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Abstract: This paper proposes a simple and effective retinal fundus image simulation modeling to
enhance contrast and adjust the color balance for symmetric information in biomedicine. The aim of
the study is for reliable diagnosis of AMD (age-related macular degeneration) screening. The method
consists of a few simple steps. Firstly, local image contrast is refined with the CLAHE (Contrast
Limited Adaptive Histogram Equalization) technique by operating CIE L*a*b* color space. Then,
the contrast-enhanced image is stretched and rescaled by a histogram scaling equation to adjust the
overall brightness offsets of the image and standardize it to Hubbard’s retinal image brightness range.
The proposed method was assessed with retinal images from the DiaretDB0 and STARE datasets.
The findings in the experimentation section indicate that the proposed method results in delightful
color naturalness along with a standard color of retinal lesions.

Keywords: color retinal image; color balance; contrast enhancement; Rayleigh CLAHE; age-related
macular degeneration

1. Introduction

The World Health Organization (WHO) reported 65 million patients of AMD around
the world, and the numbers could increase to 300 million patients by 2040 [1]. Currently,
AMD evaluation is based on clinical retinal color photography analysis, which relies on
camera properties and the retinal photographer’s experience. These images could be
unsatisfactory for the experts to diagnose because of their low quality, such as low contrast,
under and overexposure, etc. [2]. Hence, prior to usage, these low-quality images need to
be enhanced to ameliorate a superior appearance of the retinal anatomical details.

Contrast Limited Adaptive Histogram Equalization (CLAHE) is a technique to increase
the low contrast of an image [3]. It was developed from Histogram Equalization (HE)
and provided a full range enhancement [4]. The global enhancement sometimes increases
some noise or artifacts along with contrast because it amplifies all levels of light intensity,
causing images to be too bright. Adaptive Histogram Equalization (AHE) [5], which is
a local enhancement, was introduced to fix this issue in HE by distributing the overall
brightness of the image to enhance contrast while disclosing hidden details. However, this
approach still significantly amplifies noise, especially when applied to images with high
noise levels, such as in medical images. Therefore, CLAHE was developed to address the
above-mentioned issues, where the CLAHE algorithm sharpens images and limits noise.

In order to categorize breast tumors, a classification technique for mammographic
images was proposed by combining the machine learning techniques Gaussian Radial
Basis Kernel ELM (Extreme Learning Machine) and KPCA (Kernel Principal Component
Analysis) [6]. In the preprocessing step, CLAHE was applied to improve the quality of
low-contrast images enhancing the hidden information in the mammograms. CLAHE did
not only increase the contrast of the images but also limited the noise in the mammograms.

To assist ophthalmologists, computer-aided diagnosis based on the enhancement of
degraded fundus photographs made use of the CLAHE technique to improve retina color
image quality via CIE L*a*b* color model [7]. First, the input image was converted to CIE
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L*a*b* color space, where L* represents lightness and a*, b* represent chromaticity. The
information in all three channels in the CIE L*a*b* space was equalized. The normalized
information was processed with CLAHE and then un-normalized to CIE L*a*b*. The result
obtained was then reverted to RGB (red, green, blue) color space. The enhanced images led
ophthalmologists to 97.5% accurate AMD classification.

Color retinal image enhancement based on Luminosity and Contrast Adjustment
(LCA) [8] uses luminance gain matrix based on gamma correction, followed by image con-
trast enhancement by CLAHE in the L*a*b* color space. This method improved important
anatomical structures of the retina and also preserved the naturalness of the images. Nine
hundred and sixty-one poor-quality images with an average quality of 0.0404 were en-
hanced, providing good quality images up to an average of 0.4565, with quality assessment
in the range 0–1.

Automated brightness and contrast adjustment of color fundus photographs for the
grading of AMD [9] was developed with a scaling technique to automatically standardize
the brightness, contrast, and color balance of digital color fundus images. Each image
was adjusted to Hubbard et al.’s color retinal image standard by spanning the brightness
curve four times the standard deviation of the image covering 95.5% distribution of the
brightness values. This method decreased non-gradable AMD retinal images from 23% to
the remaining 5.7% of 370 eyes.

Retinal image enhancement using Edge-based Texture Histogram Equalization
(ETHE) [10] was proposed to correct the contrast and illumination problems in color
retinal images. First, a Sobel edge detector revealed significant edges. By applying a
threshold of 1 to the detected edges, an edge map was created to identify the dominant
edges. The input images were enhanced by applying the newly calculated histogram
from the map.

Pixel color amplification [11] enhanced retinal fundus images by amplification theory
and enhancement methods to support segmentation tasks on fundus images. The open-
source code image enhancement toolkit (IETK) was applied to enhance the images. Any
combinations of methods represented by letters A, B, C, D, W, X, Y, X, sA, sB, sC, etc., were
applied to control brightening, darkening, and sharpening methods.

Recently, a retinal image enhancement was proposed via low-pass filtering and α-
rooting [12]. The images were improved in four steps: (1) background padding to prevent
a boundary over enhancement, (2) contrast improvement by removing low frequency in
the input image’s root domain, (3) grayscale adjustment in all color channels to recover the
original color, and (4) refinement process to enhance the result image’s contrast.

Adaptive histogram equalization tuned with non-similar grouping curvelet (HET-
NOSCU) [13] canceled noise and enhanced contrast of retina images. Through curvelet
features, the quality of edges remained in the input image during the denoising process
and blocked halo ringing and artifacts from appearing in the result images.

A novel approach, PSO System and Measure of Fuzziness [14], enhanced retinal
fundus images by fuzzy framework applying particle swarm optimization (PSO) to define
the fitness function of the fuzzy system. The system divided an input image into two fuzzy
sub-regions determined by a type-2 fuzzy system, then applied the S-shape function to the
sub-regions. Applying PSO in a fuzzy system improved, for example, blurriness and other
traditional problems of PSO while enhancing retinal images.

In order to enhance blurry retinal images based on non-uniform contrast stretching
and intensity transfer [15], the blurry images were divided into two groups: insufficient
illuminated and sufficient illuminated. The images were applied to contrast stretching
and intensity transfer technique. The authors assumed that the base intensity in input
images could be neglected and, thus, the base-intensity value, calculated with a Gaus-
sian function, was subtracted. In a second step, a compressed Gamma map was applied
to enhance image contrast.

The latest image decomposition and visual adaptation [16] were applied to enhance
retina images. Input images were separated into three layers: base, detail, and noise layers.



Symmetry 2021, 13, 2089 3 of 15

These layers were then processed by illumination correction, detail enhancement, and
denoising, respectively. The authors applied the weight fusion function to enhance and
denoise image details. This method corrected uneven illumination via a regular visual
adaptation model.

Our proposed method is inspired by analyzed brightness, contrast, and color
balance of digital compared with film retinal images in the Age-Related Eye Disease
Study (AREDS) [17] proposed by Hubbard et al. They represented retina images by
dividing 16 intensity scales out of 256 levels of RGB color model. The histogram
of intensity curves in their study peaked at 12/16, 6/16, and 2/16 for R, G, and B
correspondingly; the color balance of band ratios was G/R = 0.5 and B/R = 0.17. Lastly,
the overall brightness ranged between [7/16, 15/16] for R, [1/16, 9/16] for G, and [1/16,
3/16] for B color bands. This color model was since applied for grading AMD [9].

The purpose of this retinal fundus image enhancement technique is to improve the
quality of retinal fundus images aiding specialists to analyze retinal diseases effortlessly
and precisely. It also contributes to a specified color model for AMD lesions with easier to
identify structural information. The paper contributes as follows:

(1) AREDS proposed convenient retinal image brightness values to be a guideline for
retinal image adjustment. The proposed histogram scaling technique evolves the
AREDS manually adjusted values to adjust the AREDS brightness values and maintain
color balance automatically. However, the provided color model of AREDS [17]
enhances only the macular area while excluding the optic disk. The proposed method
is developed for a region of interest (ROI) to cover all the retinal regions;

(2) Combining the AREDS retinal image brightness values with the Rayleigh CLAHE en-
hancement technique, including the parameter values experimented with in this paper,
improves the quality of the adjusted images by increasing their contrast reasonably;

(3) When tested on the two datasets, STARE and DiaretDB0, and compared with
several state-of-the-art methods, the proposed method was measured visually
and objectively with global contrast factor (GCF) [18] for colorfulness (M(3)) [19],
lightness order error (LOE) [20], and quaternion structural similarity (QSSIM) [21].
The proposed method performs excellent for directly enhancing AMD and for
general retinal image enhancement.

This paper narrates from the materials and methods in Section 2, continues to results
in Section 3, and concludes in Section 4.

2. Materials and Methods

The method was evaluated via two publicly available datasets, the Diabetic Retinopa-
thy Database (DiaretDB0) and Structured Analysis of the Retina (STARE). Collected by
Kauppi et al. [22], the DiaretDB0 consists of 130 images taken with a 50◦ field of view
(FOV) with 1500 × 1152 pixels in dimension. The STARE consists of 397 images captured
by Hoover et al. [23] with a 35◦ FOV and 700 × 605 pixels in dimension. The proposed
method could handle the differences in both datasets, as demonstrated in Section 1.

Hubbard et al. proposed a method to enhance color retinal images manually by using
Photoshop with the focus on color enhancement at the macular area. They adjusted and
specified the color data according to their criteria for visual inspection. The criteria were set
as standard to improve the image quality. When applied with the scaling [9] and CLAHE
technique, it could then automatically enhance the image with MATLAB (2015 version 8.6).

For the proposed algorithm, 70 images were randomly selected with uniform distribu-
tion and stored for next use as a data representative to sample for parameter optimization.
In total, 70 sample images were selected equally from both datasets used in this paper;
thus, 35 images from each dataset.

To adjust the brightness and color correctness of images, we applied the histogram
stretching technique with the CLAHE technique to automatically match the output image
properties to Hubbard’s standard. The method consists of two modules: (i) CLAHE
algorithm to improve the contrast of the image. (ii) Histogram stretching to expand the
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tightened histogram in each color band to Hubbard’s standard. Each module is thoroughly
described in the following subsections. For an extensive overview, typical retinal images
have a black border that must be removed before use. Images in the STARE and DiaretDB0
datasets are not consistent, i.e., many images appear with a darker to black area due to
uneven lightness, unbalanced camera flash reflection caused by the curves of eye lenses,
and green or red timestamps on the border. In order to eliminate these anomalies, Otsu’s
method was applied to obtain pixels in the ROI of the images. The final product of the ROI
extraction is a circular area of the retina with the black background eliminated.

2.1. Otsu’s Threshold to Select ROI

An image file from DiaretDB0 illustrates the ROI selection. To obtain the ROI, as
shown in Figure 1, the red channel of the input image was used as a threshold for Otsu’s
method to create a mask. The method was mainly applied to separate the dark background
from the retina. For this reason, the threshold value was then scaled down with 0.25 to
guarantee the separation between the background and the retina. The mark was then used
to create the index of the pixels in the ROI. This process resulted in a retina-only image.

Figure 1. ROI retinal image. (a) original image; (b) ROI mask; (c) after removing background.

2.2. Improving Contrast of the Image with CLAHE

In order to enhance the contrast and balance color of a retinal image, the proposed
method employs CIE L*a*b* color space because it provides a representation of color
opponent in measuring colorfulness [19]. The color space divides color information into
lightness (L*) and chromatic information (a*, b*) on a red/green (a*) and yellow/blue (b*)
axis. The lightness of the color varies as a function of L*, in the range of 0 (black) to 100
(white). It increases the saturation (or chroma) as it shifts from the central region to the
edge of the sphere. It changes the hue angle when it moves around the sphere.

In order to convert data in RGB color space to CIE L*a*b* color space, the RGB data
are converted to XYZ color space first, then converted to CIE L*a*b* color space. The
transformation function to convert RGB to XYZ color space is shown below: X

Y
Z

 =

 0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 R
G
B

 (1)

where X, Y, and Z are tristimulus values of the XYZ color space sample.
The equations to convert XYZ to CIE L*a*b* coordinates [24] are shown in the following:

L∗ = 116 f
(

Y
Yn

)
− 16 (2)

a∗ = 500·
[

f
(

X
Xn

)
− f

(
Y
Yn

)]
(3)
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b∗ = 200·
[

f
(

Y
Yn

)
− f

(
Z
Zn

)]
(4)

where function f (· · · ) is given by:

f (t) =

{
t

1
3 ; t > 0.008856

7.787·t 1
3 + 16

116 ; t ≤ 0.008856
(5)

Xn, Yn, and Zn in Equations (2)–(4) are reference tristimulus white point values, which
are assigned to 255 for the 8-bit images.

CLAHE is a technique for enhancing low-contrast images, usually to enhance
retinal images [7,25,26]. The proposed method develops Rayleigh CLAHE in [26],
which enhances only the intensity component of images for improving both the color
contrast and color balance.

In the Rayleigh probability density function [27], y provides to specify histogram
intensity data is given by:

y =
x
a2 e(−

x2

2a2 ) (6)

where x represents the CIE L*a*b* color components that are scaled in the range [0, 1]. α is
a shape parameter.

In our algorithm, the shape parameter provides to manage the brightness distribution
in each color component. The parameter value will affect in more significant contrast the
components; thus, we assign the α parameter by:

a = mean(x) (7)

where mean(x) denotes the arithmetic mean of the scaled intensity component x. From
ROI of Figure 1c, when transferred to L*a*b* color space, we obtain the components L*,
a*, and b* from the Equations (2)–(4), as scaled and illustrated the data distributions with
the blue graph histogram in Figure 2. The scaled data are provided to estimate the shape
parameter by Equation (7). The estimated parameters of the components L*, a*, and b*
are αL∗ = 0.47, αa∗ = 0.60, and αb∗ = 0.59, respectively. The shape parameters are fed to
the Rayleigh function in Equation (6), with the density function represented with the red
curves demonstrated in Figure 2.

Figure 2. Probability density function of shape parameters with the mean values of L*, a*, and b* color components.

In our scheme, the shape parameter functions not only as a mean value but also
provides the mode value, as depicted in Figure 2. The mode value represents the brightness
parameter of each color component. The brightness is then translated to provide color
balance as described in the next subsection.

However, the transfer function consists of multiple factors of the CLAHE method,
such as window size, also named “tile”, and “clip-limit” factors, which necessarily define
the optimum values.

In order to optimize the remaining parameters of CLAHE under Rayleigh distribution,
the 70 sample images were employed to design the parameters by fine-tuned and visual
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observance. Examples from our study under Rayleigh distribution, tile-size and clip-limit
parameters are defined as shown in Figure 3. The first column was formulated by tile-
size, 32 × 32 pixels, with clip-limit values equal to 0.01, 0.005, and 0.01 for L*, a*, and b*
components, respectively. For the second column, the L*, a*, and b* components were
operated by the tile-size, 8 × 8 pixels, at the same clip-limit values of the first column.
The images were operated with the bigger tile-size appearing smoother than the smaller
tile-size; however, the image tone of the smaller tile appears better in the component a*,
which represents the red–green channels.

Figure 3. L*, a*, and b* components (from top to bottom) operated by CLAHE with tile-size 32 × 32
in the first column, and the second column operated by tile-size, 8 × 8; both columns use clip-limit
values equal to 0.01, 0.005, and 0.01 for L*, a*, and b* components, respectively.

After manual adjustment, examples for tile-size and clip-limit values are provided
in Figure 4, where Figure 4b was adjusted with tile-size 32 × 32, 8 × 8, and 32 × 32 and
clip-limit 0.01, 0.005, and 0.01; Figure 4c,d were fixed with clip-limit at 0.01, 0.005, 0.01 in
varying tile-sizes; Figure 4e,f with fixed tile-size at 32 × 32, 8 × 8, 32 × 32 but varying clip-
limit values. Figure 4c used a tile-size of 16 × 16, 4 × 4, 16 × 16 for the three components
and appeared a bit greener, with veins less red than in Figure 4b. Figure 4d with a higher
tile-size number also enhanced artifacts significantly. Figure 4e used smaller clip-limit
values than Figure 4b, and the output was smooth but omitted a bunch of information
while Figure 4f, which had greater clip-limit numbers, overly emphasized artifacts. It is
suggested that the optimum tile-size should be 32 × 32, 8 × 8, 32 × 32, and clip-limit
values should be 0.01, 0.005, 0.01 for L*, a*, and b* components, respectively.
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Figure 4. (a) original image; (b) image adjusted with tile-size 32 × 32, 8 × 8, 32 × 32, clip-limit 0.01,
0.005, 0.01; (c) image adjusted with tile-size 16 × 16, 4 × 4, 16 × 16; (d) image adjusted with tile-size
64 × 64, 16 × 16, 64 × 64; (e) image adjusted with clip-limit 0.005, 0.002, 0.005; (f) image adjusted
with clip-limit 0.02, 0.01, 0.02.

Figure 4 demonstrates the effect from clip-limit and tile-size parameters; however, the
stretched histogram of the image result with offset and scale of Hubbard et al. is further
described in the following subsection.

2.3. Stretching Histogram

After enhancing the local contrast by CLAHE, the color components were adjusted to
the offset and scale values. According to Hubbard’s scale [11], the intensity ranges of each
band of the image are 112, 240 for the red band, 16, 144 for the green band, and 16, 48 for
the blue band. Hence, the overall brightness range of the scale in R, G, and B bands is 32,
128, and 128, respectively. The average intensity in each band is 32, 96, and 192 for R, G,
and B, respectively. We then converted the scale values from RGB color space to CIE L*a*b*
color space. We obtain 32.3438, 65.8206, and 10.0466 as the brightness range, ∆ideal , for L*,
a*, and b* channels, respectively. The brightness (Xideal) values are 51.4732, 34.5079, and
51.0550 for L*, a*, and b*, respectively.
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To enhance the image by stretching its histogram, we substituted (8) and (9) from
Tsikata et al. with the converted brightness range and intensity above.

γ = ∆ideal/6σ (8)

where γ is the scale value to stretch the image histogram, ∆ideal is the brightness range, and
σ is the standard deviation of each band of the image. Then calculate x f inal as follows:

x f inal = γxinitial + (Xideal − γYmean) (9)

where xinitial equals the pixel of the image components derived from the CLAHE step.
Xmean is the average intensity of each image band. Xideal is the brightness value of each
channel provided to translate the brightness parameters for adjusting the color offset to
produce the color balance of the retinal images.

In Equation (8), the scale parameter, γ, is controlled by σ denominator; the bigger
the denominator, the smaller γ, and vice versa. The 70 sample images were employed to
proper scale value to enhance and give a good result, as depicted in Figure 5. There were
three examples of the denominator values. Figure 5a–c were adjusted with the denominator
values of 5σ, 6σ, and 7σ, respectively. The output of Figure 5a,b were high in contrast, and
Figure 5a had a higher color saturation so that it appeared unrealistic, while the contrast
and color saturation in Figure 5c were too low. Figure 5b had appropriate contrast and color
saturation for experts to analyze lesions. This suggested that the appropriate denominator
should be 6σ to achieve good results as Hubbard’s specifications.

Figure 5. The effect of scale parameter in Equation (8). (a) 5σ; (b) 6σ; (c) 7σ.

In this step, the image histogram is adjusted to span in the expected range and bright-
ness value so that the overall brightness and color balance would meet the specifications of
Hubbard et al. The results of our method are illustrated in the experimentation.

3. Results

In Section 1, our proposed method was compared with two motivating methods:
the scaling technique [9], designed for enhancing AMD lesions, and the CLAHE tech-
nique [3]. We also compared our proposed method with other projects designed for
enhancing the poor quality of the retinal images: luminosity and contrast adjustment
(LCA) [8], retinal image enhancement using edge-based texture histogram equalization
(ETHE) [10], and enhancement of retinal fundus images via pixel color amplification
(IETK) [11]. We used 397 images from the STARE dataset and 130 images from the
DiaretDB0 dataset to evaluate the performance of the methods. This section presents
the comparison of inefficient images between before and after enhancement, objective
assessment, and inspection of visual quality.

3.1. Number of Inefficient Images before and after Enhancement

There are four categories of undesirable retinal images stated in Hubbard et al. [17]:
(1) red oversaturation, (2) marked under illumination, (3) weak green or strong red, and
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(4) excessive blue. The red oversaturation occurs when over 15% of the red intensity
values ≥ 240. The marked under illumination arises when the red channel brightness
values less than 96. When the brightness ratio G/R < 0.40, it produces weak green or strong
red. Lastly, excessive blue occurs when the brightness ratio is B/R > 0.25.

The dataset investigation in Table 1 shows statistical information of STARE database
as 47.10% of the images occur red oversaturated and 28.21% of which appear blue over-
saturated. DiaretDB0 database has weak green or strong red images for 48.46%. Table 1
also illustrates the percentage of unacceptable images before and after enhancement
by all mentioned methods, including the proposed method. The ETHE method signifi-
cantly increased the excessive blue undesirable to both datasets to 100% for DiaretDB0
and 97.98% for STARE. The IETK method outstandingly increased the red oversatura-
tion to 100% for both datasets. The scaling and proposed method have almost identical
percentage numbers because both were designed to enhance retinal fundus images to
the standard of Hubbard et al.

Table 1. Percentage of unacceptable images before and after enhancement.

CLAHE Scaling ETHE IETK LCA Proposed

Undesirable Type Dataset Before After

Red Over saturation
DiaretDB0 0.77 0 0 0 100 5.38 0

STARE 47.10 9.07 0.25 23.17 100 77.58 0

Marked Under Illumination
DiaretDB0 20.77 11.54 0 0 0 0.77 0

STARE 1.51 2.52 0 0 0 0 0

Weak green/Strong red DiaretDB0 48.46 20.00 0 0 0 26.92 0
STARE 8.82 5.29 0 0 0 6.05 0

Excessive blue
DiaretDB0 0 3.85 0 100 0.77 3.08 0

STARE 28.21 35.26 0 97.98 27.96 34.26 0

Based on the image characteristics derived from Hubbard et al., the color retinal
images were evaluated. The images from both datasets were examined for their bright-
ness, contrast, and color balance statistical information. The images enhanced by the
proposed method obtained the targeted characteristic values as follows. The average
brightness of red, green, and blue channels were 192.0 ± 0.1, 95.2 ± 0.1, and 31.7 ± 0.1,
respectively, for that of the images in the DiaretDB0 database, and were 191.9 ± 0.2,
95.0 ± 0.2, and 32.0 ± 0.2, respectively, for that of the images in STARE database. The
average ratios of Green-to-Red and Blue-to-Red were 0.496 ± 0.000 and 0.165 ± 0.000,
respectively, for that of the images in the DiaretDB0 database and 0.495 ± 0.001 and
0.167 ± 0.001, respectively, for that of the images in the STARE database. Table 2 shows
statistical information of images in DiaretDB0 and STARE database before and after
enhancement by the proposed method.

3.2. Objective Assessment

Besides the statistical image information, this experiment aimed to evaluate the perfor-
mance of the proposed method in terms of contrast, color balance, naturalness preservation,
and structural preservation by four quantitative metrics, global contrast factor (GCF), mea-
suring colorfulness (M(3)), lightness order error (LOE), and quaternion structural similarity
(QSSIM), respectively.

GCF [18] measures the edge contrast of an image at multilevel resolution by calculating
a weighted average to obtain a global contrast factor. The GCF measures grayscale images
only. Therefore, the green channel was selected to represent information of retina structures
in the examined images, as those informative details are stored in the channel.

M(3) [19] measures the image colorfulness suiting the sensory data obtained from
the psychophysical experiment. Its calculations are based on the opponent color model
CIE L*a*b*.
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Table 2. Statistical information of images in DiaretDB0 and STARE database before and after enhancement.

Features Channel DiaretDB0 STARE

Original Image
Mean ± SD
[Min–Max]

Enhanced Image
Mean ± SD
[Min–Max]

Original Image
Mean ± SD
[Min–Max]

Enhanced Image
Mean ± SD
[Min–Max]

Brightness
Red 122.800 ± 28.300

[59.900–186.300]
192.000 ± 0.100

[191.500–192.200]
183.700 ± 34.700
[79.100–244.500]

191.900 ± 0.200
[191.300–192.300]

Green 49.800 ± 13.400
[22.200–91.500]

95.200 ± 0.100
[94.800–95.300]

99.000 ± 25.200
[38.300–185.600]

95.000 ± 0.200
[94.400–95.400]

Blue 11.700 ± 7.200
[0.300–40.3]

31.700 ± 0.100
[31.500–32.000]

34.700 ± 23.400
[1.000–199.700]

32.000 ± 0.200
[31.400–32.500]

Color Balance
Green/Red 0.408 ± 0.062

[0.283–0.556]
0.496 ± 0.000
[0.494–0.497]

0.545 ± 0.122
[0.224–1.113]

0.495 ± 0.001
[0.493–0.498]

Blue/Red 0.097 ± 0.054
[0.002–0.243]

0.165 ± 0.000
[0.164–0.167]

0.202 ± 0.146
[0.004–1.197]

0.167 ± 0.001
[0.163–0.170]

LOE [20] assesses the naturalness preservation from the output image to the input
image. Smaller LOE values indicate better naturalness preservation in an image. On the
other hand, it implies a better enhancement method.

QSSIM [21] is one of the visual quality matrix tools designed for color image structural
quality evaluation. The QSSIM scores range from 0 to 1; the score of 1 means an output
image perfectly preserving the structural information from the input image.

Figure 6 shows the quantitative metrics of GCF, M(3), LOE, and QSSIM, providing
good overall scores for the proposed method by the four measured indexes, starting
with the GCF index compared to the methods in the same group for the scaling and
CLAHE methods. The score of the proposed method is higher; it has a median score
of 7.08, which is almost the same as the LCA method but less than the IETK. For
colorfulness, M(3), the proposed method scored 94.56, which is higher than scaling and
CLAHE methods; however, it scored lower than ETHE and IETK methods. The LOE
index measures naturalness; the proposed method provides an index at the same level
as scaling and CLAHE, but it surpasses LCA, ETHE, and IETK. Regarding information
preservation, the QSSIM index of the proposed method has a median value of 0.89,
which is at the same level as the scaling and CLAHE methods; however, it equates to
better values than the LCA, ETHE, and IETK methods.

3.3. Visual Assessment

From the statistical information evaluation shown above, the proposed method per-
formed well. However, the visual assessment would secure the statistical results for the
experiment. Figures 7–9 show the outcomes from DiaretDB0 and STARE datasets, where
each row provides an image from the dataset, and each column presents the method of the
enhanced image. By starting from the first column, the original, the images were enhanced
with CLAHE [3], scaling [9], ETHE [10], IETK [11], LCA [8], and the proposed method,
respectively. In Figure 7, CLAHE images increase the contrast of the original images, yet
they seem slightly darker. Although the scaling technique results in similar unacceptable
percentage numbers to the proposed method, they differ when compared visually. The
scaling technique leads to good quality in color brightness and color balance, but the
contrast grades are low, whereas the proposed method provides better contrast. ETHE
enhances a good contrast as the vessels separated clearly from the other parts; however, it
led to unnatural color in the retinal image. IETK gives the brightest and most colorful result
so that the vessels are easy to spot as they are in red color, which is different than those
in the aforementioned three methods with brownish vessel color. LCA also gives good
contrast and overall brightness result with a brownish tone but is less colorful. However, a
great colorfulness does not imply to be most suitable for this kind of image as other factors
such as the overall brightness and color balance in the RGB channels are also important.
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The proposed method results in good contrast, brightness, color balance, and colorfulness,
yet it also maintains the overall brightness and brightness ratio between red, green, and
blue compared to the standard. The blood vessels are easy to diagnose as it is in desired
red color.

Figure 6. Performance of various methods on DiaretDB0 and STARE database.
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Figure 7. The result of enhancement by different methods for 4 images (rows) from DiaretDB0 dataset. The columns
represent (a) original, and outcome images are enhanced by (b) CLAHE, (c) scaling, (d) ETHE, (e) IETK, (f) LCA, and
(g) proposed methods.

Figure 8. The result of enhancement by different methods for 4 images (rows) from DiaretDB0 dataset. The columns
represent (a) original, and outcome images are enhanced by (b) CLAHE, (c) scaling, (d) ETHE, (e) IETK, (f) LCA, and
(g) proposed methods.

Figure 8 depicts abnormal lesions such as hard or soft exudates and hemorrhages.
ETHE and IETK produce high saturation so that it might overexpose the information of
those lesions as shown in Figure 8d,e, where exudate lesions are too saturate and too bright
to maintain the information, and some hemorrhages are eradicated unintentionally.

Bright areas such as the optic disc are depicted in Figure 9 and yellowish dots in
Figure 10. The proposed method can provide a better brightness compared to the other
methods where the proposed method suppresses the excess brightness, and the others
exaggerate the brightness to overexpose the information inside the areas.

As supported by outcomes provided in Figures 7–9 as well as Tables 1 and 2, the
proposed method can enhance retinal fundus from different sources, resolutions, and
exposures to the same standard as defined by Hubbard et al. It increases the brightness,
contrast, and color balance of the output images while preserving the structural information
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and naturalness of the output images. Therefore, the proposed method is suitable for
enhancing images used in AMD screening.

Figure 9. The result of enhancement by different methods for 4 images (rows) from STARE dataset. The columns
represent (a) original, and outcome images are enhanced by (b) CLAHE, (c) scaling, (d) ETHE, (e) IETK, (f) LCA, and
(g) proposed methods.

Figure 10. The result of enhancement by different methods for 4 images (rows) from STARE dataset. The columns
represent (a) original, and outcome images are enhanced by (b) CLAHE, (c) scaling, (d) ETHE, (e) IETK, (f) LCA, and
(g) proposed methods.

4. Conclusions

In this paper, the proposed method enhances retinal fundus images by employing
CLAHE and adjusting color coordinate techniques. Input images are adjusted to the
specified color model used to diagnose AMD lesions. It enhances the local contrast yet
preserves the color naturalness of the output image. The method was experimented on
with retinal images from DiaretDB0 and STARE datasets. It improved the image quality,
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as shown in the experiment results. The proposed method could significantly reduce
unsatisfactory images in all four undesirable types (red over-saturation, marked under
illumination, weak green/strong red, and excessive blue). The reduction rate approached
0% while some of the compared methods reduced only some types, and others even
increased dissatisfaction in some undesirable types. The proposed method could also
preserve structural information and color naturalness to a greater extent than the other
compared methods, as shown in Figure 6.

This paper focused only on the improved image quality. In future research, we plan
to extend the proposed enhancement to a comparative study of automatic medical image
classification. In a preprocessing step, we aim for the technique that yields a higher success
result percentage, as suggested by Vetova (2021) [28]. The future comparative study could
be settled between a proposed neural network algorithm from an improved neural network
algorithm for remote sensing image classification [29] and a convolution neural network
with a fuzzy c-mean model used with MR brain images [30].

Lastly, we also plan to extend the quality improvement of retinal images to oRGB
color space. As the oRGB claims to be a true opponent color space since the angle between
the red and green opponent completes 180◦, whereas the angle between the color red and
green of the CIE L*a*b* is more narrow. With such property, we estimate that the output
would be ameliorated in terms of contrast, color balance, and color saturation.
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