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1. Introduction

The theory of motion of a viscous fluid based on the Navier–Stokes equations is
unable to describe the flow of a weak aqueous polymer solution, as the Navier–Stokes
theory does not take into account the properties that the equilibrium state in the liquid,
corresponding to the rheological Newton’s law, establishes, not instantly, after a change in
external conditions, as required by this law, but after some time, characterized by the value
of the relaxation time [1]. These relaxation properties of the liquid dramatically differ for
water and polymer solutions. One of the models applied for the theoretical description of
the dynamics of polymer solutions is the Pavlovskii model [1] :

dv
dt

= −1
ρ
∇p + ν∆v + κ

d∆v
dt

, divv = 0, (1)

where v is the velocity vector, p is the pressure, ρ is the fluid density, ν is the kinematic

viscosity and κ is the normalized relaxation viscosity [2],
d
dt

=
∂

∂t
+ v · ∇. The parameters

ν and κ are considered positive constants.
The above system of equations differs from the Navier–Stokes equations due to the

presence of the term κ
d∆v
dt

, which describes the relaxation properties of the fluid. In the
case of very weak relaxation properties (for κ close to zero), and also in the case when
the motion of the liquid has a steady-state character (the total derivative of the strain rate
tensor with respect to time is equal to zero), this additional term vanishes, in which case
Equation (1) coincides with the Navier–Stokes equations.

The model (1) of the motion of weakly concentrated aqueous polymer solutions has
been confirmed by experimental studies in [3]. The problem of the solvability of the initial-
boundary value problems of the Pavlovskii model (Equation (1) with no-slip conditions on
the boundary of the flow region was studied in [4,5], and in Chapter 4 of the monograph [6].
A similar problem, but with slip conditions on the boundary, was studied in [7]. Stationary
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solutions of system (1) were analyzed in [8,9]. The group properties of Equation (1) and
the construction of their exact solutions were studied in [2,10–12].

For describing laminar flows in the vicinity of walls, the boundary layer theory has
been developed. The derivation of the boundary layer equations is based on simplifications
of the Navier–Stokes equations. Equations of a plane unsteady boundary layer in an
aqueous polymer solution near a rectilinear wall were derived in [13]. The equations of the
laminar boundary layer, based on the Pavlovskii model, and in the case of plane motion
v = (u, v, 0), are the following:

ut + uux + vuy = −px + χuyy + utyy + uuxyy + vuyyy,
ux + vy = 0, py = 0,

(2)

where there is a single dimensionless parameter χ. This parameter is defined by the
relation,

χ =
νl
Vκ

,

where l is the characteristic longitudinal scale of length and V is the characteristic velocity
scale of the oncoming flow.

The integration of the third equation of (2) provides an arbitrary function p(x, t).
The complete group classification of system (2) with respect to this arbitrary element p(x, t)
was performed in [13]. It was shown that the kernel of admitted Lie algebras is defined by
the generators:

Xh = h∂y + (uhx + ht)∂v,

where h(x, t) is an arbitrary function. An extension of the kernel occurs for particular
functions P(x, t) = px(x, t). If P(x, t) = ektF(xe−kt), where k is constant and g′′ 6= 0, then
the extension of the kernel of admitted Lie algebras is defined by the generator:

k(u∂u + x∂x) + ∂t.

If P(x, t) = xg(t), then the extension of the kernel of admitted Lie algebras depends
on g′. For g′ 6= 0, the extension is defined by the generators:

u∂u + x∂x, g′i∂u + gi∂x, (i = 1, 2), (3)

where g1(t) and g2(t) compose a fundamental system of solutions of the second-order
ordinary differential equation ξ ′′ + ξg = 0. For g′ = 0, one can assume that g = 0 by virtue
of an equivalence transformation, and the generators (3) are extended by the additional
admitted generator ∂t. The paper [13] also contains a number of exact solutions of system (2).

The knowledge of an admitted Lie group allows for constructing invariant and par-
tially invariant solutions. For this purpose, one needs to classify the admitted Lie algebra
by constructing subalgebras. For a given subalgebra, one finds invariants [14,15]. Using
the invariants, one defines an invariant [14,15] or a partially invariant [14] solution.

The present paper is devoted to constructing invariant and partially invariant solutions
of system (2). It is organized as follows.

Section 2 is devoted to three new nonstationary solutions of the system of Equation (2),
describing the motion of an aqueous polymer solution near a stagnation point. Section 3
deals with the class of partially invariant solutions possessing two arbitrary functions of
single arguments. Section 4 provides a solution of the boundary layer equations near a
logarithmic curve. Section 5 presents the Conclusions.

2. Nonstationary Motions Near a Stagnation Point

The problem of fluid motion near a stagnation point is one of the classical problems
of hydrodynamics. An exact solution of the Navier–Stokes equations, describing a steady
flow near the stagnation point, was obtained in [16,17]. The corresponding nonstationary
problem and the stationary solutions of the problem of the motion of a polymer solution



Symmetry 2021, 13, 2101 3 of 16

near stagnation points were studied and investigated in [18–20]. This section provides
three exact solutions of the nonstationary problem of Equation (2).

The first solution is obtained by using the method of differential constraints [21,22].
Consider a system of equations of a plane unsteady flow of the boundary layer of an

aqueous polymer solution (2):

(u− uyy)t + u(u− uyy)x + v(u− uyy)y = −px + χuyy, ux + vy = 0. (4)

Add to system (4) the differential constraint:

(u− uyy)y = 0. (5)

The solution of the latter equation, satisfying the no-slip condition at y = 0, and bounded
as y→ ∞, has the form:

u(x, y, t) = c(x, t)(1− exp(−y)), (6)

where c(x, t) is an arbitrary function. Substitution of the expression (6) into the first
equation of system (4) leads to the relations:

cx = χ, ct + ccx = −px,

from which one has:

c = χx + f , p = −(χ + f ′)x− (χx)2/2, (7)

where f (t) is an arbitrary function and f ′ denotes its derivative. The second equation of
system (4), together with the no-slip condition, gives the expression for the function v,

v = χ(−y + 1− exp(−y)). (8)

In the case f = 0, Formulas (6)–(8) describe a steady flow near the stagnation point
x = 0, y = 0. For an arbitrary f (t), the stagnation point has the coordinates x =
− f (t)/χ, y = 0, and the flow region is the quadrant x > − f (t)/χ, y > 0 in the xy-plane.
In this case, the condition u > 0 is satisfied in the flow region, which is dictated by the
initial assumptions during deriving system (4) from the equations of the Pavlovskii model.

Equations (4) admit the generalized Galilean transformation:

t̃ = t, x̃ = x + g(t), ỹ = y, ũ = u + f (t), ṽ = v, p̃ = p− x f ′(t),

where g(t) is an antiderivative of the function f (t). Applying the indicated transformation
in Formulas (6)–(8), we arrive at a stationary solution of system (4), noted above. Thus,
the functional arbitrariness in solution (6)–(8) has the group-theoretical nature.

The other two solutions are partially invariant solutions of system (2). Further exact
solutions of Equation (11) are then constructed using the method of invariant subspaces [23].

System (4) admits a group with the generators

∂x, t∂x + ∂u. (9)

There are no solutions of system (4) invariant with respect to this group, but there are
partially invariant solutions. The general form of such a solution, symmetric with respect
to the x-axis is

u = x f (y, t), v = −
y∫

0

f (z, t) dz. (10)
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Solution (10) corresponds to the pressure distribution p = −x2q(t)/2, where the
function q(t) is given, and is considered in the domain x ≥ 0, y ≥ 0, t ≥ 0. The function
f (y, t) satisfies the equation:

( f − fyy)t + f ( f − fyy)− ( f − fyy)y

y∫
0

f (z, t) dz = q + χ fyy. (11)

A physical meaning has solutions for which f ≥ 0. The velocity components have to
satisfy the no-slip condition at y = 0. For the component v, this condition is satisfied by
virtue of (10). Requiring that u = 0 at y = 0, we arrive at the condition:

f (0, t) = 0, t ≥ 0. (12)

Equation (11) has two two-parameter families of exact solutions satisfying condition (12).
One of these families has the form:

f (y, t) = l(t)(1− cos(y/s(t))), (13)

where the functions l(t) and s(t) are solutions of the Cauchy problem:

dl
dt

= − 1
1 + s2

(
(3 + 2s2)l2 + χl

)
,

ds
dt

= −ls, t > 0, l(0) = l0 > 0, s(0) = s0 > 0. (14)

In this case, the following condition should be satisfied:

q = − χl
1 + s2 +

l2

s2(1 + s2)
. (15)

Thus, the function q(t) is determined a posteriori, after finding a solution to the Cauchy
problem (14). Depending on the parameters l0, s0 and χ, this function may change sign
over time. Figure 1 presents graphs of the function q(t) for different values of the
parameter χ.

A characteristic feature of solution (13) of Equation (11) is that the function f has no
limit when y → ∞. Figure 2 presents graphs of the function f (t) at different time. It
follows from the second equation of (14) that the function s(t) decreases monotonically,
and the following estimates 0 < s < s0 are valid for t > 0. Using simple comparison
theorems, this allows one to obtain two-sided estimates 0 < l− ≤ l ≤ l+. The functions
l−(t) and l+(t) satisfy the equations dl−/dt = −3l2

− − χl− and dl+/dt = −2l2
+ − χ(1 +

s2
0)
−1l+, and the same initial conditions l−(0) = l+(0) = l0. Hence, the estimate l =

O(exp(−ct)) for t→ ∞ follows, where c = χ(1 + s2
0)
−1. In turn, the existence of the limit

lim
t→∞

s(t) = s∞ > 0 follows from it.

The same estimate, together with (15), shows that, starting from some t∗, the function
px = −xq takes positive values for x > 0. In the classical theory of the boundary layer, the
unfavorable nature of the pressure distribution makes it impossible to extend a solution of
the boundary layer equations to large values of x, which is interpreted as a separation of
the boundary layer. In our example, such a phenomenon does not occur due to the fact
that q→ 0, when t→ ∞, and the motion eventually stabilizes to the rest state.

The second class of solutions is defined by the relation:

f (y, t) = m(t)(1− exp(−y/s(t))), (16)

where the functions m(t) and s(t) are solutions of the Cauchy problem:

dm
dt

= −2− s2

1− s2 m2 − χm
1− s2 ,

ds
dt

= −ms (17)
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with the initial conditions:

m(0) = m0 > 0, s(0) = s0 > 0. (18)

After solving the Cauchy problem (17) and (18), then q(t) is determined from the
relation q = dm/dt + m2, which, due to (17), can be rewritten as:

q = − 1
1− s2 (m

2 + χm). (19)

In addition, there is an isolated solution of the form (16), in which m = χ, s = 1.
Further, two cases are considered: (A) s0 < 1, and (B) s0 > 1. Passing in system (17) to

the (m, s) phase plane, we obtain the linear equation:

dm
ds

=
2− s2

s(1− s2)
m +

χ

s(1− s2)
. (20)

In case (A), the solution of the latter equation under the condition m = m0 for s =
s0 < 1 has the form:

m = m0
s2
√

1− s2
0

s2
0

√
1− s2

+
χ

2

 s2
√

1− s2
0

s2
0

√
1− s2

− 1


+

χs2

4
√

1− s2
ln

 (1 +
√

1− s2
0)(1−

√
1− s2)

(1−
√

1− s2
0)(1 +

√
1− s2)

.

(21)

There exists s∗ such that the function m(s) at m0 > 0 takes positive values for s ∈
(s∗, s0), and is monotonic and lim

s→s∗
m(s) = 0. Substituting expression (21) into the second

equation of system (17), one obtains a representation for the function s(t) in the form of a
quadrature. Notice that the function m(s) at s→ s∗ has the form

m(s) =
χ

s∗(1− s2∗)
(s− s∗) + O

(
(s− s∗)2

)
.

Hence, it follows that:

s(t) = s∗ + O
(

exp
(
− χt

1− s2∗

))
, t→ ∞.

Thus, the function s(t) decreases monotonically with increasing t, and s → s∗ at an
exponential rate when t→ ∞. Figures 3–6 present behavior of the functions m and s in the
case (A) for different values of χ and m0.

In case (B) (s0 > 1), the equation on the phase plane can be conveniently rewritten in
the form

dm
ds

=
s2 − 2

s(s2 − 1)
m− χ

s(s2 − 1)
. (22)

The solution of Equation (22) under the condition m = m0 for s = s0 > 1 is given by
the formula:

m = m0
s2
√

s2
0 − 1

s2
0

√
s2 − 1

+
χ

2

 s2
√

s2
0 − 1

s2
0

√
s2 − 1

− 1

+
χs2

2
√

s2 − 1

(
arccos

1
s0
− arccos

1
s

)
. (23)
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It can be shown that the solution of Equation (22) is destroyed in finite time for any
m0 > 0, s0 > 1. According to (23), one has: m ≥ m0s2(s2

0 − 1)1/2s−2
0 (s2 − 1)−1/2. This

leads to the inequality

ds
dt
≤ −m0

s2
√

s2
0 − 1

s2
0

√
s2 − 1

,

which is equivalent to the following:

√
s2 − 1
s3

ds
dt
≤ −

m0

√
s2

0 − 1

s2
0

.

Integrating the latter inequality, one gets for t ≥ 0:

√
s2 − 1
2s2 −

√
s2

0 − 1

2s2
0

+
1
2

(
arccos

1
s
− arccos

1
s0

)
≤ −m0t

√
s2

0 − 1

s2
0

.

Taking into account that the function s(t) decreases with increasing t, one can strengthen
this inequality: √

s2 − 1 < −2m0t
√

s2
0 − 1 +

√
s2

0 − 1 + s2
0 arccos(s−1

0 ),

whence it follows that the lifetime t∗ of the solution to problem (22), (18) under the condition
s0 > 1 does not exceed the value:

T =

√
s2

0 − 1 + s2
0 arccos(s−1

0 )

2m0

√
s2

0 − 1
. (24)

Note that this expression for T does not contain the parameter χ. At the same time
s → 1, m → ∞, and simultaneously q → ∞, when t → t∗. Thus, the conditions m0 >
0, s0 > 1 are sufficient conditions for the destructing the solution of the problem (17), (18)
in finite time.

It was shown above that, under natural physical constraint m0 > 0, the condition s0 > 1
is also a necessary condition for destruction. According to (24), the value of T increases
monotonically with increasing t, and T = πs0/(4m0) + O(1), when s0 → ∞. Formula (24)
also confirms the expected property of decreasing the lifespan with increasing m0. These
tendencies are confirmed by the numerical solution of the Cauchy problem (17) and (18). It is
interesting to note that the value of T tends to the limit T1 = m−1

0 , when s0 → 1.

Remark 1. If the value of s0 − 1 > 0 is sufficiently small, then it is possible not only to make more
precise the estimate of the lifetime t∗ of the solution of the problem (17), (18) in case (B), but also to
obtain an asymptotically exact expression for this value at s0 → 1:

t∗ =
2(s0 − 1)

3(m0 + χ)
+ O

(
(s0 − 1)3/2

)
.

Behavior of the functions m and s in the case (B) are presented in Figures 7–12 for
different values of χ, m0 and s0.
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Figure 1. The function q obtained by numerically solving the Cauchy problem (14), where l0 = 1,
s0 = 1 for various values of χ.

Figure 2. The function f obtained by numerically solving the Cauchy problem (14), where l0 = 1,
s0 = 1 and χ = 1 for various times t.

Figure 3. The function m obtained by numerically solving the Cauchy problem (17) and (18) in case
(A), where m0 = 1, s0 = 0.5 and for various values of χ.
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Figure 4. The function s obtained by numerically solving the Cauchy problem (17) and (18) in case
(A), where m0 = 1, s0 = 0.5 and for various values of χ.

Figure 5. The function m obtained by numerically solving the Cauchy problem (17) and (18) in case
(A), where χ = 1, s0 = 0.5 and for various values of m0.

Figure 6. The function s obtained by numerically solving the Cauchy problem (17) and (18) in case
(A), where χ = 1, s0 = 0.5 and for various values of m0.
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Figure 7. The function m obtained by numerically solving the Cauchy problem (17) and (18) in case
(B), where m0 = 1, s0 = 2 and for various values of χ.

Figure 8. The function s obtained by numerically solving the Cauchy problem (17) and (18) in case
(B), where m0 = 1, s0 = 2 and for various values of χ.

Figure 9. The function m obtained by numerically solving the Cauchy problem (17) and (18) in case
(B), where χ = 1, s0 = 4 and for various values of m0.
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Figure 10. The function s obtained by numerically solving the Cauchy problem (17) and (18) in case
(B), where χ = 1, s0 = 4 and for various values of m0.

Figure 11. The function m obtained by numerically solving the Cauchy problem (17) and (18) in case
(B), where χ = 1, m0 = 1 and for various values of s0.

Figure 12. The function s obtained by numerically solving the Cauchy problem (17) and (18) in case
(B), where χ = 1, m0 = 1 and for various values of s0.

3. On Partially Invariant Solutions

This section considers two classes of partially invariant solutions of Equation (2).
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3.1. Constant px

For constant px Equations (2) admit the generators

∂t, ∂y, x∂x + u∂u. (25)

These generators are also admitted by the classical boundary layer equations [14].
In [24] these generators were exploited for finding a partially invariant solution of the
classical boundary layer equations with the representation:

v = f (ũ), ũ =
u
x

, (26)

where a solution was obtained with f = kũ + k1.
Assume that px = q is constant, and consider the partially invariant solution of

system (2) with the representation:

v = kũ + k1.

Because of the Galilean transformation, one can assume that k1 = 0. Substituting (26)
into Equation (2), they become

xũx + kũy = −ũ, (27)

xũtyy = x(ũt − χũyy) + q. (28)

The general solution of (27) is:

ũ(t, x, y) =
1
x

ψ(z, t), z = xke−y,

where ψ(z, t) is an arbitrary function.
Substituting the latter into (28), it becomes:

z2ψtzz + zψtz + χ(z2ψzz + zψz) = ψt + q. (29)

The latter equation is a linear equation. Assuming that:

ψ(z, t) = h0(t) +
m

∑
j=2

hj(t)zj,

where m is an arbitrary natural number; one finds that:

h0 = −qt + q0, hj = qje−χj2t/(j2−1), (j ≥ 2). (30)

Suppose that

ψ(s, 0) = q0 +
∞

∑
j=2

qjsj (31)

is such that limj→∞
|qj+1|
|qj |

= L > 0. Hence,

lim
j→∞

|hj+1|
|hj|

= L,

and the ratio test shows that the series

ψ(s, t) = h0(t) +
∞

∑
j=2

hj(t)sj (32)
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converges with radius of convergence r = L. Due to the linearity of Equation (29), the func-
tion (32) is a solution of (29).

Remark 2. Equation (29) can be reduced to an equation with constant coefficients. In fact, using
the change:

ψ(z, t) = g(ln z, t), λ = ln z = k ln x− y,

Equation (29) reduces to the equation:

gtλλ + χgλλ = gt. (33)

Due to equivalence transformations [13], we can consider, without loss of generality, that
q = 0. Using the method of separation of variables, assume that:

g(λ, t) = h(t)µ(λ).

Substituting this representation into (33), one obtains:

(h′ + χh)µ′′ = h′µ.

Hence, for µ′′h′ 6= 0 one gets:

χh
h′

+ 1 =
µ

µ′′
= q1,

where q1 is constant such that q1(q1 − 1) 6= 0. The latter gives that:

h′ +
χ

1− q1
h = 0, µ′′ − 1

q1
µ = 0.

Hence, h = eχt/(q1−1), and

µ = C1 sin(k0λ) + C2 cos(k0λ) for q1 < 0, k0 =
√
−q−1

1 ;

µ = C1ek0λ + C2e−k0λ for q1 > 0, k0 =
√

q−1
1 ,

where C1 and C2 are constant.
Because of linearity of Equation (33) these types of solutions also allow to obtain solutions in

the form of series.

3.2. Case px = ektF(xe−kt)

Consider a solution partially invariant with respect to the Lie algebra:

∂y, ∂t + k(x∂x + u∂u), (34)

where k 6= 0 is constant. This Lie algebra is admitted by Equation (2) if P(x, t) = ektF(xe−kt).
Invariants of this Lie algebra are:

v, x−1u, xe−kt.

The representation of the partially invariant solution has the form v = f (ũ, z), where
ũ = x−1u and z = xe−kt. Assume that f (ũ, z) = g1(z)ũ + g2(z). Using the change
of variables from (x, y, t) to (y, z, t), and substituting the representation of the partially
invariant solution into the second equation of (2), it becomes:

zũz + g1ũy = −ũ. (35)
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The general solution of (35) is:

ũ(t, y, z) =
1
z

ψ(s, t), s = e−yg(z),

where g1(z) = zg′(z), and ψ(s, t) is an arbitrary function. The first equation of (2) reduces
to the equation:

(kzg′ + g2)(s3ψss)s − s(sψts)s + ψt − (k + χ)s(sψs)s + kψ + F = 0. (36)

Differentiating the latter equation with respect to z, one obtains:

F′ = −(kzg′ + g2)
′(s3ψss)s, (37)

and differentiating once more with respect to s, one derives that:

(kzg′ + g2)
′(s3ψss)ss = 0.

The case (s3ψss)ss = 0 leads to the trivial solution, hence, assume that:

kzg′ + g2 = k1,

where k1 is constant. Then F is constant, say F = q, and Equation (36) becomes:

k1(s3ψss)s − s(sψts)s + ψt − (k + χ)s(sψs)s + kψ + q = 0. (38)

Equation (38) has solutions of the polynomial form:

ψ(s, t) = h0(t) +
m

∑
j=2

hj(t)sj, (39)

where
h0 = −k−1 + q0e−kt, hj = qje−t(k−jk1+χj2/(j2−1)), (j ≥ 2), (40)

m is arbitrary, and qj are constant. Notice that:

hj+1

hj
= etk1

qj+1

qj
e

t χ(2j+1)
j(j2−1)(j+2) .

Consider the function:

ψ(s, 0) = q0 +
∞

∑
j=2

qjsj, (41)

such that limj→∞
|qj+1|
|qj |

= L > 0. Hence,

lim
j→∞

|hj+1|
|hj|

= etk1 L,

and the ratio test shows that the series

ψ(s, t) = h0(t) +
∞

∑
j=2

hj(t)sj (42)

converges with the radius of convergence r = etk1 L. Because of the linearity of the equation,
the function (42) defines a solution of (38). Notice that for k1 < 0 the radius of convergence
decreases with increasing t.
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Remark 3. As the Lie algebra (34) is a subalgebra of the Lie algebra (25), then a similar form of a
solution can be considered as in the previous case.

Remark 4. Equation (38) can also be reduced to the linear equation with constant coefficients:

k1gλλλ − gλλt − (k + χ)gλλ − k1gλ + gt + kg + q = 0.

4. Boundary Layer near a Logarithmic Curve

The equations of a plane stationary boundary layer in a polymer solution near a solid
rectilinear wall have the form:

u(u− uyy)x + v(u− uyy)y = −px + χuyy, ux + vy = 0, (43)

where p(x) is a given function. Assume that p(x) = −x2/2. Then system (43) admits the
generators x∂x + u∂u, ∂y, and hence their linear combination:

X = x∂x + u∂u − a∂y, (44)

where a is constant. An invariant solution of system (44) with respect to generator (44) has
the form:

u = x f (ζ), v = g(ζ), (45)

where ζ = y + a ln x. The functions f (ζ) and g(ζ) satisfy the system of equations:

f
(

f − f ′′ + a( f ′ − f ′′′)
)
+ g( f ′ − f ′′′) = 1 + χ f ′′, f + a f ′ + g′ = 0, (46)

where the prime denotes differentiation with respect to ζ. Introducing a new unknown
function h = a f + g, then, due to the second equation in (46), the equality f + h′ = 0 is
true. From here and from the first equation in (46), the following equation for the function
h(ζ) is obtained:

hh(iv) − h′h′′′ − hh′′ + h′2 + χh′′′ − 1 = 0. (47)

It is remarkable that Equation (47) does not contain the parameter a.
It is further assumed that a > 0. We would like to describe on the basis of solution (45)

the solution of the boundary layer problem near the curve y = −a ln x, x ≥ 1. For this, it is
necessary to derive the equations of the boundary layer in a polymer solution on a curved
boundary. In the classical theory of the boundary layer, curvilinear Misers coordinates are
introduced for this [25,26]. As the new variable x, the length of the arc of the streamlined
contour, measured from the initial point on it, is chosen, and the distance from the contour
with the x coordinate along the normal to it is chosen for the new variable y. In the new
variables, the equations of the plane boundary layer coincide with the original Prandtl
equations. If we introduce the Misers variables into the initial equations of motion of the
polymer solution in the Pavlovskii model, and perform their asymptotic simplification in
the sense of the boundary layer theory, then at the limit for a stationary flow we obtain
exactly Equation (43). The relation between the variable x in the obtained equations and
the Cartesian coordinate x̄ is given by the formula:

x =
√

x̄2 + a2 −
√

a ln
2a + 2

√
a(x̄2 + a2)

x̄
, x̄ ≥ 1. (48)

It turns out that Equation (47) coincides with the notation with the equation aris-
ing in the analysis of the flow of a polymer solution near the stagnation point [18,19].
The corresponding boundary conditions for Equation (47) have the form:

h(0) = h′(0) = 0, h′ → 1 f or ζ → ∞. (49)
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Defining the function g(ζ) by the relation g = h + ah′, the second equation of (46) is
satisfied and, in addition, by virtue of (48), the equality g(0) = 0 holds. It follows from this
and the equality f = −h′ that the no-slip conditions u = v = 0 are satisfied on the curve
y = − ln x.

Remark 5. Solution (45) of system (43) is defined for x > 0. Notice that equations (43) admit the
discrete symmetry x̃ = −x, ỹ = y, ũ = −u, ṽ = v and p̃ = p. This allows us to extend solution
(45) to negative values of x. In the domain x < 0 the argument of the functions f (ζ) and g(ζ) is
replaced with y + a ln(−x). The next transformation, x̂ = x + 1 if x > 0, and x̂ = −x + 1 if
x < 0, makes it possible to determine a solution of type (45) already for all values of x ∈ R. As
a result, we obtain a solution of system (43), which describes the boundary layer near the curve
defined by the equations y = −a ln(x + 1) for x ≥ 0, and y = −a ln(−x + 1) for x ≤ 0. At the
origin, this curve has an angle point. In the classical boundary layer theory, it is well known the
Falkner-Skan solution, which describes the boundary layer near a wedge ([27], see also [17]). This
solution is self-similar. The solution we have obtained is not such, but it also has a group-theoretical
nature.

5. Conclusions

The present paper deals with the plane unsteady boundary layer equations describing
the behaviour of an aqueous polymer solution. These boundary layer equations for the
Pavlovskii model and the Rivlin–Ericksen model were derived in [13], where a group
analysis of these equations was performed. The present paper is devoted to constructing
exact solutions of system (2), which is based on the Pavlovskii model. One of the problems
considered in our paper is the problem of a flow of polymer solution near a stagnation
point. We have found three exact solutions describing unsteady motion near the critical
point, which differ in the form of conditions at infinity. The first solution (6) and (7), which
satisfies the no-slip condition at y = 0 and is bounded as y→ ∞, is derived by the method
of differential constraints. The representations of the other two solutions (13) and (16) were
obtained by noting that 1, exp(y/s(t)) and cos(y/s(t)) are elements of invariant subspaces
of Equation (11). It should also be noted that Equation (11) was obtained as the reduced
equation for a partially invariant solution [14] of the admitted Lie algebra (9). The main
feature of these solutions is that they are reduced to solving ordinary differential equations.
Another class of partially invariant solutions of system (2) was derived in Section 4. This
class of partially invariant solutions contains two arbitrary functions. Equations of the
boundary layer adjacent to the curvilinear boundary are formulated, and an invariant
solution of the stationary problem in which the solid boundary is a logarithmic curve is
constructed in Section 4.

The present paper is just the beginning of finding exact solutions of the boundary layer
equations describing the behaviour of an aqueous polymer solution. Boundary layers in the
model of second-grade fluid [27,28] and non-stationary boundary layers in the hereditary
model (see [3] and references therein) have not been practically investigated. This area of
fluid dynamics calls for further development.
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