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Abstract: The goal of this paper is to consider a new class of ¢-Hilfer fractional differential equations
with impulses and nonlocal conditions. By using fractional calculus, semigroup theory, and with
the help of the fixed point theorem, the existence and uniqueness of mild solutions are obtained for
the proposed fractional system. Symmetrically, we discuss the existence of optimal controls for the
@-Hilfer fractional control system. Our main results are well supported by an illustrative example.
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1. Introduction

In recent years, a lot of research attention has been paid to the study of fractional
calculus, which is considered as a generalization of classical derivatives and integrals
to non-integer order. Phenomena with memory and hereditary characteristics that arise
in ecology, biology, medicine, electrical engineering, and mechanics, etc, may be well
modelled by using fractional differential equations (FDEs for short). For more details on
FDEs and its applications, see [1-5] and the references therein. In [6], Hilfer derived a
new two-parameter fractional derivative Dglfz of order ¢y and type 0y, which is called
Hilfer fractional derivative that combines the Riemann-Liouville and Caputo fractional
derivatives. This kind of parameter produces more types of stationary states and gives
an extra degree of freedom on the initial conditions. Systems based on Hilfer fractional
derivatives are considered by many authors, see [7-11] and the references therein. Recently,
Sousa and Oliveira [12] introduced a new fractional derivative with respect to another
@-function the so-called ¢-Hilfer fractional derivative, and discussed their properties as
well as important results of the fractional calculus. For more recent works on ¢-Hilfer
fractional derivative and its applications, we refer to [13-17] and the references therein.

Many real-world phenomena and processes which are subjected to external influences
for a small time interval during their evolution can be represented as an impulsive differ-
ential equations. The impulsive differential equations have become the natural framework
for modelling of many evolving processes and phenomena studied in the field of science
and engineering such as in mechanical systems, biological systems, population dynamics,
physics, economy, and control theory. Recently, based on the theory of semigroup and
fixed point approach, many authors studied the qualitative properties of solutions for
impulsive differential equations of order one and non-integer [18-24] and the references
therein. The optimal control problem (OCP for short) plays a crucial role in biomedicine,
for example, model cancer chemotherapy and recently applied to epidemiological models.
When FDEs describe the system dynamics and the cost functional, an OCP reduces to a
fractional optimal control problem. The fractional OCP refers to optimize the cost func-
tional subject to dynamical constraints on the control parameter and state variables that
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having fractional models. For more recent works on OCP, see [25-30] and the references
therein. Harrat et al. [31] investigated the existence of optimal controls for Hilfer fractional
impulsive evolution inclusions with Clarke subdifferential. Moreover, optimal control
problems for @-Hilfer fractional impulsive differential equations are rarely available in the
literature which serves as a motivation to our research work in this paper.

Motivated by the above facts, we consider following ¢-Hilfer fractional impulsive
differential system:

HD‘t’;fz“Pz(t) = Az(t) + A(t,z(t)), t € (0,b] — {t1,t2, ..., ty},
13;"1)““’2)"‘/’2(@) =2(t) + T, (z(t5), v =1,2,..., H, 1)
IO ()] + G(2) = 20,

where DT f 29 denotes the @-Hilfer fractional derivative of order1/2 < 07 <1, 0 < 0p < 1
Y

and the state z(-) takes values in a Hilbert space Eand Jy = [0,b], 0 =t) <t < --- <
ty < ty41 = b. Ais the generator of a Co-semigroup {7 (t)};>0 on E. As usual z(t) and
z(t ) are the right and left limits of z at the point t,, respectively. Z, : E — E are impulsive
functions that characterize the jump of z at points t,. The functions A : Jy x E — E,
G : C(Jp, E) — E are some suitable functions that will be specified later.

The rest of the manuscript is organized as follows. In Section 2, we recall some
important concepts and results. In Sections 3 and 4, we derived the mild solution by
using semigroup as well as probability density function and proved the existence of mild
solutions for the proposed fractional system, receptively. In Section 5, we investigated
the existence of optimal controls for the ¢-Hilfer fractional control system. Moreover,
in Section 6, an example is presented to demonstrate the applicability of the obtained
symmetry results.

2. Preliminaries
Let 77 = [a,b] and ¢ € C™"(J1, R) an increasing function such that ¢’ (t) #0, V¢ € J.
Definition 1. The ¢-Riemann fractional integral of order oy > 0 of the function R is given by

1

oL _
RO = ey

[ (0~ ()" R)g 55

Definition 2. The ¢-Riemann-Liouville fractional derivative of function R of order oy (m —1 <
o1 < m, m € N), is defined by

. Moo AL
D) = () "o R (0 = P 100 — gts)ym R (91,

where m = [oq] + 1.

Definition 3. The ¢-Hilfer fractional derivative of function R of order oq (m —1 < o7 < m,
m € N) and type 0 < 0p < 1, is defined by

H\01.02;¢ o (m—oy); 1 d " (1—0p)(m—01);¢
DRt =13 ((P,(t)dt> I VER(t).

The @-Hilfer fractional derivative can be written as
102 0—01;9 9
HpI29R (1) = 1, VY DIIR(t),

with § = (o + op(m — 07)).
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Pclfp;(p(j()/ E) =

Lemma1 ([12]). If R € C"[a,b], m —1 < 0y < mand 0 < op <1, then

m 6—k
1999 Hpoo g ) Z 5 qlvi(+)i) RUnH (e (m=cr)iop ()

Lemma 2 ([12]). Let 04 > 0 and 0y > O, then I;Tl’q)(qo(t) —g(a))2 ! = %((p(t) -
go(a))”frm*l.

Definition 4. Let z, ¢ : [c,00) — R be the functions such that ¢(t) is continuous and ¢'(t) > 0
on [0, c0). Then the generalized Laplace transform of function z(t) is given by

Lo{z(t)}(s) = / " e s0-0@) 5 (1) ! (H)dt, for all s.

For comprehensive details on ¢-Hilfer fractional derivative and its properties, we
refer to papers [12,14,17].
Consider the weighted space [14] defined as

Cipip(Jo,E) = {z:[0,6] = E = (9(t) — 9(t;))'P2(t) € C(J, E)}-
Define the space of piecewise continuous functions as

{z:10,b) = E: 2€C1py((by, tyral E), ¥ =1,2,..., H, 1}3;”"%(@)

and It(ljp)"(’]z(t;) = It(ljp);(’)z(ty) exists fory =1,2,...,H, p =01+ 0 — 0201}
v v

Clearly, PC(E) = PC1_4,¢(Jo, E) is a Banach space with the norm

lzlpe = max & sup |lg(t) = p(t)]'*=()|| p-
Y=L M b (b by i)
3. Representation of Mild Solution
Lemma 3. To reduce the generalized form (1), we consider the linear ¢-Hilfer fractional differential
system:
HDIY P2 (1) = Az(t) + A(t), t € (0,b]
(1=c1)(1=m) 2
i [2(6)] =0 = 20,

has a mild solution, which is defined as

t

() = S0+ [[(pt) -~ 9@ T (DA (s ()
where

PRz = [ 0nOT (o)~ gls))0)zas

Sgl’az(t,s)z _ 1(1 1) (02 )‘P'P‘ﬁ(t s)z,

T (ts)z = 01/ B, ()T (((t) — (s))710)zd6, 0 <s < t < b,

with
(o) o0 1
¢, (6) > 0 for 6>0, /0 G0, ()40 = 1, and /0 090, (0)0 = -

Proof. Rewrite the problem (2) in the equivalent integral equation
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— (1-01)(02-1)
=(t) = O s [ (900 — ()" () + A6 g (), @

provided that the integral in Equation (4) exists. Let § > 0. Applying the generalized
Laplace transform

2(6) = graea ™ + g (AZ(B) + A(P)),
where
2(8) = [P0 0zg! (uyap,
Ap) = [ e Pet-eO)Au)g! )
It follows that

Z(B) = ,302(01_1)(,3011—/4)_120—@-(ﬁall—/l)_lﬁ(ﬁ)
= 13‘72(”1_1)/0 e‘ﬁalsT(s)ZOder/O e PST (s)A(B)ds.

Taking s = 71, we obtain
Z(8) = op@-Die) /()m(ﬁf)ﬁ—le—(ﬁf>"lT(fﬁ)zodﬂ0—1 /O e BT () A (B)df
‘3(01—1)(02—1)11 + b,
where
L = o /0 " (B Lo BU (3 )20,
L = o / e BT () A (B) .
0

Taking f = ¢(t) — ¢(0), we obtain

L = o /Ooo ﬁvflw(t) _ (P(Q))Ul*le*(ﬂ(fﬂ(t)*fp(o)))”l T((p(t) — ¢(0))7)zo' (£)dt
© _-14d
) B

(e*(ﬁ((P(t)*fP(O)))gl)T((q)(t) — ¢(0))7)zodt.

L = & /0 (9(t) = 9(0)) e~ PWO=0ONIT(((t) — 9(0))M)A(B) ¢ (t)dt
= [ ] o) = 9@ e BEO-2 0N T (g(t) — 9(0)))
xe~ (BloE)=0O)A(5) ¢/ (s) ¢/ (t)dsdt.
We consider the following one-sided stable probability density

] k—1 ok—1 1
(7 ) 9 ! T

Q=
[7e

Py (0) = sin(krtoy), 6 € (0, o0),

k=1
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whose integration is given by

/0 e Po, (0)do = e P, oy € (0,1). (5)
Using Equation (5), we obtain

©—-1d

ho= M(/“’ewm¢<0>>>9pal<9>d9)7<<go<t>—go(O))”l)zOdt

- / / 0po, (0)e~POO=0OOT ((o(t) — p(0))7)z0¢/ (t)d0 dt
= [ (“"(”“’(O”)( | )T (W)d@)zoqo’(t)dt.

and
- [T (0071 Loy (8)e— (Blo()—9(0))0 e (B =p(0))
o= [T [ e - o) s 0 T((o(t) - p(0)) e

xA(s)g'(s)¢' (t)do dsdt

= [ e ot 2o g0, o7 ()

xA(s)¢'(s)¢' (t )dG dsdt

_ o—1 _ %1
— / //Ule pal()(cv(t) 9(51(0» T(((P(t) QVEP(O)) )
XA(fp (GO(V)*GO(t (0))¢' (1) o' (t)dodtdu
(

- e (//m% o) ) (o)1)

><A(s)<p’(s)d9ds> ¢ (u)dpu.

Hence, we obtain

2(p) = pove | °°e—<ﬁ(qo<t>—¢<0)>>< I pﬁ(g)T(W%de) ¢/ (D)t

- / ~(Blo(m)~9(0))) (// 100, (6 9(71(5))01_17—<(¢(y)gafp(S))Ul)

<A(s)g(5)deds ) ¢' ).

By using inverse Laplace transform, we obtain

) = ety /(,wpglw(ww—<v<0>>‘“)zod9

a 01
b [ o) SO N (00 Z N 5 s

Thus, we obtain

Z(t) 1 o1)( / (PUl _ ( ))Ule)ZOdG
+ ‘71/0/0 0o, (0) (@(t) — @(s)) 1T ((@(t) — 9(s))"0)A(s) g/ (5)dbds,



Symmetry 2021, 13, 2084 6 of 18

1 1
where ¢, (0) = %6 o pe, (6 1) is the probability density function defined on (0, o).
For any z € E, the operators S;! (t,s) and T, (t,s) defined as

Pyl (t,s)z

| 9aOT((0(t) — o(s))"0)zs,
Sglﬂz (ts)z = 1(1*171)(72*1);507);;1 (,5)z,

a

and

To'(t,s)z =0 /Ooo 0o, (0)T ((@(t) — (s))710)zdf, 0 <s <t < b.
Hence, we obtain
) = SPRw0+ [ (9 — (o) T (E9)AG) g (5)ds
O

Remark 1. Let A be the generator of a Co-semigroup {T (t) }+>0 on E. Then there exists M > 1
such that M = sup,¢ (o4 T (t)

Lemma 4 ([17,32]). The operators Sg'"" and T, have the subsequent conditions
1. SgV7(t,s) and T (t,s) are linear and bounded operators for any fixed t > s > 0, and

M(g(b) — ¢(0))1-e1)(e2=1)

IS5 (ts) @ < Tt -am Izl = Milell,
IT @I < e lzl = proslel = Malal.

2. If T(t) is compact operator for all t > 0, then Sg"?(t,s), Ty (t,s) are compact for all
t,s > 0. Hence, S (t,s) and Ty (t,s) are strongly continuous.

3. The operators Sy (t,s) and Ty (t,s) are strongly continuous. For every z € E and
0<s<t <ty <b,wehave

||S§;1"72(t2,s)z — S (t,8)z|| — 0 and ||7;f71(t2,s)z —Tg (t1,8)z]| = 0as t; — to.

Definition 5. A function z € PC(E) is called a mild solution of problem (1) if for every

te Jo 2(t) fulfills VO DRL0], 04+ G(z) = 2, 10TV ) = 2(6) +
v

Zy(z(ty)), y=1,2,..., H,and

=(8) = S7 (600 — 02) + [ (00) = 9(6)) T (13805, 2(6)) g (9,

for every t € [0,t1] and
2(0) = S5 1,8) [207) + T a(5)] + [ (96) = 9(6) T (1,585,290 (5

for every t € (ty,ty41].

4. Existence and Uniqueness

In this section, we prove the existence outcomes of the proposed system (1). Let us
assume the following hypotheses
[X1]: 7 (t) is compact for every ¢t > 0.
[X2]: The function A : Jy x E — E satisfies
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(@) For all z € E, the function t — A(t, z) is strongly measurable and the function
A(t, -) : E — Eis continuous for a.e t € Jp.
(b) There exists a continuous function K, € L (Jo,R™) such that

1A(t 2)]| < Ka(t) |Iz]l, ¥ (t,2) € To X E,

with Kp = sup;c 7, Ka(t).
[X3]: The function G : C(Jy, E) — E is Lipschitz continuous, i.e.; there exists a positive
constant K¢ such that

1G(z1) — G(z2)|| < Kgllz1 — 22|, V 21,22 € E.

[X4]: For every z,2z1,z0 € Eand all t € (t,,t,41], v = 1,2,...,H, there exist D,, K, > 0,
satisfies

1Zy(EDI < Ky, (1 Z4(21(8y) = Ty (z2(85)) || < Dollza(ty) = 22085 -
[X5]: The following inequalities hold
O = max [M1’Cg, M1(1+D )]

1<y<H
[X6]: There exists a constant R > 0 such that
HA(t,Z1) — A(t,ZQ)H < QA HZ] —Zz”, ¥V z1,zo € E.

Theorem 1. Suppose the hypotheses [X1]-[X5] are fulfilled. If

Mk + MKy T (00) - o0 <1 ©

then @-fractional system (1) has at least one mild solution on Jj.
Proof. For any 7r > 0, we define
Q= {z € PCE) : |zllpe < 7}

Clearly, Q) is closed convex and bounded subset of PC(E). Define an operator
IT: Q; — PC(E) by

3(‘;1"72(120)[20 —G(2)]

+f0t - ¢(s))”1*17;001(t s)A(s,z(s)) ¢’ (s)ds, tel0,n],vy=0,
(20 =1 s, w[ 2(t) + T, (2(07)
+ i (@) = () 71T (1,5)A(5,2(5)) ¢/ (s)ds, te (tytyml, v =21
Now, we split IT as I1j + I1p, where

8§ (t,0)[z0 - G(2)], teon],v=0,

(Hh=)e) = {Sgl"’%t,ty)[z(t;)+Iy<z<t;>)], L (bl 7> 1,
and

(11 Z)(t):{ 0 (9(£) = @(s)) 11T (1,5)As, 2(s)) @/ (5)ds, €[0,t], v=0,

’ S (@(8) = 9(s) VTS (£,5)A(s,2(5)) ¢! (s)ds, tE (b tyal 7 2 1
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T < |[TI(Z"

T < || T1I(2"

MNpe

)llpe

Step 1. There exists 7w > 0 such that IT1(Q;) C Q. If we assume that the assertion

is not true, then for m > 0, we take t € Jy and z" € Qj such that ||[II(z")|pe > 7.
For t € [0,t1], we obtain

IN

N+ IN+ I+ I+ N+

+

9() = 9(0))' S5 (1,0)[z0 - g(ﬂ)}\

(00~ 90 [0~ o)1 1,5)8(5, () (s
M1[|\Zo||Pc+’Cg7T+|\g ||7>c]

MoK (p(h) — 9(0))'~ /( (1) = @(s) 127 (s) | ¢’ (s)ds

M [llzollpe + Kgm +11G(0) [ pc]

MK (p(h) — 9(0))'~ /( (1) = ()™ (g(s) — 9(0))" "¢’ (s)ds
M [llzollpe + Kgm +11G(0) [ pc]

TMKp(p(t) — 9(0))PT () 77 (9(s) — 9(0))°
My [|lzollpe + Kgr +11G(0) [l pc]

TMKalgltn) — 90! PRI (o) — p(0))F !
Mi[lzollpe + Kgm + [1G(0)]|pc]

MafCn 1 (g(01) — 90))"

For everyt € (ty,ty41], vy =1,2...,H, we obtain

IN IN

IN

+

+ IA

IN

IN

o(t) — (P(tv))l S (t, ty)[ (t§)+17(z”(t§>)w
H j(qv(t) —@(s)) T (t,5)A(s, 27 () ¢ (5)ds

M [nz () llpe + (@(t+1) = @) 7Ky

MaKa(p(tyin) = p(t)) [ (9(8) — 9()27(5) |/ (5)ds

ty

M) lpe + (9(ty41) = @(t) Ky

MoK A(@(tyi1) — @(ty)' P /tt(fp(t) —(s)) Hp(s) = p(ty)) '/ (s)ds

Mi[II(5) llpe + (9(ty11) — @t))1 P
TMKA(9(Eys1) = (1) P(00) 17 (9s) = (1))
Mi[I27(8)lpe + (9(tri1) = 9(t) Ky |

TMK(9lty11) — 9(t))! PE(( L (p(ty1) — pla )0
M (1278 e + (@(t1) = 9(t) Ky |

(£
MoKA T (plt0) — (1)

For every t € Jp, we obtain

7 < MElpe < W+ Mg+ mMaka [ 0 (o) - ), @)
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where

W = max {Mi[|lzllpe + 1G(0)lnc] + Mi [[7(5llpe + (plt41) = 9(t)) Ky ] .

Here, W* is independent of 77, both sides of Equation (7) are dividing by 7 and taking

7T — 00, we obtain

1< MiRg + MoK T (5) — g(0)7,

which contradicts to Equation (6). Hence, for some 7w > 0, I1(Q;) C Q.
Step 2. We will prove that I1; is a contraction map.
For z*,2** € Q, if t € [0, 1], then we obtain

IThz" =Thz"[lpe = [(p(t) — ¢(0))'PSg2(t,0)[G(z*) — G(z*)]|
< MiKgllz" = 2| pe. ®)

Similarly, if t € (t,,t,41], ¥ = 1,2,...,H, then we get

Iz~ Tz e = [(p(t) = @(t)) PS5 (1, 1) 2" () — = (5]
() — @)1 PSS (1) [Ty (2 (1) — To(2 (1)
< Mi(14+Dy)]z =z lpe. ©)

From Equations (8) and (9), we obtain
IThz* =Lz |pe < Ol|z* — 2| pc,

where O = maxi< < [Mlleg, M1+ Dv)]- By [X5], we see that O < 1.Hence, I1; is a
contraction mapping.

Step 3. We will prove that Il : QO — Q) is continuous.

Let {zx} C QO with zx — z as k — oo. By [X2], we obtain

A(t,z) = A(t,z) as k — oo,

and
1At zi(£) = At 2(8)]] < 2K (1)

Forevery t € (ty,ty41], ¥ =0,1,...,H, we obtain
t

sz~ TaG) e < |(00) =0t [ (0(0) = p(s) T3 (09
v

< [A(s,2k(s)) — Als,z(s))] ¢’ (s)ds
< Mo(@(tys1) = 9(ty)'F
/t (9(t) = 9(s)) 1 A(s, 2()) — As,2(5)) | ¢ (5)ds.

Y

X

By the Lebesgue dominated convergence theorem, we obtain
T2 (zx) — HZ(Z)HPC — 0as k — oo.

Hence, I is continuous.
Step 4. We prove that {IIyz : z € Q) } is equicontinuous.
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Let x1, ko € (ty,ty41], with £, < K1 < xp < t,41, then we obtain for every t €
(tq/, t')/_;'_l], Y = 0, 1, .. .,H,
1(9(x2) = @(t1))' P (T122) (x2) — (@ (k1) = @(£4))' P (T122) (1) |
K1
< /t [(@(x2) = @(£2)) P (@(i2) — 9(5))7 ' T (K2, 5)

Y

—(o(r1) = qv(tv))l P(p(r1) — ()7 75" (k1,91 AGs, 2(5)) | @' (5)ds
+/ (1)) 7P (9(k2) — () 75" (2, 8) | A s, 2(5)) | ' (5)ds. (10)

As xp — K1, the right-hand side of Equation (10) tends to zero. Thus, the equicontinuity
of {IT,z : z € O} is obtained.
Step 5. We prove that 6(t) = {(ITxz)(t) : z € Q} is relatively compact in E.

Obviously, 5(0) = {0} is relatively compact. Let t € (t,,t,1] be fixed, 0 < € < t, and
€ is real number. For z € (), we define

(12)(1) = { 0 (@) = 9() TG (1,5)A(s,2(5)) ¢/ (5)ds, cfonl, r=0,
2 b (9(t) = ()17 TG (8,5) A5, 2(s)) g (5)ds, t<wyﬂ]v>1

By [X1], we obtain 6¢(t) = {(I1°z)(¢) : z € Q) } is relatively compact in E. for every
z € Oy, we get

I(@(t) = @(tx)' PL(IL2) (1) — (T2) (D] < TMaKalg(tyi1) — pty))' F
't
X '/t_e((p(t)—q)(s))m—l(q)(s)_q)(t’y))p—lq)/(s)ds

— 0Oase— 0.

Then 6(t) is relatively compact in E. By steps 3-5 and Arzela-Ascoli theorem, IT; is
completely continuous. Hence, by the fixed point theorem of Krasnoselskii’s [33], there
exists at least one mild solution on J,. O

Theorem 2. Suppose the hypotheses [X1]-[X6] are fulfilled. Then ¢-fractional system (1) has a
unique mild solution on Jy.

Proof. Let z; and z; be the mild solutions of the g-fractional system (1) in Q2. Then,
for each k € {1,2}, the mild solutions z; satisfies

Sg" az(f 0)[20 —G(z)]

R0 - e T n G )P s el =0,
“““@“sﬁ@uwﬂa<> I, (a(8))]
[ () = o) TS S)B(s, 2() s, e (bl v 2 1

For every t € [0,t1], v = 0, we obtain
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I(@(t) = 9(0)) P [z1 () — z ()]
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where Kj = Supogsgtl(q’(s) —¢(0))F".
Then we obtain

>, * _ 1-
MZRAIZ[)(_GDX:ZIC;;’(O)) p/ot(q)(t)—(p(S))Ul_l

< [l((s) — 9(0))'Plz1(s) — z2(s)]ll¢' (s)ds,

IN

I(@(t) — 9(0)) P [z1 () =z ()]

where M;Kg < 1.
For every t € (ty,ty41], v =1,2,...,H, we get

1((t) = p(t2)) P lz1(t) — 22(1)]] 1(@(t) = @ (b)) P[(ITz1) (1) — (TTz2) (1)]
Mi(1+ Do) [[(p(t) = 9(t)) Pl () — 22(87)]

MeRa(@(tri1) — 0()* [ (90) — 951

(9(s) = ¢(t3))P 7 HI(@(s) = @(t4)) ' P lz1(s) — 22()]ll¢' (s)ds
Mi(1+Dy)[[(@(t) = @(ty)) I

) Plza(ty) — za(8)]l|
+ MaRAKG (@(ty41) — @(ty)) ' 7F t((/!’(f)—(/’(s))‘“_1

ty

< |(g(s) = @(t)'Plz1(s) — z2(s)] ¢ (s)ds,

where K3 = supt755§t7+l(¢(s) —@(0)) !, y=1,2,...,H.
Then we obtain

+ IA

IN X

MoRAK - e
I(0(6) — 9t Vlea(t) ~ o)) = AT I g0y gy

< [(g(s) = @(ty))'Plz1(s) — z2(s)]ll¢" (5)ds,

where M;(1+D,) < 1.
By using the Gronwall’s inequality (Theorem 2.11, [17]), we get

lz1 — 22]|pc =0,

which implies that z; = zp. Therefore, p-fractional system (1) has a unique mild solution
on Jy. O
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(o)

5. Existence of Optimal Controls

Let v takes the value in the separable reflexive Banach space 7 and V¢ (7)) is a class of
subsets of 7, which is nonempty convex and closed. The multifunction g : 7 — V¢(T) is
measurable and ¢(-) C A, the admissible control set

Uy = {v € L2(A) :0(t) € g(t) ae.},
where A is a bounded set of 7. Then U,; # ¢.
Consider following ¢-Hilfer fractional impulsive differential control system:
HD‘?’UZ:‘Pz(t) = Az(t) + Do(t) + A(t,z(t)), t € (0,b] — {t1, ta, ..., tx},
fy WO (0 0) = 2(8) + Ty (2(6), ¥ = 1,2,..., H, (11)
o V()]0 + 6(2) = 20,

Let us assume the following hypotheses

[X7]: D € L*(Jo, L(T,E)), that implies that Dv € L2(Jo, E) for v € Uyy.
[X8]: K. = sup;c 7, ¢'(t) < co.

Theorem 3. Suppose the hypotheses of Theorem 2 and [X7]-[X8] are fulfilled. Then for each
v € Uy, @-fractional system (11) has a mild solution which is given by

Sy UQ(f 0) [Zo - §(2)]

+fo

()7 1T (6,5)[Do(s) + Als,2(5)]g/(5)ds,  te[0,n] 1 =0,

sng(f,w[ ( )+ (E)]

+fti(¢(

()11 Tg" (t,5)[Do(s) + A(s, z(s))]¢' (s)ds, te (ty byl v 2 1.

Proof. Let us consider
t
H(E) = [ (p(1) = 9(s) 7T (9 Do() g (s)ds.
v

By Holder’s inequality and [X7], we get

— () PR < Mo||Dlol(@(ty41) — @(ty)F /tt((P(t) — () o(s) |79 (s)ds

Y

< M| De(pltye) — (b))

S VACCEFOIEOr )m(/ e 5)s)

M5 IDlo _ o1—p+(1 172
s MalPllelolion) ol ( [ 1o o )0

MoK Dlleo(@(ty11) — @(ty)) P12
(207 — 1)172 101127, 7)-

<

It follows that (¢(t) — ¢(s))1 175" (t,s)Do(s)¢' (s)ds are integrable on [y, here,
| Dl|eo is the norm of D in Banach space L®(Jy, L(T,E)). Hence, H(:) € Q. Using
Theorem 2, we get the required results. [

We consider the Lagrange problem

(£P) Find (z*,v*) € PC(E) X Uyy
such that 7 (z*,0*) < J(2%,v), (z%,v) € PC(E) X Uy,
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where the cost functional is
H rboiq
o)=Yy / "L, 2 (1), 0 (1))t
¥=0 "1ty
where z° be the mild solution of (11) with respect to control v € U,,.
Next, we assume
[X9]: 1. The functional £ : Jy x E x T — RU {0} is Borel measurable.
2. For almost all t € Jy, L(t, -, -) is sequentially lower semicontinuous on E x 7.
3. For each z¥ € E and almost all t € Jy, L(t,27, ) is convex on T .
4. There exist constants d; > 0, dp > 0, ¢ is non-negative function in L! (Jo,R)
such that

L(t,2°,0) > ¢(t) +dy||2°|| + do|o|F

[X10]:D is a strongly continuous operator.

Theorem 4. If the assumptions [X1]-[X10] are fulfilled, then the problem (LP) admits at least
one optimal pair.

Proof. Assume thatinf{.7(z%v) : v € Uy} = € < +o0. By using [X9], we obtain € > —co.
By definition of infimum there exists a minimizing sequence feasible pair (z¥, v*) C P4,
where P,y = {(z°,v) : z° is a solution of (11) with respect to v € U,;} such that J (X, 0F) —
€ as k — +o0. Since vk C U, v* is bounded in L2 (Jo, T), there exists a subsequence which
is still represented by o and v* € L2(Jy, T) such that
ok 5 0¥

in L2(Jy, T). Since U, is convex and closed, by using Marzur Lemma, we get v* € U,g.
Let z* and z* be the mild solution of system (11) with respect to v* and v*, respectively

S ”z(t 0) [Zo ~G(z)]

()11 T (8, 5) (Do (s) + A(s, 2(5)))g/ (), telonlv=0,

S?“@wﬁz«»+zx<7»

()11 (1,5)[DV*(s) + A(s, 25(s))] ¢/ (s)ds, te (by tyal, v 21,

and

Sy UZ(t 0)[20 - Q( )l

()7 VT (1,5)[Do* (s) + A(s, 2% (s))] ¢ (5)ds, tel0,hl,v=0,

9 VZ(t,tv)[z (£) + (2 (1))

()T (t,5)[Dv*(s) + Als, 2% (s))] @' (s)ds, te (by tyaal, vy 21

It follows from the boundedness of {v*}, {v*} and Theorem 2, we obtain there exists
a constant ® > 0 such that ||z]|e, [|2%]|ec < ©.
For every t € [0,t1], v = 0, we get
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I(o() = 9O PO == 0 < MiKgll(p(t) - 9(0)) P E(t) — =" (1]
b MR (o)~ 9(0)'F [ (p(t) - 9l
X (p(s) = 9(0) " (9s) = 9(0))! PIH(s) — =" (5]l ()
+ Malg(h) - 90 [ (9(t) ~ g(s))"
X DH(s) = Do () 127, )9 ()
< Mikgl(p(t) = p(0)' P (1) — =" (1)
b MR (o)~ 9(0)'F [ (p(t) - 9l

< (p(s) = p(0) 1 (9(s) — p(O)! VIH(s) — " ()] (5)ds
MoK (g(ty) = p(0))"#+1/2

* (20, —1)172

||D'U — DU ||L2(j0

Forevery t € (t,ty 1], v =1,2,..., H, we get
I9() = 9t ) P ~ 2 (O] < My +Dy)(pl6) — ple)) P (6y) =21l
= MaRa(pltr) = 9(t))' [ (o) = )
(9(5) = 9l (p(5) — 9lt3)) PI24(S) — =" 5l (5)ds
b Ma(pltr) ~ 0t [ (plt) ~ 9l

v

DK(s) = Do (5) 220 (5)s
Mi(1+ D)9 — 9t P12 8 — 25 )]
b MRl ) = () [ (o) = 9(s))7

(9(s) — 9(0)P [ (9(s) — @(ty)) P[2(s) — 2" ()] | ' (5)ds
MoK 2 (p(ty 1) — (b)) —P+(1/2)
(20’1 — 1)1/2

X

X

IN

X

+

IDo* — Do*| 127, -

For every t € Jp, we obtain
I2F —zlpe < My(1+D,)|I2" = 2|l pec + MiKgllZ" — 2" || pc

+ MR B (p(b) = 9(0)" | =
MoK (g(b) — p(0)7#+(1/2)
(20’1 — 1)1/2

+

||D0k — DZJ* ||L2(JO,E)’

then there exists a constant AN'* > 0 such that

|12 —z"lpc < N*|DVF — Dol 2, ) (12)

MoK 2 (g(b) — ¢(0))71—P+(1/2)
(207 —1)1/2 (1 —~ My(1+D,) — MKg — MzRAr((szé)(q’(b) - C/’(O))‘Tl>
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. A I r
with My (1+ D) + M1Kg +M2RAIW(¢(17) —¢(0)7 < 1foreveryy =1,2,..., H.
1
Since D is strongly continuous, we obtain

HDUk — DU*”LZ(](),E) — 0ask — oo.
Thus, we have
|2F — z*||pe — 0 as k — oo,

this yields that z5 — z* in PC(E) as k — co. Since PC(E) C L'(Jo, E), by using [X9] and
Balder’s theorem, we obtain

e = lim i/t”“ﬁ(t,zk(t),vk(t))dt

k—o0 7=0" ty

v

Ho oty
y / L(t,25(t), 0" ()dt = T (25, 0") > &, v =0,1,...,H.
=07ty

Thus | attains its minimum at v* € U,;. O

6. Example

Consider the following ¢-Hilfer fractional impulsive differential control system to
verify the proposed results:

. tetz(t,
HD?;}_/UZ,?Z(t,DC) = Z(J((X(tr OC) + U(t, DC) + ]_8(1—|—|,'Z(,'(tl))é)|)’ S (0, 1] — {tl}/ LS [O, 7'[],
1— 1—0v); _ _
It(1+ 01)(1-02) ﬁoz(tf,a) =z(t;, &) + 100 z(t;, &), a € [0, 7], (13)

— —0); 1
5P () o + 122(8 @) = 20(a),
z(t,0) =0 = z(t, n),

with cost functional as

t t
[/ H]/ Ot )| zclucdt‘—l—/7+ / v(t ) zdzxdt}
by

subject to the problem (13), where vy =0,1,071 =2/3, ;; =1/4and 0=ty <t; <tp =D
witht; =0.5,b = 1. Let ¢(t) = tand E = T = L?([0, 7t]). Define an operator A : D(A) C
E — Eby Ay = ¢ with

D(A) = {¢ € E: ¢, ¢ are absolutely continuous and " € E, $(0) =0 = y(m)}.

A has a discrete spectrum, the normalized eigenvectors e, () = +/2/ 7 sin(na) corre-
sponding to eigenvalue are -n%, n € N and A generates an analytic semigroup {7 (#) }+>0
in E, which uniformly bounded and defined as

(e}
Z ucenen,zer

with || 7(t)|| < et Vt > 0. Thus, we choose M = 1 that implies that SUP;e0,00) |7 (H)]] =1
and [X1] is fulfilled. We obtain M7 = 0.8161 and M, = 0.7385. The admissible controls set

Uy ={veT : ol € L*([0,1], T) <1}.
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Let z(t)(a) = z(t, &) and the functions A, Z; and G are defined as

_ teiz(ta) B _ 1
A(t,z)(l’() — m, Il — m Z(tl ,IX), g(z)(lx) — ﬁz(t,a).
We obtain Ky = Ry = 1/18, Kg = 1/15, D; = 1/100 and
1. O =max[M;Kg, M;(1+D;)] = max[0.0544, 0.8243] < 1,
2. MiKg+ Mz/CAM(q)(b) —9(0))1 =0.1312 < 1,
T(o+o1)
3. M{(1+Dy)+ Mllag + MZQAM(Q(@ — gD(O))Ul = 0.9555 < 1.
T(o+o1)

The system (13) can be transformed into (11) with the functional

Ho ot
z%,0) = ™ 2Z2(H)|1% + |lo(#) |3 dt.
60 = 3 [ IO + o) 4

All hypotheses of Theorems 3 and 4 are satisfied. Hence, the problem (13) has at least
one optimal pair.

7. Discussion

The solvability and optimal control results for a class of ¢-Hilfer fractional differen-
tial equations with impulses and nonlocal conditions have been investigated. Standard
techniques combined with the notion of piecewise continuous mild solutions were used
for the main results. Moreover, by using the minimizing sequence concept, we proved
the optimal controls for deriving the optimality conditions. At end, we presented an
illustrative example to provide the obtained theoretical results. In the forthcoming papers,
as new direction, we intend to investigate the relaxation in nonconvex optimal control
problems for a new class of ¢-Hilfer fractional stochastic differential equations driven by
the Rosenblatt process with non-instantaneous impulses [34,35].
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