
symmetryS S

Article

Optimal Number of Pursuers in Differential Games on the
1-Skeleton of anOrthoplex

Abdulla Azamov 1, Gafurjan Ibragimov 2 , Tolanbay Ibaydullaev 3 and Idham Arif Alias 2,*

����������
�������

Citation: Azamov, A.; Ibragimov, G.;

Ibaydullaev, T.; Alias, I.A. Optimal

Number of Pursuers in Differential

Games on the 1-Skeleton of an

Orthoplex. Symmetry 2021, 13, 2170.

https://doi.org/10.3390/

sym13112170

Academic Editors: Yu-Hsien Liao,

Yan-An Hwang, Wei-Shih Du and

Hui-Chuan Wei

Received: 14 October 2021

Accepted: 5 November 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Mathematics Named after V.I. Romanowsky, Tashkent 100174, Uzbekistan;
abdulla.azamov@mathinst.uz

2 Department of Mathematics, Institute for Mathematical Research, Universiti Putra Malaysia,
Serdang 43400, Selangor, Malaysia; ibragimov@upm.edu.my

3 Department of Mathematics, Andijan State University, Andijan 170100, Uzbekistan;
matematik_anddu@edu.uz

* Correspondence: idham_aa@upm.edu.my

Abstract: We study a differential game of many pursuers and one evader. All the players move only
along the one-skeleton graph of an orthoplex of dimension d + 1. It is assumed that the maximal
speeds of the pursuers are less than the speed of the evader. By definition, the pursuit is completed
if the position of a pursuer coincides with the position of the evader. Evasion is said to be possible
in the game if the movements of players are started from some initial positions and the position
of the evader never coincides with the position of any pursuer. We found the optimal number of
pursuers in the game. The symmetry of the orthoplex plays an important role in the construction of
the players’ strategies.

Keywords: graph of a polyhedron; differential game; pursuit game; evasion game; game in normal
form; π-strategy
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1. Introduction

There are many papers devoted to pursuit and evasion differential games in Rn (see,
for example, [1–7]).

An essential part of differential games is the differential games of many players. In the
case of geometric constraints, interesting results were obtained by [8–19]. The paper [20] was
devoted to a survey of such differential games.

In the work [21], a self-triggered pursuit strategy was proposed. It was assumed that
the state information was available to the pursuer and evader. In a differential game of
two evaders and one faster pursuer considered in [22], the plane was divided into two
half-planes, the play and goal regions. The pursuer tries to protect the goal region from
the evaders, and the evaders try to reach this region. A strategy for the pursuer was
constructed based on the Apollonius circle.

Differential games of many players with integral constraints on the control functions
of the players are also of increasing interest. For example, the works [23–28] dealt with the
evasion differential games of many pursuers.

The papers [29,30] were devoted to differential games with state constraints.
There are some differential games in Rn where, for any behavior of the evader, the

pursuit can be completed from some initial position. At the same time, the evader, by
choosing his/her control, may delay the capture time as long as he/she wishes. However,
this does not happen for the pursuit and evasion differential games on finite graphs. For
finite graphs, it is possible either that there is a number θ such that, for any initial state of
the players, the game ends by time θ or evasion is possible in the game forever.
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The following two types of games on graphs should be mentioned. In the first type
of games on graphs, players move from one vertex of the graph to an adjacent vertex
by jumping [31–37]. In the second type of games, players move along the edges of the
graph [38–43]. Both types of games can be formulated in a minimax form, and each of
them is a model of the search problem of a moving object [43–45].

In the paper [39], pursuit and evasion differential games of n pursuers and one evader
were studied on the one-skeletons of the regular polyhedrons in R3. All players can move
with the speed not exceeding one. It was shown that the optimal number of pursuers for
the tetrahedron, cube, and octahedron is two and, for the icosahedron and dodecahedron,
is three. A similar differential game was studied in [40] on the one-skeletons of the d-
dimensional regular simplex, orthoplex, and cube, and it was proven that the optimal
number of pursuers for these polyhedrons are two, two, and [d/2] + 1, respectively. Later
on, it was shown in the work [41] that the optimal number of pursuers for the regular
twenty-four-gone and one-hundred-twenty-gone in R4 is equal to three.

The purpose of the present paper is to study a pursuit and evasion game on the edge
graph Kd+1 of the orthoplex Σ2(d+1) in the Euclidean space Rd+1. A (d + 1)-dimensional
orthoplex Σ2(d+1) is a convex hull of 2(d + 1) points:

e2i−1 = (0, . . . , 0, 1, 0, . . . , 0), e2i = (0, . . . , 0,−1, 0, . . . , 0) ∈ Rd+1, i = 1, 2, . . . , (d + 1),

where 1 in e2i−1 and −1 in e2i is in the i-th place. Its edges of length
√

2 form a finite graph
Kd+1 with 2(d + 1) vertices.

Let n pursuing points xk, k = 1, 2, . . . , n, whose velocities do not exceed in absolute
value ρk, ρk > 0, k = 1, 2, . . . , n, respectively, and one evading point E, whose velocity does
not exceed σ, σ > 0, move along the graph Kd+1. These data define the differential game.
The main difference of the present work from [40] is that we study differential games of
slow pursuers. In [40], the construction of the strategies of pursuers was based on the fact
that a pursuer can move symmetrically toward the evader with respect to some hyperplane,
but in the case of slow pursuers, this is impossible. The construction of the strategies of
pursuers in the present paper is based on the fact that each pursuer with speed ≥ 1/2 can
guard two vertices of an edge of the orthoplex, and each pursuer with speed < 1/2 can
guard only one vertex of an edge of the orthoplex. In constructing the evader’s strategy,
this fact plays a key role as well.

Usually, in pursuit differential games, the pursuer has an advantage over the evader.
For example, the control set of the pursuer may contain that of the evader, and vice versa, in
evasion differential games, it is natural that the evader has an advantage over the pursuer.
Note that the fact that the players cannot leave a given finite graph is itself an advantage
for the pursuer in differential games on finite graphs. Therefore, we can consider a pursuit
differential game with slow pursuers as well. Furthermore, we can obtain a pair of winning
strategies of players in pursuit and evasion problems [2,6]. In the present paper, we use
the π-strategy (see, for example, [46]) in constructing the pursuit strategies. Note that if a
pursuer applies the π-strategy on some time interval [t0, t1], then the straight line passing
through the states of the pursuer and evader at any time t ∈ [t0, t1] remains parallel with
the straight line passing through the states of the pursuer and evader at time t0.

2. Statement of the Problem

We considered a differential game of n pursuers x1, x2, . . . , xn, n ≥ 2, and one evader
y, whose dynamics are given by the following equations:

ẋi = ui, xi(0) = xi0, i = 1, ..., n,
ẏ = v, y(0) = y0,

(1)

where xi0, y0 ∈ Kd+1, xi0 6= y0, i = 1, . . . , n; ui is the control parameter of the i-th pursuer;
v is the control parameter of the evader. All the players move along the edges of orthoplex
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Kd+1. The maximal speeds of the pursuers x1, x2,..., xn are ρ1, ρ2, . . . , ρn, respectively, and
that of the evader y is σ, i.e., |ui| ≤ ρi, i = 1, . . . , n, |v| ≤ σ.

A function ui(·), ui : [0, ∞)→ B(ρi) is called an admissible control of the i-th pursuer,
i ∈ {1, . . . , n}, if for the solution xi(·) of the equation:

ẋi = ui, xi(0) = xi0,

we have xi(t) ∈ Kd+1, t ≥ 0.
A function v(·), v : [0, ∞)→ B(σ) is called the admissible control of the evader, if for

the solution y(·) of the equation:

ẏ = v, y(0) = y0,

we have y(t) ∈ Kd+1, t ≥ 0.
We considered pursuit and evasion games. In the pursuit differential game, pursuers

apply some strategies, and the evader uses an arbitrary admissible control. Let us define
the strategies of the pursuers.

Functions (t, x1, . . . , xn, y, v)→ Ui(t, x1, ..., xn, y, v), i = 1, 2, . . . , n, are called the strate-
gies of the pursuers xi, i = 1, 2, ..., n, if the initial value problem (1) has a unique solution
x1(t), . . . , xn(t), y(t) ∈ Kd+1, t ≥ 0, for ui = Ui(t, x1, . . . , xn, y, v), i = 1, 2, . . . , n, and for
any admissible control v = v(t) of the evader.

If, for some number T > 0, there exist strategies of pursuers such that xi(τ) = y(τ) at
some 0 < τ ≤ T and i ∈ {1, . . . , n}, then the pursuit is said to be completed. The pursuers
are interested in completing the pursuit as earlier as possible.

A function (t, x1, . . . , xn, y) → V(t, x1, . . . , xn, y) is called a strategy of the evader y
if the initial value problem (1) has a unique solution x1(t), . . . , xn(t), y(t) ∈ Kd+1, t ≥ 0,
for v = V(t, x1, . . . , xn, y) and for any admissible controls of the pursuers ui = ui(t),
i = 1, 2, . . . , n.

If, for some initial states of the players x10, . . . , xn0, y0 ∈ Kd+1, there exists a strategy
of the evader such that xi(t) 6= y(t) for all t ≥ 0, and i = 1, . . . , n, then we say that evasion
is possible in the game in Kd+1. The evader is interested in maintaining the inequality
xi(t) 6= y(t) as long as possible. Since for some initial states, the evader may be trapped
by the pursuers and the pursuit can be completed by the pursuers easily, therefore this
definition contains the phrase “for some initial states of players x10, . . . , xn0, y0 ∈ Kd+1”.

The number N = N(Kd+1) is called the optimal number of pursuers for the game on
cocube Kd+1 if, for any initial states of the players, the pursuit can be completed in the
game with N pursuers and evasion is possible in the game with N − 1 pursuers.

The problem is to find the optimal number of pursuers N in the game, to construct
strategies for the pursuers in the pursuit game, and the evasion strategy.

3. Main Result

The one-skeleton Kd+1 of the orthoplex Σ2(d+1) can be obtained as follows. We call
the symmetry vertices e2i−1 and e2i of Σ2(d+1) antipodal. For each i = 1, 2, . . . , 2(d + 1),
we connect ei with all vertices with segments, which are not antipodal to ei, and we
obtain Kd+1.

If ρi0 > σ for some i0 ∈ {1, 2, . . . , n}, then, clearly, only one pursuer xi0 can capture
the evader. If ρi0 = σ and ρj0 = σ, for some i0, j0 ∈ {1, 2, . . . , n} and i0 6= j0, then it is
shown that only two pursuers xi0 and xj0 can capture the evader [40]. Furthermore, it can
be shown that if ρi0 = σ and n ≥ 2, then the pursuit can be completed. Therefore, in the
present paper, we considered the case where ρ1, ρ2, . . . , ρn less than σ, that is 0 < ρi < σ.

We denote the vectors corresponding to the points x1, x2, . . . , xn, and E by x1, x2, . . . ,
xn, and y, respectively. Let:

1/2 ≤ ρi < 1, i = 1, 2, ..., k; 0 < ρi < 1/2, i = k + 1, ..., n.
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If the inequality 1/2 ≤ ρi < 1 is not satisfied for all i = 1, 2, . . . , n, then we consider k = 0.
Clearly, k ≤ n. For the pursuit differential game, the following statement is true.

Theorem 1. If either (i) n = k = d + 1 or (ii) n 6= k and n + k ≥ 2d, then the pursuit can be
completed in the differential game on the orthoplex Kd+1.

Proof. Case 1. Let n = k = d + 1, that is the maximum speeds of all pursuers greater
than or equal to 1/2 and the number of pursuers is d + 1. We temporarily remove from
the orthoplex Kd+1 the two symmetric with respect to the origin vertices S = e2i−1 =
(0, . . . , 0, 1, 0, . . . , 0), S1 = e2i = (0, . . . , 0,−1, 0, . . . , 0) with i = d + 1 and all the edges with
the endpoint at S or S1. As a result, we obtain an orthoplex Kd, which has 2d vertices.

Let A1B1, A2B2, . . . , AdBd be the edges of the orthoplex Kd, any two of which have
no common vertex (Figure 1), where A1, B1, A2, B2, . . . , Ad, Bd are all the vertices of the
orthoplex Kd. For example, if we denote the points corresponding to the vectors e1, e3, . . . ,
e2d−1, e2, e4, . . . , e2d, respectively, by A1, B1, A2, B2, . . . , Ad, Bd, then we obtain such edges,
where Ai is not antipodal to Bi, i = 1, 2, . . . , d, and so, the vectors ep and eq corresponding
to Ai and Bi are orthogonal.

Figure 1. d = 2, k = 2, and Kd = K2 = A1B1 A2B2.

We show that any two edges of the orthoplex Kd are either parallel, or orthogonal,
or form an angle equal to π/3. To this end, it is sufficient to find the angle between any
two vectors ei − ej and ek − el , where ei 6= ej, ei 6= −ej, ek 6= el , ek 6= −el . Note that any
two distinct vectors ep and eq are either symmetric with respect to the origin or orthogonal.
We have:

cos α =
(ei − ej)(ek − el)

|ei − ej||ek − el |
=

eiek − eiel − ejek + ejel

2
.

A. Let ei = −ek, ej = −el . Then, eiek = −1, ejel = −1, eiel = 0, ejek = 0, and so,
cos α = −1. Consequently, α = π, and so, the vector (ei − ej) is parallel with the vector
(ek − el).

B. Let ei = −ek, ej 6= −el . Then, eiek = −1, ejel = 0, eiel = 0, ejek = 0, and so,
cos α = −1/2. Consequently, α = 2π/3. This means the angle between the edges with
vertices ei, ej and ek, el forms an angle equal to π/3.

C. Let ei 6= −ek, ej = −el . Then, eiek = 0, ejel = −1, eiel = 0, ejek = 0, and so,
cos α = −1/2. Consequently, α = 2π/3. This means the angle between the edges with
vertices ei, ej and ek, el forms an angle equal to π/3.
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D. Let ei 6= −ek, ej 6= −el . Then, eiek = 0, ejel = 0, eiel = 0, ejek = 0, and so, cos α = 0.
Consequently, α = π/2. This means the angle between the edges with vertices ei, ej and ek,
el forms an angle equal to π/2.

Thus, the vector (ei − ej) is parallel with the vector (ek − el) only in Case 1. Hence, for
each edge of Kd, there is at most one edge parallel with this edge.

Next, we construct strategies for the pursuers x1, x2,. . . , xd as follows. First, we let
the pursuers x1, x2, . . . , xd come to the vertices A1, A2, . . . , Ad, respectively. The pursuer
reaches his/her vertex and waits until the other pursuers reach their vertices. Let all the
pursuers reach the vertices A1, A2, . . . , Ad at some time t1. Without any loss of generality,
we assumed that if the edge Aj0 Bj0 is parallel with Ai0 Bi0 , i0 6= j0, then the vector

−−−→
Aj0 Bj0 is

codirected toward
−−−→
Ai0 Bi0 .

Start from the time t1 each pursuer xi walks along the edge AiBi with the speed
ρ′i = min{ρi, ρj}, where ρj is the maximal speed of the pursuer xj moving along the edge
AjBj parallel with AiBi (if there is such an edge), until xi captures the projection yi of
the evader y on the edge AiBi, i = 1, 2, . . . , d. Thus, the pursuers xi and xj that move in
parallel edges AiBi and AjBj move with the same speed and direction until they capture
the projections of the evader on those edges, respectively.

As xi(t) = yi(t) at some time t = t2i, we suggest the following strategy to the
pursuer xi:

ui(t) = (mi, v(t))mi, t2i < t ≤ t2, (2)

where mi is the unit vector of
−−−→
Ai0 Bi0 , that is mi =

1√
2

−−−→
Ai0 Bi0 ; t2 is the time when xi(t) = yi(t)

for all i = 1, . . . , d. Then, clearly, (2) ensures that xi(t) = yi(t), t2i < t ≤ t2.
The strategy of pursuer (2) is admissible since (i) if the evader moves along an edge

AiBi orthogonal to mi, then ui(t) = 0 since (mi, v(t)) = 0; (ii) if the edge where the evader
moves on forms an angle π/3 with the edge AiBi, then:

|ui(t)| = |(mi, v(t))mi| ≤ |mi||v(t)| cos
π

3
≤ 1

2
(3)

since |mi| = 1 and |v(t)| ≤ 1.
Note that if the evader is on an edge AjBj parallel with AiBi on the time interval

t2i ≤ t ≤ t2, then the evader is captured by a pursuer at the time t2i since one of the points
yi(t2i) coincides with the real evader and the pursuers xi and xj move on the interval [t1, t2i]
on the parallel edges with the same speed and direction. Therefore, the evader cannot be
on the edge parallel with AiBi on the time interval t2i ≤ t ≤ t2. Thus, (2) is admissible.
Using the strategy (2), the pursuer xi controls the edge AiBi, meaning that the evader is not
on AiBi, and if he/she reaches one of the points Ai, Bi, he/she is captured by the pursuer
xi.

If the evader is on an edge of Kd at the time t2, then he/she is trapped by two pursuers
and the pursuit can be completed by these pursuers. To this end, these pursuers just move
towards the evader to catch him/her. Let now the evader be not in Kd at the time t2. Then,
we let the pursuers xi, i = 1, . . . , d, further use strategies (2) for t ≥ t2. Then, clearly,
xi(t) = yi(t), t ≥ t2.

If we remove Kd from Kd+1, then we obtain two trees, one of which contains the vertex
S and the other of which contains S1. Therefore, the pursuer xd+1 moving towards the
evader will catch him/her or force the evader to reach Kd, in which case the evader will be
caught by a pursuer in Kd.

Case 2. Let n 6= k and n + k ≥ 2d. It follows from n 6= k that n > k. It suffices to
consider the case n + k = 2d, that is if n + k = d, then n pursuers can complete the game.
Let A1B1, A2B2, . . . , AkBk be the edges of the orthoplex Kd, any two of which have no
common vertex (Figure 2), where A1, B1, A2, B2, . . . , Ak, Bk are some distinct vertices of
the orthoplex Kd.
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Figure 2. The case where d = 2, k = 1, n = 3, and Kd = K2 = A1B1 A2B2.

First, we bring the pursuers x1, x2, . . . , xk to the vertices A1, A2, . . . , Ak. Then, as in
Case 1, these pursuers move towards B1, B2, . . . , Bk, respectively, to catch the projections on
the edges A1B1, A2B2, . . . , AkBk. As the pursuer xi catches the projection yi of the evader
y on AiBi, this pursuer further moves on the projection, keeping it. In this way, pursuers
control the edges A1B1, A2B2, . . . , AkBk (Figure 2). In particular, these pursuers can control
2k vertices A1, B1, A2, B2, . . . , Ak, Bk of Kd.

The rest n− k of the pursuers xk+1, . . . , xn go to the 2d− 2k vertices Ak+1, Bk+1, . . . ,
Ad, Bd. This is possible since n− k = 2d− 2k. Thus, all the pursuers can now control all
the vertices of Kd. Kd+1 \ Kd is a union of two disjoint trees and one of them contains S
and another contains S1. The pursuer xk+1 moving towards the evader either catches the
evader or forces him/her to reach Kd. In the latter case, the evader will be captured by
some of the pursuers x1, . . . , xk, xk+2, . . . , xd.

Theorem 2. If either (i) n = k < d + 1 or (ii) n 6= k and n + k < 2d, then the evader E can avoid
the pursuers x1, x2, . . . , xn in the game on orthoplex Kd+1 from some initial states.

Proof. Case 1. Let n = k < d + 1 and the initial state of the evader be at the vertex S
of Kd+1. Hence, n = k ≤ d. Let the evader stay at the vertex S until the time t0 when
min

i=1,...,n
|xi(t0)− S| ≤ 1/3 for the first time. Furthermore, it is possible that t0 = 0. For the

definiteness, assume that |x1(t0)− S| ≤ 1/3.
Pursuer x1 then cannot control more than one vertex of the orthoplex Kd in

√
2 units

of time. Each of the rest (n− 1) of the pursuers x2, . . . , xn can control at most two vertices
of Kd, and so, together, they can control at most 2(n− 1) ≤ 2(d− 1) vertices of Kd in

√
2

units of time.
Thus, all the pursuers x1, . . . , xn can control 2(d− 1) + 1 = 2d− 1 vertices of orthoplex

Kd in
√

2 units of time. Hence, the pursuers cannot control one of the vertices of Kd because
Kd has 2d vertices, and so, the evader can reach that vertex of Kd in

√
2 units of time not

being caught. The evader repeats this procedure over and over and can walk not being
caught for an infinite period of time.

Case 2. Let n 6= k and n + k < 2d and the evader be at the vertex S of Kd+1 at the
initial time. Clearly, k pursuers x1, x2, . . . , xk can control 2k vertices of Kd in

√
2 units of

time. We now think about the rest 2d− 2k of the vertices of Kd.
Each of the rest n− k of the pursuers can control at most one vertex of Kd in

√
2 units

of time, and so, all these pursuers together can control at most (n− k) vertices. Hence, all
the pursuers can control at most 2k + (n− k) = n + k vertices of Kd in

√
2 units of time.
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Since n + k < 2d, therefore, the evader can come to a vertex of Kd not being caught. The
evader repeats this procedure over and over and can walk not being caught for an infinite
period of time. The proof of the theorem is complete.

4. Discussion and Conclusions

In the present paper, we studied pursuit and evasion differential games of many slow
pursuers and one evader on the edge graph of an orthoplex. If either (i) n = k = d + 1
or (ii) n 6= k and n + k ≥ 2d, then we proved that the pursuit can be completed in the
differential game on the orthoplex Kd+1. If this condition is not satisfied, that is either
(i) n = k < d + 1 or (ii) n 6= k and n + k < 2d, then we proved that evasion is possible. In
the case of pursuit game, we constructed explicit strategies for the pursuers, and in the case
of the evasion game, we constructed an evasion strategy for the evader. Thus, we solved
the pursuit and evasion game problems on the orthoplex completely.

A differential game on the one-skeletons of the d-dimensional orthoplex studied in [40]
considered the case where the dynamical possibilities of the pursuers and evader being
equal. It was shown in [40] that the optimal number of pursuers is equal to two. This is
not difficult to prove using the same idea of that paper that the two pursuers, one of them
having the same maximal speed as the evader and another pursuer having a maximal
speed less than that of the evader, can complete the game as well. If the maximal speeds
of all pursuers are less than that of evader, then the problem of the optimal number of
pursuers is open, and in the present paper, we found a formula for this number.

Based on Theorems 1 and 2, we can conclude that the optimal number of pursuers in
the game on the one-skeleton Kd+1 is N(Kd+1) = d + 1 if n = k, and N(Kd+1) = 2d− k if
n > k (recall that n ≥ k).

As an open problem, we suggest solving such differential game problems for the
n-cube, that is in the n-dimensional cube in Rn.
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