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Tomasz Lewiński, Shaohua Wang and

Ting On Chan

Received: 12 October 2021

Accepted: 5 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Building Engineering, Faculty of Civil Engineering, Warsaw University of Technology,
Al. Armii Ludowej 16, 00-637 Warsaw, Poland; p.czumaj@il.pw.edu.pl (P.C.); z.kacprzyk@il.pw.edu.pl (Z.K.)
* Correspondence: s.dudziak@il.pw.edu.pl

Abstract: The designers of civil engineering structures often have to face the problem of the reliability
of complex computational analyses performed most often with the Finite Element Method (FEM).
Any assessment of reliability of such analyses is difficult and can only be approximate. The present
paper puts forward a new method of verification and validation of the structural analyses upon
an illustrative example of a dome strengthened by circumferential ribs along the upper and lower
edges. Four computational systems were used, namely Abaqus, Autodesk Robot, Dlubal RFEM,
and FEAS. Different models were also analyzed—two-dimensional (2D) and three-dimensional (3D)
ones using continuum, bar, and shell finite elements. The results of the static (with two kinds of
load—self-weight and load distributed along the upper ring) and modal analyses are presented.
A detailed comparison between the systems’ and models’ predictions was made. In general, the
spatial models predicted a less stiff behavior of the analyzed dome than the planar models. The good
agreement between different models and systems was obtained for the first natural frequency with
axisymmetric eigenmodes (except from the Autodesk Robot system). The presented approach to the
verification of complex shell–bar models can be effectively applied by structural designers.

Keywords: FEM; dome; modal analysis; reliability of calculations; verification and validation

1. Introduction

The Finite Element Method (FEM) has become a universal tool of the analysis of the
response of engineering structures. Many FEM-based computational systems are used in
practice. However, not all software companies provide theory manuals for their products:
the users have to use the software without being informed on how the finite element is
constructed; in some cases, the software serves as a black box. Thus, the process of the
validation and verification of the computational models acquires particular significance [1].
In general, the validation process makes it possible to answer the question: “Are we solving
the proper mathematical equations modeling the considered mechanical phenomena?”.
On the other hand, the verification process means answering the question: “Are we solving
these equations properly?”. Thus, the validation concerns the physics, while the verifi-
cation refers to the problem of the correctness of the assumed approximations [2]. These
assessments are especially difficult in the case of large-scale problems of the mechanics
of structures composed of bars, plates, and shells. The validation requires experimental
evidence; hence, it cannot be performed before the structure is erected. On the other
hand, the mathematical analysis is vague, due to lack of theorems on the convergence of
FEM schemes applied to complicated multifold shell-like structures with jumps (so-called
offsets) of the reference surfaces along the edges, leading to the eccentricity of the resulting
membrane forces [3]. The present paper shows how to deal with such problems by con-
centrating the attention on the stress analysis of a dome reinforced by circumferential ribs
along both edges.

Due to their small mass and high stiffness, rotationally symmetric domes are fre-
quently designed, treated also as attractive architectural forms [4]; hence, the literature
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devoted to them is rich, including monographs and in-depth studies. In the past, the stress
analyses of domes were performed analytically; hence, the analyses were affected by strong
assumptions of the shell theories, concerning, e.g., the methods of modeling the boundary
conditions and the loads, keeping the rotationally symmetric property of the problem [5,6].
Currently, due to the limitations of the analytical approach, FEM analysis is usually used;
see [7–10]. In some studies, the quasi-brittle behavior of the materials from which the
domes are constructed is also taken into account; cf. [11,12]. Domes are characterized
by a very advantageous area-to-volume ratio, hence being attractive from the point of
view of sustainability; this is why their thermal properties are the subject of intensive
studies [13,14].

The papers dealing with detailed comparison of the results obtained with different
FE codes are rather scarce. Except the previous papers published by the authors, e.g., [15]
concerning a ribbed floor or [16,17] regarding a cylindrical tank on a deformable subsoil,
the paper [18] on the detailed validation of the numerical model of a bridge using three
different FE codes (Robot, SOFiSTiK, and Abaqus) and different modeling techniques can
be mentioned. The comparison of different numerical models of the nonlinear behavior of
reinforced concrete was presented in [19]. However, a dome with ring ribs has not been
considered in any of these papers.

This paper puts forward the extensive process of the verification and validation of an
illustrative example of a constructed dome with ribs along the edges, whose geometry is
depicted in Figure 1. The global coordinate systems in 2D and 3D models are also shown.
Due to the discontinuous support conditions, the problem is not rotationally symmetric; see
Figure 2. The dome was modeled using various FEM systems. The three-dimensional FEM
analysis was confronted with the approximate rotationally symmetric modeling, neglecting
the influence of the discontinuity of the support along the lower edge. The rotationally
symmetric FEM model is viewed as being referential for the FE modeling, which is based
on connecting the shell elements with the finite elements modeling the circumferential
ribs. In the sequel, the bar–shell models are discussed, making it possible to give up the
assumption of rotational symmetry and assume much more realistic boundary conditions.
Thus, we considered three models with approximate treatment of the support conditions
and a fourth model in which these conditions are properly taken into account. It is worth
mentioning that the analyzed dome cannot be considered as a shallow one: the radius of
the spherical part is only 6 m. Consequently, it is difficult to obtain reliable results with
classical simplified analytical methods (as the variants of force method presented in [5,6];
the examples there concerned a sphere of 25 m in radius).

The following four FE systems are used: Autodesk Robot [20], RFEM [21], Abaqus [22],
and the author’s system FEAS [23]. The first two systems include the modules for the
dimensioning of the structures using the common relevant standards. Abaqus makes it
possible to incorporate nonlinear effects, both geometrical and material. The static and
modal analyses were performed; the natural frequencies were computed; the corresponding
vibration modes were constructed.

The paper aims to place strong emphasis on the necessity of performing the validation
and verification of FEM-based results, the conclusions being directed to civil engineers.
Our warnings concern bar–shell structures used as dome roofs of buildings. The analyses
of such structures should not only be thoroughly checked, but the correctness of the FE
results should not be taken for granted either.
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Figure 1. An analyzed dome: an axonometric view and the cross-section with the global coordinate
systems. The dimensions are given in centimeters.

s = 1.0 m

s = 1.0 m

s = 1.0 m
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Figure 2. A projection of the shell with supports marked: the length of a single support zone is 1.0 m.

2. Computational Models
2.1. Main Assumptions

Four computational models were analyzed:

p1 A two-dimensional model with axisymmetric continuum finite elements;

p2 A two-dimensional model with axisymmetric shell finite elements and ring beam
elements;

p3 A three-dimensional model with shell and bar elements with continuous support of
the structure;

p4 A three-dimensional model with shell and bar elements with discontinuous support
of the structure (the boundary conditions corresponding to the real situation).

In each model, the linear and isotropic material model was assumed with parameters
corresponding to heavily reinforced concrete:

• E = 27,000 MPa—Young’s modulus;

• ν =
1
6

—Poisson’s ratio;

• $ = 2800 kg/m3—the bulk density.

For each model, a static analysis was performed with two load cases:

a. Self-weight load;
b. Evenly distributed load on the top ring beam with an intensity of 500 kN/m (the

resultant force acting on the top ring with a radius of r = 0.751 m is 2πr = 2359.34 kN).
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A modal analysis was also performed.
In the modal analysis, in addition to the stiffness matrix, the mass matrix has to be

determined. The computational systems allow for assuming mass in various ways: one
can assume a distributed mass, mass concentrated in nodes with rotations, and mass
concentrated in nodes without rotation. In the examples below, we took the distributed
mass and built a consistent mass matrix. In the calculations, we determined the first 10
natural frequencies. Solving the eigenvalue problem with matrices of big dimensions is a
difficult numerical task, and computational systems use different procedures. The most
popular are the Lanczos method and subspace iteration, cf. [24,25]. We used both of these
methods in the calculations.

To compare the results of the static analysis, the vertical displacement of the axis of
the upper ring was adopted and, in the case of the modal analysis, the eigenfrequencies
and the eigenmodes corresponding to them.

A very important stage of modeling is the approximation of the structure’s geometry.
In the p1 model, the geometry can be mapped very accurately, whereas in the p2, p3, and
p4 models, the three-dimensional object is approximated by surfaces and axes (marking
the center of gravity of the rings). One can approximate the geometry with surfaces and
axes in a variety of ways. Figure 3 shows examples of methods of modeling geometry.
In the computational model shown in Figure 3b, we assumed the surface of the shell on the
upper surface of the dome and extended the span of the surface to the centers of gravity of
the rings (approximately); see Figure 3a. In the computational model shown in Figure 3d,
the surface of the shell was assumed in the middle of the dome’s thickness and the span of
the surface was extended to the centers of gravity of the rims (approximately); see Figure 3c.
On the other hand, in the model from Figure 3f, the shell surface was assumed to be in the
middle of the dome’s thickness and the span of the shell was not increased. The axes of
the rings were located in the centers of gravity of the sections, and in this computational
model, we assumed the offset of the bars’ axes.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Modeling of the shell: (a) alignment to the top surface of the shell, (b) calculation model,
(c) alignment to the middle surface of the shell, (d) calculation model, (e) alignment to the middle
surface of the shell with the trim of the shell along the beam contour, and (f) the computational model.
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The scheme shown in Figure 3b was used in the p2, p3, and p4 models. The compu-
tational model shown in Figure 3f was used only in the Abaqus system in the p3 and p4
models. The p1 model was assumed as the reference for the p2 and p3 models.

2.2. Description of the Models
2.2.1. Model p1: The Theory of Elasticity in the Axisymmetric State

The calculations of the rotational symmetric solid were performed with three FE
systems: FEAS, ARSAP, and Abaqus. It was assumed that the supports of the bottom ring
were located at one point (more precisely, along a circle) in the center of the bottom surface
of the ring, which ensures geometrical invariance in the case of the rotational symmetry.
Thus, we blocked only one degree of freedom: vertical displacement (uZ = 0). In each
of the systems, at least two finite element meshes were used, observing the convergence
of the problem. The FEAS system uses triangular three-node finite elements, whereas
ARSAP employs three- and four-node elements because of the applied meshing technique.
In the Abaqus system, a six-node triangular element (AX6 according to the program
documentation) is used to obtain the most accurate results. Such elements are not available
in the other two FE codes.

Figure 4 shows the FEM meshes from different systems prepared for the calculations.
The dimensions of the model after discretization (the number of finite elements and nodes)
are given below. In the ARSAP system, in curvilinear structures, the element generator
is related to the geometry description. A detailed description of the geometry requires
generating a large number of elements; see Figure 4. In the given example, the division
into elements can be considered as very dense.

(a) (b)

(c)

Figure 4. FE meshes adopted in the p1 model analysis: (a) FEAS—division into elements: 1482 nodes,
2486 elements; (b) ARSAP—division into elements: 3345 nodes, 4974 elements; (c) Abaqus—division
into elements: 3462 nodes, 1571 elements

2.2.2. Model p2: 2D Shell of Revolution with Ring Beams

This section describes the model of the dome, assuming the model of a rotationally
symmetrical shell with ring beams. Ring elements are uncommon in computing systems;
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hence, the calculations were performed only in the Abaqus and FEAS systems. In the
Abaqus system, we used 17 3-node SAX2 shell elements (35 nodes in total). The ring beams
were considered as two-parameter springs with horizontal rotational and translational
stiffness. The spring stiffness was calculated on the basis of the work [5], neglecting the
eccentricities in the connections of the shell with the rings (see Figure 3). We calculated the
translational (ku) and rotational (kϕ) stiffnesses according to the following formulas [5]:

ku =
E A
R2 (1)

kϕ =
E J
R2 . (2)

The FEAS system adopts 120 nodes and 119 flat axisymmetric shell elements and two
single-node ring elements (top and bottom ring beams), [26]. The preliminary analysis of
convergence showed that the division of the structure into 59 shell elements (60 nodes)
and 2 ring elements did not guarantee correct results. As in the previous model, only one
kinematic boundary condition was assumed: uZ = 0 at the center of the bottom ring.

2.2.3. Model p3: 3D Shell–Bar Model

In the p3 model, the dome is modeled with three-dimensional shell and bar elements.
We did not use the rotational symmetry of the task in this model. Computational models
were prepared in all four FEM systems. In each system, FE meshes of different densities
were generated, and the results were converged. The list of the analyzed models is shown
in Table 1.

Table 1. Summary of the presented calculation models.

Model Shell Element Bar Element Coaxiality of Ring Bars System

p3 8-node 3-node no, Figure 3f Abaqus
offset curved curved

p3 8-node 3-node yes, Figure 3b Abaqus
curved curved

p3 3-node flat 2-node yes, Figure 3b FEAS
p3 4-node flat 2-node yes, Figure 3b ARSAP
p3 4-node 2-node yes, Figure 3b RFEM

The analyzed models together with information on the dimensions of discrete models
are presented in Figure 5. In the Abaqus system, models using curved eight-node shell
elements (symbol S8R) and three-node bar elements (symbol B32) were analyzed. In the
FEAS system, a model was made using three-node shell elements and two-node bar
elements. The division into finite elements was obtained using a generator for geometrical
primitives. Such a generator allows for regular division into finite elements according to
the given parameters; see [23]. In the ARSAP system, the model was prepared using flat
four-node shell elements and two-node bar elements. A similar model was developed in
the RFEM code. Boundary conditions were assumed by blocking vertical displacements in
the nodes of the bottom ring uZ = 0. In order to ensure the geometric invariance of the
system in one node, translational displacements in the other two directions and rotation
around the vertical axis were additionally restrained (uX = uY = 0). In the absence of
such an assumption, the system was geometrically variable, which resulted in a singular
stiffness matrix, and as a consequence numerical problems.
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(a) (b)

(c) (d)

(e)

Figure 5. Model p3: (a) Abaqus—computational model p3 offset, nodes: 3312, shell elements:
1008, bar elements: 64, (b) Abaqus—computational model p3, nodes: 2900, shell elements: 812, bar
elements: 116; (c) FEAS—computational model p3 (plan view)—2800: nodes, shell elements: 5400,
members: 200; (d) ARSAP—computational model p3, nodes: 9190, shell elements: 3836, members:
360; (e) RFEM—computational model p3, nodes: 3780, shell elements: 3672, bar elements: 216.

2.2.4. Model p4: 3D Shell–Bar Model with Discontinuous Supports

Finally, the target dome model was analyzed. The dome was supported with sections
along the bottom ring (the length of a single support section was 1 m); see Figure 2. Such
segmental support is often found in objects with partially supported domes, sometimes
such that the supports are called “sails”. The computational models were the same as for
the p3 model, except for the boundary conditions. At the nodes located on the support
sections, all translational degrees of freedom were restrained: uX = uY = uZ = 0.

3. Results of the Analyses
3.1. Static Analysis

Taking into account the self-weight in the FE systems can be done automatically:
the user only enters the material’s density. The value of the gravity force was calculated
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based on the geometry of the model. Examples of the results of the vertical reactions
and displacements of the upper ring due to the self-weight for the p1 and p3 models
are presented in Tables 2 and 3, respectively. It is worth comparing the reaction values.
The differences in the reaction values resulted from the accuracy of the geometry mapping
(and this is mainly a feature of the structure description; the geometry mapping differs in
individual models). As for such a detailed description of the structure in the computational
systems, the differences can be considered quite large.

Table 2. Summary of displacements and reactions: p1 model, self-weight.

uz (m) ·10−5 Rz (kN)

Abaqus −5.05 214.00
FEAS −5.32 211.42

ARSAP −5.34 211.02

Table 3. Summary of displacements and reactions: p3 model, own weight.

Model System uz (m) ·10−5 Rz (kN)

p3 Abaqus −5.39 202.81
offset

p3 Abaqus −5.75 220.40
p3 FEAS −5.43 202.68
p3 ARSAP −5.64 216.60
p3 RFEM −5.64 216.49

The deformation of the structure obtained with the use of the p1 model caused by the
self-weight is presented in Figure 6. In Figure 7, the state of displacement for the same
model can be found due to the load on the top ring. Figure 8 shows the map of the vertical
displacements of the shell due to self-weight obtained with the use of the Abaqus system
for the p3 model, whereas Figure 9 shows the deformation of the dome under the upper
ring’s load obtained with the FEAS system.

(a) (b)

Figure 6. Deformation from self-weight: (a) ARSAP; (b) FEAS.

In Table 4, the vertical displacements of the models under self-weight load are sum-
marized, while in Table 5, the displacements under the load of the upper ring can be found.
In the case of models that were analyzed in at least three systems, the mean, the Standard
Deviation (STD), and the Coefficient of Variation (CoV) were also calculated, allowing for
the evaluation of the dispersion of the results obtained with the use of different systems.
The quotients of the calculated displacements and the reference value are given in brackets,
which were taken as the mean for the p1 models (in bold in the table).
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(a) (b)

Figure 7. Deformation under the load on the top ring: (a) ARSAP; (b) FEAS.

U, U2

−5.386e−05
−4.937e−05
−4.488e−05
−4.039e−05
−3.590e−05
−3.142e−05
−2.693e−05
−2.244e−05
−1.795e−05
−1.346e−05
−8.976e−06
−4.488e−06
+0.000e+00

Figure 8. Deformation under the self-weight: Abaqus.

Figure 9. Deformation under the load on the top ring: FEAS.

Table 4. Summary of displacements uz (m) ·10−5: self-weight.

System p1 p2 p3 p3 Offset p4 p4 Offset

Abaqus 5.05 5.75 (1.10) 5.75 (1.10) 5.39 (1.03) 7.55 (1.44) 6.82 (1.30)
FEAS 5.32 5.37 (1.03) 5.43 (1.04) 8.61 (1.64)
ARSAP 5.34 5.64 (1.08) 9.57 (1.83)
Dlubal 5.64 (1.08) 8.48 (1.62)

mean 5.24 5.62 (1.07) 8.55 (1.63)
STD 0.13 0.12 0.72
CoV 0.03 0.02 0.08
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Table 5. Summary of displacements uz (cm): load on the upper ring.

System p1 p2 p3 p3 Offset p4 p4 Offset

Abaqus 0.97 1.27 (1.33) 1.27 (1.33) 1.06 (1.11) 1.26 (1.32) 1.05 (1.10)
FEAS 0.95 1.01 (1.06) 1.15 (1.20) 1.22 (1.28)
ARSAP 0.95 1.30 (1.36) 1.29 (1.35)
Dlubal 1.30 (1.36) 1.30 (1.36)

mean 0.96 1.26 (1.31) 1.27 (1.33)
STD 0.01 0.06 0.03
CoV 0.01 0.05 0.02

3.2. Modal Analysis

This section presents the results of the modal analysis of the models used earlier in
the static case. The values of the natural frequencies for the p1 model are summarized in
Table 6, and the corresponding modes of free vibration are shown in Figure 10. It is worth
paying attention to the values obtained from the ARSAP system, which differ significantly
from the other results. In the first phase of the calculations, the authors were convinced
that the error was due to badly prepared and entered data. No error was found after
extensive data verification. In order to verify the results, two more calculation models,
p1, in the ARSAP system were prepared (see Table 7) with a different division into finite
elements and reprepared geometry. We also performed calculations for various inertia
matrices (distributed and concentrated mass), for triangular and quadrilateral elements.
The obtained results were similar to each other. Unfortunately, the verification of the model
indicated that the eigenvalues for the rotationally symmetric model in the ARSAP system
were calculated incorrectly.

Abaqus FEAS ARSAP

1: 68.89 Hz 1: 70.01 Hz 1: 175.1 Hz

2: 81.02 Hz 2: 83.25 Hz 2: 304.2 Hz

3: 89.58 Hz 3: 94.40 Hz 3: 370.6 Hz

Figure 10. Model p1: frequencies and modes of natural vibration.
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Table 6. List of the first natural frequencies of the dome for the p1 model (Hz).

System f1 f2 f3 f4 f5

Abaqus 68.89 81.02 89.58 114.7 160.8
FEAS 69.54 81.34 90.65 117.7 166.7

ARSAP 171.5 304.2 370.6 444.5 593.9

Table 7. List of the first natural frequencies of the dome for the p1 model (Hz) calculated in the
ARSAP system.

System f1 f2 f3 f4 f5

ARSAP (379 nodes) 175.0 309.5 378.1 470.6 642.2
ARSAP (940 nodes) 172.1 305.0 371.7 451.0 608.1

ARSAP (3345 nodes) 171.5 304.2 370.6 444.5 593.9

Table 8 lists the natural frequencies for the p2 model. The first two zero values were
obtained in the Abaqus system. Therefore, in Table 8, the next number of the eigenvalue is
given in brackets. Figure 11 shows the first three modes of free vibration. The results from
the Abaqus and FEAS systems obtained in the p2 model were similar to the values from
the p1 model.

Table 8. List of the first natural frequencies of the dome for the p2 (Hz) model.

System f1 f2 f3 f4 f5

Abaqus 68.53(3) 79.57(4) 91.97(5) 118.7(6) 163.57(7)
FEAS 68.61 82.11 96.72 116.8 144.1

In Table 9, the natural frequencies for the p3 model are compiled. The eigenvalue
number is given in brackets. For the Abaqus system, we included the results for the p3
and p3 offset models; cf. Table 1. In the Abaqus system, it is possible to find a solution to
the eigenvalue problem without introducing a point block, with a singular stiffness matrix.
Due to the possible three rigid movements, three zero-natural frequencies were obtained,
which were not included in the summary. Due to the rotational symmetry of the problem,
there were also double natural frequencies, which are not repeated in the tables. Therefore,
the numbers of the natural frequencies are placed in brackets.

Table 9. List of the first natural frequencies of the dome for the p3 (Hz) model.

Model System f1 f2 f3 f4 f5

p3 Abaqus 61.57(4) 69.10(6) 79.24(7) 83.24(9) 85.99(10)
offset

p3 Abaqus 68.52(4) 71.27(5) 76.33(7) 79.11(9) 82.00(10)
p3 FEAS 7.70 35.00 68.04 68.50 69.27
p3 ARSAP 32.89(2) 68.01(3) 69.70(4) 70.86(6) 75.51(7)
p3 RFEM 4.41 32.28 68.73 70.48 71.52

In the list of eigenvalues (see Table 9), we can see a big difference in the first eigen-
value, and in Figures 12–15, we can also see large discrepancies for individual modes of
natural vibration.
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Abaqus FEAS

1: 68.53(3) Hz 1: 68.61 Hz

2: 79.57(4) Hz 2: 82.11

3: 91.97(5) Hz 3: 96.72

Figure 11. Model p2: frequencies and modes of natural vibration.

Figure 12. Abaqus, the p3 model: first and third modes of natural vibration.

Figure 13. FEAS, the p3 model: first and third modes of natural vibration.

Figure 14. ARSAP, the p3 model: first and third modes of natural vibration.

As part of the numerical tests, we analyzed the p3 offset model in the Abaqus system,
assuming different shell and beam finite elements (with linear and square shape func-
tions): S8R + B32, S8R5 + B32, S4R + B31, S4 + B31. We present the results in Table 10.
The discrepancies between different FE types were very slight.
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Figure 15. RFEM, the p3 model: first and third modes of natural vibration.

Table 10. List of the first natural frequencies of the shell for the p3 offset model calculated in the
Abaqus system using different FE types (Hz).

Finite Elements f1 f2 f3 f4 f5

S8R+B32 61.57(4) 69.10(6) 79.24(7) 83.24(9) 85.99(10)
S8R5+B32 61.24(4) 69.09(6) 79.16(7) 83.26(9) 85.86(10)
S4R+B31 62.17(4) 69.63(6) 79.65(7) 83.63(9) 87.14(10)
S4+B31 61.86(4) 69.56(6) 79.54(7) 83.54(9) 86.86(10)

In Table 11, the first natural frequencies for the p4 model are complied.

Table 11. List of the first natural frequencies of the dome for the p4 model (Hz).

System f1 f2 f3 f4 f5

Abaqus 56.55 57.80 57.87 59.42 69.86
FEAS 61.46 63.40 64.25 65.08 69.76

ARSAP 57.49 58.85 60.31(4) 69.87(5) 71.33(6)
RFEM 53.31 54.47 56.6(4) 70.53(5) 71.81(6)

The selected modes of natural vibration are shown in Figures 16–19.

Figure 16. Abaqus, the p4 model: first and third modes of natural vibration.

Figure 17. FEAS, the p4 model: first and third modes of natural vibration.
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Figure 18. ARSAP, the p4 model: first and third modes of natural vibration.

Figure 19. RFEM, the p4 model: first and third modes of natural vibration.

With the use of 3D models, it is possible to determine the forms of natural vibration,
which are not only rotationally symmetric, while 2D models are able to capture only
these ones. Therefore, comparing the results obtained with different models is more
difficult. Table 12 lists the natural frequencies for the individual models to which the first
approximately rotationally symmetric modes of free vibration correspond. In the case of
the models that were analyzed in at least three systems, the mean, STD, and CoV were also
calculated, allowing for the evaluation of the dispersion of the results obtained with the use
of different systems. The quotients of the calculated natural frequencies and the reference
value (in bold in the table) are given in parentheses, which were assumed as averages for
the p1 model, excluding the erroneous results from the ARSAP system.

Table 12. List of the natural frequencies that correspond to the first rotationally symmetrical form of
free vibration.

p1 p2 p3 p4

Abaqus 68.9 68.5 (0.99) 68.5 (0.99) 69.9 (1.01)
FEAS 69.54 68.6 (0.99) 68.5 (0.99) 69.9 (1.01)
ARSAP 171.5 69.7 (1.01) 69.9 (1.01)
Dlubal 68.7 (0.99) 70.5 (1.02)

mean 103.3 68.8 (0.99) 70.0 (1.01)
STD 48.2 0.47 0.29
CoV 0.47 0.01 0.004
ref mean 69.2

4. Discussion

The paper presented a method of verifying the numerical model of a dome with the
use of various modeling methods and computational systems. The discussion of the results
is divided into two parts concerning the static and dynamic analyses.

4.1. Results of the Static Analysis

The vertical displacements obtained from individual models are listed in Tables 4 and 5.
In the following considerations, we assumed that the axisymmetric model p1 is the refer-
ence model for the p2 and p3 models because it uses the continuum elements in the state
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of axisymmetry (without the simplifying assumptions), and the analysis was carried out
using dense meshes, which ensured the most accurate results.

In the case of self-weight, the differences between the models did not exceed 10%,
which can be considered a sufficient accuracy for engineering calculations. However,
attention should be paid to the displacement, when the load is applied to the top ring: the
differences between the models were surprisingly large here, and the results differed by
up to 36%. It can be concluded that both the shell–bar models (p3) and the rotationally
symmetric model with ring elements (p2) from the Abaqus system poorly reflected the
analyzed dome, more precisely the cooperation between the ring beams and the dome: the
omission of the eccentricities significantly reduced the stiffness of the system (see the result
for the p3 offset model). The compatibility between the p3 models may be misleading: by
analyzing only these models, obtained by different computational systems, it is easy to
confirm that we obtained a good representation of the structure (CoV in the 2 ÷ 8% range).
Only the verification using the solid axisymmetric model showed the scale of the error.
This is a good example of a situation where the verification and validation limited to one
model (in this case, the shell–bar one) do not guarantee the correct results.

The analysis of the results for the p4 model showed the influence of the boundary
conditions on the displacement distribution. In the analyzed example, it was greater in the
case of a self-weight (difference up to 84%) than in the case of a ring beam load (difference
up to 10%). The dispersion of the results obtained with the use of different computational
systems was slightly larger for the self-weight load (CoV up to 8%) compared to the top
ring load (CoV up to 6%).

4.2. Results of the Modal Analysis

The analysis of the dynamic properties of the structure is usually a more difficult task
that requires some experience. The paper showed that the verification and validation of
the model for static analysis are mostly independent of the model for dynamic analysis.
The performed calculations clearly showed that a correct model for the static case does not
mean that we will obtain valuable results in the dynamics. Despite similar results in terms
of the static case, significantly different natural frequencies were obtained, in particular for
the p1 model. What is more, the solid revolution symmetric model (p1) from the ARSAP
program produced erroneous results (differing by 150% compared to the other models).
This should be clearly emphasized as ARSAP is one of the most popular systems used in
engineering calculations. On the other hand, the presence of an error in such a popular
system for structural designing proves that modal analysis of an axisymmetric model is
rarely carried out in practice. This is not surprising, since after analyzing the results for
the p3 and p4 models, it can be concluded that the first modes of free vibration were not
axisymmetric, so a three-dimensional model must be prepared for dynamic analyses.

The eigenvalue problem, however, is sometimes used as a computational model check
in static problems. Consequently, it is possible to find modeling errors that are difficult
to detect with static calculations alone. The error of the solution in the modal analysis is
difficult to estimate due to the complicated calculation procedures, which again confirms
the importance of the verification and validation of the calculations performed with FEM.

In the case of modal analysis, taking into account only the frequencies of free vibration
corresponding to axisymmetric eigenmodes and the rejection of the erroneous result from
the ARSAP system, the differences between the individual models were insignificant
(1 ÷ 2%; cf. Table 12). Furthermore, within individual models, the results for different
computational systems were characterized by a small spread (CoV up to 1%).

5. Conclusions

The paper showed how important the verification and validation of numerical models
is to the stage of engineering calculations. The presented examples showed that, before
performing the main part of the static analysis (which includes all load cases, load combi-
nations, code checks, etc.), it is recommended to conduct the calculations with the dead
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weight only and the modal analysis. This approach allows for the detection of gross errors
in modeling geometry, connecting individual parts of the model, etc.

In the case of designing complex bar–shell structures, the possibilities of validating
numerical models are most often limited. Instead of this, one can use the algorithm shown
in this paper, i.e., verify the results of complex models (which are now more and more
popular and will probably only gain popularity) with simpler, e.g., 2D, models. In the case
of rotationally symmetric models, more precise results in the problem of static analysis
were obtained, as the examples from this work showed. It should be emphasized here that
even the most popular engineering computational systems can lead to erroneous results,
as for the p1 model in the ARSAP system for the modal analysis. In such a situation, it is
worth verifying the model with another system.
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