Exploration of Extended Higgs Sectors with Run-2 Proton–Proton Collision Data at the LHC
Abstract
:1. Introduction
2. Extended Higgs Sectors
2.1. Singlet Extensions
2.2. The Two-Higgs-Doublet Model
2.3. Beyond the 2HDM
2.4. Theoretical Calculations Used in the Interpretation of Experimental Results
3. Searches for Neutral Higgs Bosons
3.1. Searches for Heavy Neutral Higgs Bosons Decaying to a Fermion Pair
3.2. Searches for Heavy Neutral Higgs Bosons Decaying to Pairs of Electroweak Vector Bosons
3.3. Search for
3.4. Searches for Light Higgs Boson States
4. Searches for Charged Higgs Bosons
4.1. Search Results for Singly Charged Higgs Bosons in Fermionic Decay Channels
4.1.1.
4.1.2.
4.1.3.
4.2. Search Results for Singly Charged Higgs Bosons in Bosonic Decay Channels
4.2.1.
4.2.2. VBF Production of
4.3. Search Results for Doubly Charged Higgs Bosons
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- ATLAS and CMS Collaborations. Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett. 2015, 114, 191803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, L.; Bryant, P. LHC Machine. JINST 2008, 3, S08001. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. JINST 2008, 3, S08003. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. The CMS Experiment at the CERN LHC. JINST 2008, 3, S08004. [Google Scholar] [CrossRef] [Green Version]
- Englert, F.; Brout, R. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett. 1964, 13, 321–323. [Google Scholar] [CrossRef] [Green Version]
- Higgs, P.W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964, 12, 132–133. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett. 1964, 13, 508–509. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, G.S.; Hagen, C.R.; Kibble, T.W.B. Global Conservation Laws and Massless Particles. Phys. Rev. Lett. 1964, 13, 585–587. [Google Scholar] [CrossRef] [Green Version]
- Higgs, P.W. Spontaneous Symmetry Breakdown without Massless Bosons. Phys. Rev. 1966, 145, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Kibble, T.W.B. Symmetry breaking in nonAbelian gauge theories. Phys. Rev. 1967, 155, 1554–1561. [Google Scholar] [CrossRef]
- Langacker, P. Series in high energy physics, cosmology and gravitation. In The Standard Model and Beyond, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Particle Data Group. Review of Particle Physics. PTEP 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Barger, V.; Langacker, P.; McCaskey, M.; Ramsey-Musolf, M.; Shaughnessy, G. Complex Singlet Extension of the Standard Model. Phys. Rev. D 2009, 79, 015018. [Google Scholar] [CrossRef] [Green Version]
- Barger, V.; Langacker, P.; McCaskey, M.; Ramsey-Musolf, M.J.; Shaughnessy, G. LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet. Phys. Rev. D 2008, 77, 035005. [Google Scholar] [CrossRef] [Green Version]
- Datta, A.; Raychaudhuri, A. Next-to-minimal Higgs: Mass bounds and search prospects. Phys. Rev. D 1998, 57, 2940–2948. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.D. A Theory of Spontaneous T Violation. Phys. Rev. D 1973, 8, 1226–1239. [Google Scholar] [CrossRef] [Green Version]
- Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept. 2012, 516, 1–102. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, R.; Sampaio, M.O.P.; Santos, R. ScannerS: Constraining the phase diagram of a complex scalar singlet at the LHC. Eur. Phys. J. C 2013, 73, 2428. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Combined measurements of Higgs boson production and decay using up to 80 fb-1 of proton–proton collision data at √s= 13 TeV collected with the ATLAS experiment. Phys. Rev. D 2020, 101, 012002. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Combined measurements of Higgs boson couplings in proton–proton collisions at √s13TeV. Eur. Phys. J. C 2019, 79, 421. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Combination of searches for Higgs boson pairs in pp collisions at √s13 TeV with the ATLAS detector. Phys. Lett. B 2020, 800, 135103. [Google Scholar] [CrossRef]
- CMS Collaboration. Combination of searches for Higgs boson pair production in proton–proton collisions at √s 13 TeV. Phys. Rev. Lett. 2019, 122, 121803. [Google Scholar] [CrossRef] [Green Version]
- Silveira, V.; Zee, A. Scalar Phantoms. Phys. Lett. B 1985, 161, 136–140. [Google Scholar] [CrossRef]
- Costa, R.; Mühlleitner, M.; Sampaio, M.O.P.; Santos, R. Singlet Extensions of the Standard Model at LHC Run 2: Benchmarks and Comparison with the NMSSM. JHEP 2016, 06, 034. [Google Scholar] [CrossRef] [Green Version]
- Profumo, S.; Ramsey-Musolf, M.J.; Shaughnessy, G. Singlet Higgs phenomenology and the electroweak phase transition. JHEP 2007, 8, 010. [Google Scholar] [CrossRef] [Green Version]
- Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M.E. Is there a hot electroweak phase transition at mH≳mW? Phys. Rev. Lett. 1996, 77, 2887–2890. [Google Scholar] [CrossRef] [Green Version]
- Damgaard, P.H.; O’Connell, D.; Petersen, T.C.; Tranberg, A. Constraints on New Physics from Baryogenesis and Large Hadron Collider Data. Phys. Rev. Lett. 2013, 111, 221804. [Google Scholar] [CrossRef] [Green Version]
- Djouadi, A. The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rept. 2008, 459, 1–241. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E. Light Pseudoscalars, Particle Physics and Cosmology. Phys. Rept. 1987, 150, 1–177. [Google Scholar] [CrossRef]
- Glashow, S.L.; Weinberg, S. Natural Conservation Laws for Neutral Currents. Phys. Rev. D 1977, 15, 1958. [Google Scholar] [CrossRef]
- Paschos, E.A. Diagonal Neutral Currents. Phys. Rev. D 1977, 15, 1966. [Google Scholar] [CrossRef]
- Gunion, J.F.; Haber, H.E. The CP conserving two Higgs doublet model: The approach to the decoupling limit. Phys. Rev. D 2003, 67, 075019. [Google Scholar] [CrossRef] [Green Version]
- LHC Higgs Cross Section Working Group. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. CERN Yellow Rep. Monogr. 2017, 2. [Google Scholar] [CrossRef]
- Basler, P.; Krause, M.; Mühlleitner, M.; Wittbrodt, J.; Wlotzka, A. Strong First Order Electroweak Phase Transition in the CP-Conserving 2HDM Revisited. JHEP 2017, 2, 121. [Google Scholar] [CrossRef] [Green Version]
- Fontes, D.; Romão, J.C.; Santos, R.; Silva, J.A.P. Undoubtable signs of CP-violation in Higgs boson decays at the LHC run 2. Phys. Rev. D 2015, 92, 055014. [Google Scholar] [CrossRef] [Green Version]
- Carena, M.; Heinemeyer, S.; Wagner, C.E.M.; Weiglein, G. Suggestions for Benchmark Scenarios for MSSM Higgs Boson Searches at Hadron Colliders. Eur. Phys. J. C 2003, 26, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Carena, M.; Heinemeyer, S.; Stål, O.; Wagner, C.E.M.; Weiglein, G. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle. Eur. Phys. J. C 2013, 73, 2552. [Google Scholar] [CrossRef]
- Bagnaschi, E.; others. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios for Run 2 and Beyond. Eur. Phys. J. C 2019, 79, 617. [Google Scholar] [CrossRef] [Green Version]
- Maiani, L.; Polosa, A.D.; Riquer, V. Bounds to the Higgs Sector Masses in Minimal Supersymmetry from LHC Data. Phys. Lett. B 2013, 724, 274–277. [Google Scholar] [CrossRef]
- Djouadi, A.; Quevillon, J. The MSSM Higgs sector at a high MSUSY: Reopening the low tanβ regime and heavy Higgs searches. JHEP 2013, 10, 028. [Google Scholar] [CrossRef] [Green Version]
- Djouadi, A.; Maiani, L.; Moreau, G.; Polosa, A.; Quevillon, J.; Riquer, V. The post-Higgs MSSM scenario: Habemus MSSM? Eur. Phys. J. C 2013, 73, 2650. [Google Scholar] [CrossRef] [Green Version]
- Djouadi, A.; Maiani, L.; Polosa, A.; Quevillon, J.; Riquer, V. Fully covering the MSSM Higgs sector at the LHC. JHEP 2015, 6, 168. [Google Scholar] [CrossRef] [Green Version]
- Mühlleitner, M.; Sampaio, M.O.P.; Santos, R.; Wittbrodt, J. ScannerS: Parameter Scans in Extended Scalar Sectors. 2020. Available online: https://gitlab.com/jonaswittbrodt/ScannerS (accessed on 25 October 2021).
- Mühlleitner, M.; Sampaio, M.O.P.; Santos, R.; Wittbrodt, J. The N2HDM under Theoretical and Experimental Scrutiny. JHEP 2017, 3, 94. [Google Scholar] [CrossRef]
- Maniatis, M. The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed. Int. J. Mod. Phys. A 2010, 25, 3505–3602. [Google Scholar] [CrossRef] [Green Version]
- Arhrib, A.; Benbrik, R.; Moretti, S. Bosonic Decays of Charged Higgs Bosons in a 2HDM Type-I. Eur. Phys. J. C 2017, 77, 621. [Google Scholar] [CrossRef]
- Kling, F.; Pyarelal, A.; Su, S. Light Charged Higgs Bosons to AW/HW via Top Decay. JHEP 2015, 11, 051. [Google Scholar] [CrossRef] [Green Version]
- Bahl, H.; Stefaniak, T.; Wittbrodt, J. The forgotten channels: Charged Higgs boson decays to a W± and a non-SM-like Higgs boson. JHEP 2021, 6, 183. [Google Scholar] [CrossRef]
- Rathsman, J.; Rossler, T. Closing the Window on Light Charged Higgs Bosons in the NMSSM. Adv. High Energy Phys. 2012, 2012, 853706. [Google Scholar] [CrossRef]
- Georgi, H.; Machacek, M. Doubly Charged Higgs Bosons. Nucl. Phys. B 1985, 262, 463–477. [Google Scholar] [CrossRef]
- Hartling, K.; Kumar, K.; Logan, H.E. The decoupling limit in the Georgi–Machacek model. Phys. Rev. D 2014, 90, 015007. [Google Scholar] [CrossRef] [Green Version]
- LHC Higgs Cross Section Working Group. Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables. CERN Yellow Rep. Monogr. 2011, 2. [Google Scholar] [CrossRef]
- LHC Higgs Cross Section Working Group. Handbook of LHC Higgs Cross Sections: 2. Differential Distributions. CERN Yellow Rep. Monogr. 2012, 2. [Google Scholar] [CrossRef]
- LHC Higgs Cross Section Working Group. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties. CERN Yellow Rep. Monogr. 2013, 4. [Google Scholar] [CrossRef]
- Djouadi, A.; Kalinowski, J.; Spira, M. HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 1998, 108, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, D.; Rathsman, J.; Stål, O. 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual. Comput. Phys. Commun. 2010, 181, 189–205. [Google Scholar] [CrossRef] [Green Version]
- Hartling, K.; Kumar, K.; Logan, H.E. GMCALC: A Calculator for the Georgi–Machacek Model 2014. Available online: https://people.physics.carleton.ca/~logan/gmcalc/ (accessed on 25 October 2021).
- Harlander, R.V.; Liebler, S.; Mantler, H. SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM. Comput. Phys. Commun. 2013, 184, 1605–1617. [Google Scholar] [CrossRef] [Green Version]
- Harlander, R.V.; Liebler, S.; Mantler, H. SusHi Bento: Beyond NNLO and the heavy-top limit. Comput. Phys. Commun. 2017, 212, 239–257. [Google Scholar] [CrossRef] [Green Version]
- Dawson, S.; Jackson, C.B.; Reina, L.; Wackeroth, D. Exclusive Higgs boson production with bottom quarks at hadron colliders. Phys. Rev. D 2004, 69, 074027. [Google Scholar] [CrossRef] [Green Version]
- Dittmaier, S.; Krämer, M.; Spira, M. Higgs radiation off bottom quarks at the Tevatron and the CERN LHC. Phys. Rev. D 2004, 70, 074010. [Google Scholar] [CrossRef] [Green Version]
- Harlander, R.V.; Krämer, M.; Schumacher, M. Bottom-Quark Associated Higgs-Boson Production: Reconciling the Four- and Five-Flavour Scheme Approach CERN-PH-TH-2011-134. 2011. Available online: https://cds.cern.ch/record/1407669 (accessed on 25 October 2021).
- Bonvini, M.; Papanastasiou, A.S.; Tackmann, F.J. Resummation and matching of b-quark mass effects in bb¯H production. JHEP 2015, 11, 196. [Google Scholar] [CrossRef]
- Bonvini, M.; Papanastasiou, A.S.; Tackmann, F.J. Matched predictions for the bb¯H cross section at the 13 TeV LHC. JHEP 2016, 10, 053. [Google Scholar] [CrossRef]
- Forte, S.; Napoletano, D.; Ubiali, M. Higgs production in bottom-quark fusion in a matched scheme. Phys. Lett. B 2015, 751, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Forte, S.; Napoletano, D.; Ubiali, M. Higgs production in bottom-quark fusion: Matching beyond leading order. Phys. Lett. B 2016, 763, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Belyaev, A.; Garcia, D.; Guasch, J.; Sola, J. Prospects for supersymmetric charged Higgs boson discovery at the Tevatron and the CERN LHC. Phys. Rev. D 2002, 65, 031701. [Google Scholar] [CrossRef] [Green Version]
- Belyaev, A.; Garcia, D.; Guasch, J.; Sola, J. Prospects for heavy supersymmetric charged Higgs boson searches at hadron colliders. JHEP 2002, 6, 059. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.h. Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN large hadron collider. Phys. Rev. D 2003, 67, 075006. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.p.; Lu, G.r.; Xiong, Z.h.; Yang, J.M. Loop effects and non-decoupling property of SUSY QCD in gb→tH-. Phys. Rev. D 2002, 66, 015007. [Google Scholar] [CrossRef] [Green Version]
- Plehn, T. Charged Higgs boson production in bottom gluon fusion. Phys. Rev. D 2003, 67, 014018. [Google Scholar] [CrossRef] [Green Version]
- Berger, E.L.; Han, T.; Jiang, J.; Plehn, T. Associated production of a top quark and a charged Higgs boson. Phys. Rev. D 2005, 71, 115012. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Ma, W.G.; Zhang, R.Y.; Jiang, Y.; Han, L.; Guo, L. NLO supersymmetric QCD corrections to the tb¯H- associated production at hadron colliders. Phys. Rev. D 2006, 73, 015012. [Google Scholar] [CrossRef] [Green Version]
- Dittmaier, S.; Krämer, M.; Spira, M.; Walser, M. Charged-Higgs-boson production at the LHC: NLO supersymmetric QCD corrections. Phys. Rev. D 2011, 83, 055005. [Google Scholar] [CrossRef] [Green Version]
- Flechl, M.; Klees, R.; Krämer, M.; Spira, M.; Ubiali, M. Improved cross-section predictions for heavy charged Higgs boson production at the LHC. Phys. Rev. D 2015, 91, 075015. [Google Scholar] [CrossRef] [Green Version]
- Degrande, C.; Ubiali, M.; Wiesemann, M.; Zaro, M. Heavy charged Higgs boson production at the LHC. JHEP 2015, 10, 145. [Google Scholar] [CrossRef] [Green Version]
- Degrande, C.; Frederix, R.; Hirschi, V.; Ubiali, M.; Wiesemann, M.; Zaro, M. Accurate predictions for charged Higgs production: Closing the mH±∼mt window. Phys. Lett. B 2017, 772, 87–92. [Google Scholar] [CrossRef]
- Kidonakis, N. Charged Higgs production in association with a top quark at approximate NNLO. Phys. Rev. D 2016, 94, 014010. [Google Scholar] [CrossRef] [Green Version]
- Veatch, J. Searches for resonant scalar boson pair production using Run 2 LHC proton–proton collision data. Symmetry in press. 2021. [Google Scholar]
- ATLAS Collaboration. Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at √s13 TeV. Phys. Rev. Lett. 2020, 125, 051801. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for additional neutral MSSM Higgs bosons in the ττ final state in proton–proton collisions at √s 13 TeV. JHEP 2018, 9, 007. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons. JHEP 2014, 5, 104. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Modelling Z→ττ processes in ATLAS with τ-embedded Z→μμ data. JINST 2015, 10, P09018. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for the neutral Higgs bosons of the Minimal Supersymmetric Standard Model in pp collisions at √s7 TeV with the ATLAS detector. JHEP 2013, 2, 095. [Google Scholar] [CrossRef] [Green Version]
- Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K.E. HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron. Comput. Phys. Commun. 2010, 181, 138–167. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the ℓℓbb and ℓℓWW final states in pp collisions at √s13TeV with the ATLAS detector. Eur. Phys. J. C 2021, 81, 396. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for heavy neutral Higgs bosons produced in association with b-quarks and decaying into b-quarks at √s13 TeV with the ATLAS detector. Phys. Rev. D 2020, 102, 032004. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks. JHEP 2015, 11, 071. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for scalar resonances decaying into μ+μ- in events with and without b-tagged jets produced in proton–proton collisions at √s13 TeV with the ATLAS detector. JHEP 2019, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for MSSM Higgs bosons decaying to μ+μ- in proton–proton collisions at s = 13 TeV. Phys. Lett. B 2019, 798, 134992. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for Heavy Higgs Bosons A/H Decaying to a Top Quark Pair in pp Collisions at √s8TeV with the ATLAS Detector. Phys. Rev. Lett. 2017, 119, 191803. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for heavy Higgs bosons decaying to a top quark pair in proton–proton collisions at √s 13 TeV. JHEP 2020, 4, 171. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Sundrum, R. An Alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for resonances decaying into photon pairs in 139 fb-1 of pp collisions at s = 13 TeV with the ATLAS detector. Phys. Lett. B 2021, 822, 136651. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for physics beyond the standard model in high-mass diphoton events from proton–proton collisions at √s 13 TeV. Phys. Rev. D 2018, 98, 092001. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton–proton collisions at √s 8 and 13 TeV. Phys. Lett. B 2019, 793, 320–347. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for heavy ZZ resonances in the ℓ+ℓ-ℓ+ℓ- and ℓ+ℓ-νν¯ final states using proton–proton collisions at √s13TeV with the ATLAS detector. Eur. Phys. J. C 2018, 78, 293. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Searches for heavy ZZ and ZW resonances in the ℓℓqq and ννqq final states in pp collisions at √s13 TeV with the ATLAS detector. JHEP 2018, 3, 009. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for heavy resonances decaying into WW in the eνμν final state in pp collisions at √s13 TeV with the ATLAS detector. Eur. Phys. J. C 2018, 78, 24. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for WW/WZ resonance production in ℓνqq final states in pp collisions at √s 13 TeV with the ATLAS detector. JHEP 2018, 3, 042. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb-1 of proton–proton collision data at √s13 TeV with the ATLAS detector. Phys. Rev. D 2018, 98, 052008. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for a new scalar resonance decaying to a pair of Z bosons in proton–proton collisions at √s13 TeV. JHEP 2018, 6, 127. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for a heavy Higgs boson decaying to a pair of W bosons in proton–proton collisions at √s 13 TeV. JHEP 2020, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for heavy resonances decaying into a pair of Z bosons in the ℓ+ℓ-ℓ′+ℓ′- and ℓ+ℓ-νν¯ final states using 139 fb-1 of proton–proton collisions at √s13TeV with the ATLAS detector. Eur. Phys. J. C 2021, 81, 332. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for new neutral Higgs bosons through the H→ ZA →ℓ+ℓ−bb¯ process in pp collisions at √s 13 TeV. JHEP 2020, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons. Phys. Lett. B 2016, 759, 369–394. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for Heavy Resonances Decaying into a Z Boson and a Higgs Boson in Final States with Leptons and b-jets in 139fb-1 of pp Collisions at s = 13 TeV with the ATLAS Detector. ATLAS-CONF-2020-043. 2020. Available online: http://cdsweb.cern.ch/record/2728053 (accessed on 25 October 2021).
- CMS Collaboration. Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at √s 13 TeV. Eur. Phys. J. C 2019, 79, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CMS Collaboration. Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at √s 13 TeV. JHEP 2020, 3, 065. [Google Scholar] [CrossRef] [Green Version]
- Pappadopulo, D.; Thamm, A.; Torre, R.; Wulzer, A. Heavy Vector Triplets: Bridging Theory and Data. JHEP 2014, 9, 060. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. hMSSM Summary Plots from Direct and Indirect Searches. ATL-PHYS-PUB-2021-030. 2021. Available online: http://cdsweb.cern.ch/record/2777012 (accessed on 25 October 2021).
- ATLAS Collaboration. A Search for Light CP-Odd Higgs Bosons Decaying to mu+ mu- in ATLAS. ATLAS-CONF-2011-020. 2021. Available online: https://cds.cern.ch/record/1336749 (accessed on 25 October 2021).
- CMS Collaboration. Search for a Light Pseudoscalar Higgs Boson in the Dimuon Decay Channel in pp Collisions at √s7 TeV. Phys. Rev. Lett. 2012, 109, 121801. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for Higgs Boson Decays into a Pair of Pseudoscalar Particles in the bbμμ Final State with the ATLAS Detector in pp Collisions at s=13 TeV. 2021. Available online: http://xxx.lanl.gov/abs/2110.00313 (accessed on 25 October 2021).
- CMS Collaboration. Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV. Phys. Lett. B 2019, 795, 398–423. [Google Scholar] [CrossRef]
- Curtin, D.; Essig, R.; Gori, S.; Jaiswal, P.; Katz, A.; Liu, T.; Liu, Z.; McKeen, D.; Shelton, J.; Strassler, M.; et al. Exotic decays of the 125 GeV Higgs boson. Phys. Rev. D 2014, 90, 075004. [Google Scholar] [CrossRef] [Green Version]
- Haisch, U.; Kamenik, J.F.; Malinauskas, A.; Spira, M. Collider constraints on light pseudoscalars. JHEP 2018, 3, 178. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at √s13 TeV. JHEP 2018, 6, 166. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. A search for pair production of new light bosons decaying into muons in proton–proton collisions at 13 TeV. Phys. Lett. B 2019, 796, 131–154. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at √s 13 TeV. Phys. Lett. B 2020, 800, 135087. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for Higgs bosons decaying to aa in the μμττ final state in pp collisions at √s 8 TeV with the ATLAS experiment. Phys. Rev. D 2015, 92, 052002. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two τ leptons in proton–proton collisions at √s13 TeV. JHEP 2018, 11, 018. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for a light pseudoscalar Higgs boson in the boosted μμττ final state in proton–proton collisions at √s 13 TeV. JHEP 2020, 8, 139. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two τ leptons in proton–proton collisions at √s 13 TeV. Phys. Lett. B 2018, 785, 462. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for Higgs boson decays into two new low-mass spin-zero particles in the 4b channel with the ATLAS detector using pp collisions at √s13 TeV. Phys. Rev. D 2020, 102, 112006. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for new phenomena in events with at least three photons collected in pp collisions at s = 8 TeV with the ATLAS detector. Eur. Phys. J. C 2016, 76, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CMS Collaboration. Search for Exotic Decay of the Higgs Boson into Two Light Pseudoscalars with Four Photons in the Final State at s = 13 TeV. CMS-PAS-HIG-21-003. 2021. Available online: https://cds.cern.ch/record/2776775 (accessed on 25 October 2021).
- ATLAS Collaboration. Search for Higgs boson decays into pairs of light (pseudo)scalar particles in the γγjj final state in pp collisions at √s13 TeV with the ATLAS detector. Phys. Lett. B 2018, 782, 750–767. [Google Scholar] [CrossRef]
- CMS Collaboration. Available online: https://twiki.cern.ch/twiki/bin/view/CMSPublic/Summary2HDMSRun2 (accessed on 6 November 2021).
- ATLAS Collaboration. Summary of Exotic Higgs Boson Decays from the ATLAS Experiment. ATL-PHYS-PUB-2021-008. 2021. Available online: https://cds.cern.ch/record/2758783 (accessed on 25 October 2021).
- ATLAS Collaboration. Search for charged Higgs bosons decaying via H±→τ±ντ in the τ+jets and τ+lepton final states with 36 fb-1 of pp collision data recorded at √s13 TeV with the ATLAS experiment. JHEP 2018, 9, 139. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for charged Higgs bosons in the H±→ τ±ντ decay channel in proton–proton collisions at √s 13 TeV. JHEP 2019, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for charged Higgs bosons decaying into top and bottom quarks at s = 13 TeV with the ATLAS detector. JHEP 2018, 11, 085. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for charged Higgs bosons decaying into a top quark and a bottom quark at s = 13 TeV with the ATLAS detector. JHEP 2021, 6, 145. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons in proton–proton collisions at s = 13 TeV. JHEP 2020, 1, 096. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at s = 13 TeV. JHEP 2020, 7, 126. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for a Light Charged Higgs Boson in t→H+b Decays, with H+→cb, in the Lepton+Jets Final State in Proton–Proton Collisions at s = 13 TeV with the ATLAS Detector. ATLAS-CONF-2021-037. 2021. Available online: https://cds.cern.ch/record/2779169 (accessed on 25 October 2021).
- CMS Collaboration. Search for a light charged Higgs boson in the H±→cs channel in proton–proton collisions at s = 13 TeV. Phys. Rev. D 2020, 102, 072001. [Google Scholar] [CrossRef]
- Akeroyd, A.G.; Moretti, S.; Yagyu, K.; Yildirim, E. Light charged Higgs boson scenario in 3-Higgs doublet models. Int. J. Mod. Phys. A 2017, 32, 1750145. [Google Scholar] [CrossRef] [Green Version]
- Akeroyd, A.G.; Moretti, S.; Song, M. Light charged Higgs boson with dominant decay to quarks and its search at the LHC and future colliders. Phys. Rev. D 2018, 98, 115024. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in final states with eμμ or μμμ in proton–proton collisions at s = 13 TeV. Phys. Rev. Lett. 2019, 123, 131802. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for H±→W±A→W±μμ in pp→tt¯ Events Using an eμμ Signature with the ATLAS Detector at s = 13 TeV. ATLAS-CONF-2021-047. μ. 2021. Available online: https://cds.cern.ch/record/2780092 (accessed on 25 October 2021).
- ATLAS Collaboration. Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s13 TeV with the ATLAS detector. Phys. Lett. B 2018, 787, 68–88. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton–proton collisions at √s13TeV. Eur. Phys. J. C 2021, 81, 723. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton–proton collisions at s = 13 TeV. JHEP 2021, 6, 146. [Google Scholar] [CrossRef]
- Arhrib, A.; Benbrik, R.; Chabab, M.; Moultaka, G.; Peyranere, M.C.; Rahili, L.; Ramadan, J. The Higgs Potential in the Type II Seesaw Model. Phys. Rev. D 2011, 84, 095005. [Google Scholar] [CrossRef] [Green Version]
- Schechter, J.; Valle, J.W.F. Neutrino Masses in SU(2) x U(1) Theories. Phys. Rev. D 1980, 22, 2227. [Google Scholar] [CrossRef]
- Kanemura, S.; Kikuchi, M.; Yagyu, K.; Yokoya, H. Bounds on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario. Phys. Rev. D 2014, 90, 115018. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Available online: https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryResultsHIG (accessed on 6 November 2021).
- Cepeda, M.; Gori, S.; Ilten, P.; Kado, M.; Riva, F. Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC. CERN Yellow Rep. Monogr. 2019, 7, 221–584. [Google Scholar] [CrossRef]
- Muon g-2 Collaboration. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef]
- Bernlochner, F.U.; Ligeti, Z.; Papucci, M.; Robinson, D.J. Combined analysis of semileptonic B decays to D and D*: R(D(*)), |Vcb|, and new physics. Phys. Rev. D 2017, 95, 115008. [Google Scholar] [CrossRef] [Green Version]
- LHCb Collaboration. Test of lepton universality with B0→K*0ℓ+ℓ- decays. JHEP 2017, 8, 055. [Google Scholar] [CrossRef] [Green Version]
Yukawa Couplings | Type-I | Type-II | Lepton-Specific | Flipped |
---|---|---|---|---|
Couplings to Vector Bosons | ||||
(common to all 2HDM types) | ||||
0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, A.; Rompotis, N. Exploration of Extended Higgs Sectors with Run-2 Proton–Proton Collision Data at the LHC. Symmetry 2021, 13, 2144. https://doi.org/10.3390/sym13112144
Ferrari A, Rompotis N. Exploration of Extended Higgs Sectors with Run-2 Proton–Proton Collision Data at the LHC. Symmetry. 2021; 13(11):2144. https://doi.org/10.3390/sym13112144
Chicago/Turabian StyleFerrari, Arnaud, and Nikolaos Rompotis. 2021. "Exploration of Extended Higgs Sectors with Run-2 Proton–Proton Collision Data at the LHC" Symmetry 13, no. 11: 2144. https://doi.org/10.3390/sym13112144
APA StyleFerrari, A., & Rompotis, N. (2021). Exploration of Extended Higgs Sectors with Run-2 Proton–Proton Collision Data at the LHC. Symmetry, 13(11), 2144. https://doi.org/10.3390/sym13112144