1) with two terms,

I = IG −
1
24

∫
ΛεabcdDτa ∧Dτb ∧Dτc ∧Dτd −DΛ ∧ B . (5)

Had we added only the first new term, the variation with respect to the Λ would prohibit
a viable spacetime by imposing that

√−g = 0. Therefore, we also had to include the
second new term, such that it rather imposes the constancy of Λ with the 3-form Lagrange
multiplier B. It is not difficult to see that the two new equations of motion are:

dΛ = 0 , (6a)

dB =
1

24
εabcdDτa ∧Dτb ∧Dτc ∧Dτd , (6b)

and that field Equation (4) is only modified by the addition of the appropriate Λ-term.
Whilst (6a) ensures the constancy of the Λ, the consequence of (6b) is unimodularity. In
the broken phase, it becomes ∂µ ∗ Bµ =

√−g, and since the vector density ∗Bµ is not fixed,
we are free to set

√−g = 1. We note that the action in (5) is nothing but the polynomial
realisation of the well-known unimodular method [6] now embedded into the minimal
Lorentz gauge theory (1). Unimodularity solves the “old” problem of vacuum energy [7].

The new field B is a measure of global time. Consider a spacetime volume V bounded
by a spatial hypersurface ∂V. Now, due to the Stokes theorem,∮

∂V
B =

∫
V

√
−gd4x = vol(V) . (7)

The spontaneous breaking of unimodular invariance, given by the normalisation chosen
for ∂µ ∗ Bµ, determines the unit of global time. In the broken phase, we could identify the
Kairon scalar field σa = ea · ∗B in the fundamental representation of the Lorentz group, on
the same footing as the scalar field τa. Such a dual pair of fields arises from the embedding
of the Lorentz gauge theory (1) into the conformal gauge theory [8], and intuition from
previous studies [9] also suggests the natural gauge choice of Dτa ∼ Dσa.

We have already reached the conclusion of this essay: the similar magnitude of the
observed energy densities due to the Λ and the CDM [10] could be the result of their
common origin in the conformal geometry of the observer space.

4. Conclusions

Rather than unknown particles or modified gravity, the dark sector of the universe
could be the manifestation of a spontaneous symmetry breaking that underpins the emer-
gence of a metric spacetime. In a rigorous derivation of the Einstein’s field equations from
a more fundamental, pre-geometric theory, both the Λ and the CDM appear as integration
constants. Though spontaneous symmetry breaking has been considered the origin of
the difference between time and space [11,12], results similar to ours have not, to our
knowledge, been arrived at in less minimalist settings. Though a wide variety of different
proposals share some of the features of our theory [13–15], they are based on the reduction
of gravitational variables in contrast to the introduction of additional fields.

Of the 12 real components of the complexified Lorentz connection ωa
b, the six self-dual

pieces +ωa
b +

+ωa∗
b account for the usual spin connection, whereas three independent

degrees of freedom encoded in the boosts −ωI
0 give rise to the spatial triad through

eI = Dτ I in the broken phase. Perhaps, along the lines of [16], the three remaining anti-
self-dual rotations −ωI

J could be related to the SU(2)L connection in the particle sector,
and the scalars τa and σa could be related to the Higgs field. Another speculation is that
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our formulation might provide an improved starting point for loop quantum gravity that
is currently suffering from a “covariance crisis” [17].

The cosmology we propose could be falsified by either a direct or indirect detection of
a dark matter particle, which could account for the observed ρ. The structure formation
of such particle dark matter cannot explain the formation of supermassive black holes at
the center of galaxies, but perhaps they could have their origins in the caustics that could
theoretically form in the evolution of an idealised dust. In laboratory experiments, at least
the naive expectation is that the cosmological density field is negligible.

To conclude, we propose a possible theory behind the two main parameters of the
standard ΛCDM model of cosmology [10]. The theory predicts that the CDM is ideal dust,
and suggests a new approach to avoid fine-tunings of the Λ.

• The 1st Λ problem, the sensitivity of gravity to vacuum energy, is resolved [7].
• The 2nd Λ problem, the observed value of Λ, could be related to the age of the

Universe (The question of why the ρ is small seems like the same question as why the
universe is so old. The association of large numbers in physics with the age of the
universe goes back, via Dirac, to Weyl. Recently, it was pointed out that Dirac’s large
number hypothesis might be realised in a model with two “dilatons” [5]. However,
in this essay, we only discussed the cosmological numbers related to the Λ and
the CDM.).

• The 3rd Λ problem, the coincidence that Λ ∼ ρ, may have a rationale in their dual origin.

In particular, from the construction of the 3-form Ma, we could infer that ∂τ ∼ 1/
√

ρ,
and from (7), we may read that ∂µσµ ∼ 1/

√
Λ. It remains to be investigated whether the

duality τ ∼ σ could indeed explain the cosmic coincidence.
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