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Abstract: Initial fluctuation is one of the ingredients that washes fingerprints of the nuclear symmetry
energy on observables in heavy-ion collisions. By artificially using the same initial nuclei in all
collision events, the effect of the initial fluctuation on isospin-sensitive observables, e.g., the yield ratio
of free neutrons with respect to protons Ny, /N, SH/3He yield ratio, the yield ratio between charged
pions 7~ /7", and the elliptic flow ratio or difference between free neutrons and protons v} / vg
(vg—vg ), are studied within the ultrarelativistic quantum molecular dynamics (UrQMD) model. In
practice, Au + Au collisions with impact parameter b = 5 fm and beam energy Ej,;, =400 MeV /nucleon
are calculated. It is found that the effect of the initialization on the yields of free protons and neutrons
is small, while for the yield of pions, the directed and elliptic flows are found to be apparently
f.r},eﬁtf;’s' influenced by the choice of initialization because of the strong memory effects. Regarding the

isospin-sensitive observables, the effect of the initialization on N;,/N, and SH/3He is negligible,
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Nuclear symmetry energy, which describes the energy difference between pure neu-
tron matter and isospin symmetric (with equal numbers of protons and neutrons) nuclear
matter, is one of the crucial quantities for studying the structures and the properties of
nuclei and neutron stars, the dynamics of heavy-ion collision, supernovae explosions,
as well as neutron star mergers [1-13]. Exploring nuclear symmetry energy at various
densities is one of the important scientific goals for intermediate-energy heavy-ion colli-
sion (HIC) studies in terrestrial laboratories [14-23]. Quite a few observables have been
found or predicted to be sensitive to the nuclear symmetry energy as, e.g., neutron and
proton yields and flow ratios, double ratios, or differences, 3H/3He yield ratio, 7~ /7t t
and K°/K* meson production ratios, the £~ /=% ratio [24-36]. In spite of the progress
made, a tight constraint on the density-dependent nuclear symmetry energy Esym (o) by

= using HIC observables is still very difficult to achieve [37—41]. Extracting Esym (o) with HIC
should rely on both transport model simulations and experimental measurements, while
various transport models have different philosophies/assumptions/parameters, and as
a result constraints on Esym(p) with different transport models are usually different to
some extent. In view of this situation, a Transport Model Evaluation Project (TMEP) which
Attribution (CC BY) license (https:// intends to understand the source of the d.is.crepanc.ieg .jsmd evaluaire transport model.s was
creativecommons.org/ licenses/by/ begun several years ago [42—45]. In addition, the initial fluctuations (the preparation of
10)). initial nuclei, i.e., target and projectile) and dynamical fluctuations (i.e., stochastic nucleon
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collisions) might wash the effects of Esym () on observables, which make the constraint of
Esym(p) challenging. The aim of this work is to quantify the effect of initial fluctuation on
several observables, especially its influence on isospin-sensitive observables.

The paper is arranged as follows. In the next section the treatments of the initialization
process of the ultrarelativistic quantum molecular dynamics (UrQMD) model is presented.
In Section 3, the influence of different initializations on various observables is shown and
discussed. Finally, a summary and outlook are given in Section 4.

2. Initialization Process

In the default UrQMD model [46,47], there are two different choices for the initializa-
tion, hard-sphere and Wood-Saxon. According to the philosophy of the UrQMD model,
each nucleon is respected by a Gaussian with a finite width ;. Usually o, depends on the
mass number of target (projectile), o, = 1.44 fm is used for collision with Au. By considering
the width effect, hard-sphere is an economical way to sample nucleons in the coordinate
space, thus hard-sphere is used in the present work. The initialization is a two-step pro-
cess in the default UrQMD model. Firstly, calculating the radius of the target (projectile)
according to an empirical formula [46]

R= (-2 v 1(A+(A1/3—1)3) 1/3. M
(47TP0) (2 )

Here, pg = 0.16 fm 3 is the saturation density, A is the mass number. We note here that
the radius calculated with this formula is smaller than the usually used one R = 1.12 % A/3
fm. The centroids of the Gaussians (nucleons) are randomly distributed within a sphere
of the radius R, but if the minimum distance between two nucleons in a sampled nucleus
is smaller than d,,;;, = 1.6 fm, it will be re-sampled. d,,;, is set to 1.6 fm in consideration
of the size of the nucleon. Indeed, d,,;, is a free parameter of QMD-like models, different
values are used in different codes [42—45]. This minimum distance limitation is useful to
prevent from getting unphysical nucleus. Secondly, the momenta of all nucleons in the
projectile or target are randomly sampled between 0 and the local Fermi momentum pr.
In the default version of UrQMD, pr, = i(37%p,)/3 for protons and pr, = (3720, )/ for
neutrons are used. To more closely mimic the real nucleus, the binding energy per nucleon
B of the sampled nucleus will be calculated, the phase space of each nucleon might be
re-sampled until the absolute difference between the calculated B and the corresponding
experimental value is smaller than 1 MeV. The above treatment is named as Normal-IN in
the present work.

It is known, that the Wood-Saxon density distribution is a widely used assumption
for nuclear density distribution in a nucleus, which reads,

Py =—F

p(r) = )
Here a = 0.54 and R = 6.52 fm are used for Au. We propose a density constraint method
in sampling the coordinate of each nucleon. After the coordinates of each nucleons are
sampled, the density atr =0, 4, 5, 6, 6.5, and 7 fm will be calculated, if the relative difference
between the calculated density and the one calculated with Equation (2) is larger than 10%
(forr = 0,4, or 5 fm) or 25% (for r = 6, 6.5, or 7 fm), the coordinate of all nucleons will be
re-sampled. With this treatment, fluctuation in coordinate space will be partly reduced. We
name this method as DC in the present work. Alternatively, by neglecting the isospin effect
on Fermi momentum, one can use pr = h(37r2§)1/ 3 for all nucleons instead of Prp and pey,
which is named as DCPF in the present work. In this mode, fluctuations in the momentum

space can be reduced to some extent.
We randomly select nine initializations obtained from the Normal-IN mode, and the
nucleon distribution in coordinate and momentum spaces are displayed in Figure 1. Fluc-
tuations in both coordinate and momentum spaces are very large. Relatively, fluctuations
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in coordinates are smaller because of the minimum distance limitation in the sampling.
Figure 2 displays the momentum distribution and its standard deviation obtained with
Normal-IN and DCPF modes. As can be seen, the standard deviation in DCPF mode is
slightly smaller than that in Normal-IN, which means smaller fluctuations in the momen-
tum space. The reduction on the standard deviation in large momentum region is more
visible because samples with larger densities are resampled in the DCPF method. This may
have some effect on pion production as initial nucleons with higher momentum have a
higher probability to be converted to A resonances so as to produce pions from their decay.
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Figure 1. (Color online) The nucleon distribution in coordinate (upper panels) and momentum
(lower panels) spaces obtained with the nine randomly selected initializations (named as SameIN1
to SameIN9, described with separate color bars) used in this work. Solid lines denote the averaged
distribution in the normal initialization process.
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Figure 2. (Color online) The momentum distribution obtained with Normal-IN initialization and
DCPF. Bands denote the standard deviation.

3. Results
3.1. Influence on Time Evolution

In the present work, we artificially use the same initial nuclei for all collision events. Cal-
culations with the nine initializations are performed. In each case, more than 300,000 Au + Au
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collision events with impact parameter b = 5 fm and beam energy E;,, = 400 MeV /nucleon
are simulated to ensure enough statistics. In addition, calculations with the Normal-IN
mode, as well as DC and DCPF modes are also performed. In the presently used UrQMD
model, the symmetry potential is derived from the Skyrme potential energy density function
in the same manner as the improved quantum molecular dynamics (ImQMD) model, see
e.g., [48,49]. Together with the introduction of the in-medium nucleon-nucleon cross-sections
and the improvement on the cluster recognition criteria, many experimental data in HICs at
intermediate energies can be reproduced fairly well [50-52]. In the presently used UrQMD
version, at the end of the reaction, clusters are recognized with an isospin-dependent min-
imum spanning tree (iso-MST) method [18,53]. In this method, if the relative distances
and momenta between two neutrons (protons) or between one neutron and one proton are
smaller 3.8 fm (2.8 fm) and 0.25 Gev/c, respectively, they are considered to belong to the
same cluster. Throughout, nucleons that are not bound in clusters are called free nucleons.
To quantitatively compare the influences of the initialization and the nuclear symmetry
energy, results calculated with two Skyrme interactions (Skz4 and SkI1) which yield very soft
(with the slope parameter L = 5.8 MeV) and stiff (L = 159 MeV) symmetry energies are also
presented, respectively. Overall, 24 calculations with different initializations and symmetry
energies are performed.

Figure 3 illustrates that even with the same initialization, the result of each collision
event still displays distinct fluctuations because of the following stochastic two-particle col-
lisions. Particle distributions among different events become different at about ¢t =5 fm/c
because the target and projectile start to touch each other at that time. At about t =20 fm/c,
the maximum compression is achieved. By artificially using the same initial nuclei in every
collision event, one can get the result of each observable from each event and the averaged
one over all events. The averaged nuclear density distribution in the reaction plane at t = 0
and 20 fm/c are displayed in Figure 4. The small difference in density distribution at an
initial time may result in different evolution afterward. For example, the maximum density
reached in calculations with SamelIN3 is about 0.35 fm—3, while it is about 0.32 fm 3 for
SameIN9. Moreover, the shapes of the compressed region also display visible differences
among different initializations, indicating that the information of the initial nuclei are
memorized during the collision. The strong memory effect is one of the features of HICs
at intermediate energies [54,55]. We have checked that not only the total densities are
different in calculations with different initializations, the neutron and proton densities
also display large differences in different calculations. As a result, one may expect that
the isospin-sensitive observables will be influenced to some extent. It is known that both
the shape and the density distribution of the compressed region are closely related to the
elliptic flow. It is easy to imagine that the elliptic flow will be different with different initial-
izations. In addition, A resonances, which are parents of the produced pions, are created in
the compressed region through the inelastic scattering of two particles [56,57] so that the
pion related observables should be also influenced to some extent by the initialization.
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Figure 3. (Color online) Particle scatter plot for Au + Au collisions with impact parameter b = 5 fm and beam energy
Ejgp = 0.4 GeV /nucleon. Results from four random events with the same initialization are displayed. Triangle and hexagon
denote A resonances and pions, while circle and asterisk denote protons and neutrons, respectively.

3.2. Influence on Rapidity Distribution

The rapidity distributions of the yield, the directed flow v, and the elliptic flow v, of
free protons are displayed in Figures 5-7, respectively. In the present work, v; and v, are
deduced from the Fourier expansion of the azimuthal distribution of detected particles,

o1 = (ostg)) = (2, @)

2 _ 2
Px —P
0y = (cos(2¢)) = <x 5 y>, @)
pi
in which p, and py are the two components of the transverse momentum p; = /p% + pj.

Additionally, the angle brackets in Equations (3) and (4) indicate an average over all
considered particles from all events. For analysis flow in heavy-ion collisions at high
energies, one should take care of non-flow effects caused by resonance decays and jet
production and so on, while it is negligible for intermediate energy heavy-ion collisions. It
is known, that for mass symmetric collisions, i.e., the target and projectile nuclei are the
same, the yield and v; as a function of rapidity y, exhibit even functions, and v; being
an odd function. While the results obtained with the nine initializations are more or less
asymmetric, and large difference appears around target/projectile rapidities (yo = £1) as
the nucleons in these region are more likely to inherit more information of the initialization.
Further, in Figure 7, v, obtained with different initializations is not a smooth function of
the rapidity. This cannot be fixed with increasing the number of collision events, as the
statistical error has been already smaller than the symbol size. The un-smooth behavior of
vy around target/ projectile rapidities can be understood from its definition Equation (4),
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which enlarges the effect of anisotropic momentum distributions from the initialization.
In addition, it can be seen that the results obtained with Normal-IN, DC, and DCPF are
almost overlapping. Only a tiny difference can be found on v, around target/projectile
rapidities, implying v, around yy ~ £1 is a good candidate for probing the initial state
of nuclei.
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Figure 4. (Color online) Nuclear density distribution in the reaction plane. (al-el) and (a3-e3) are the density distribution
at the initial time, while (a2—e2) and (ad4—e4) are the results at t = 20 fm/c. In each case, 500 events are used to obtain the
results. The distributions in most of the cases (except Normal-IN) are asymmetric because the same initializations for every
event are used, and the nucleon distribution at initial time is asymmetric.
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Figure 5. (Color online) The yield of free protons is plotted as a function of rapidity. The results
calculated with different initializations are displayed.
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Figure 6. (Color online) The same as Figure 5 but the directed flow v, is plotted.
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Figure 7. (Color online) The same as Figure 5 but the elliptic flow v, is plotted.

To quantitatively manifest the effect of initialization on these observables, the yields of
free protons, free neutrons, produced 71~ and 71", as well as the v; slope at midrapidity and
vy of free protons within rapidity window |yy| < 0.5 calculated using the soft symmetry
energy (Skz4) are listed in the left side of Table 1. The influence on the yield of free protons
and neutrons is rather small because it is mainly affected by the selection of the nuclear
mean-field potential. However, the others display significant differences with different
initializations, as they are more strongly related to the status of the compressed region.
For example, the yield of 7~ for SameIN8 is 0.994 while it is 1.217 with SameIN3. v,
obtained with SameIN2 and SamelIN9 are —0.034 and —0.027, which are the two weakest
elliptic flows among all calculations as well, respectively. While v, obtained with SamelN1
and SamelIN3 are —0.049 and —0.045, respectively, which are the two strongest elliptic
flows among all calculations. It can be partly understood from the density distribution
in the compressed region, as shown in Figure 4, the maximum densities in SameIN2 and
SamelN9 cases are the smallest while they are the largest in SameIN1 and SameIN3.
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Table 1. Column 2-7: The total yields of free neutrons, free protons, 7~ and nt, as well as the v, slope at midrapidity

and v; of free protons within rapidity window |yp| < 0.5, as calculated with the soft symmetry energy. Column 8-15: The
total yield ratios Ny /N, the elliptic flow ratio v}/ vg within rapidity window |yp| < 0.5, 7~ /7", and 3H/3He. Results
calculated with both the soft and stiff symmetry energies are displayed. Statistical error is small and not shown here.

N, N, =~ nmt wv;Slope v (|yo] <05) N,/N, Nu/N, vi/v} ©vi/v) n~/nt =~ /mt °HPFHe 3HIHe

(soft) (soft) (soft) (soft)  (soft) (soft) (soft) (stiff)  (soft)  (stiff) (soft) (stiff) (soft) (stiff)
Normal-IN 114.8 58.7 1.223 0.405 0.41 —0.040 1.96 1.36 0.67 1.12 3.02 2.79 2.69 1.65
DC 114.7 58.6 1.215 0.406 0.41 —0.040 1.96 1.36 0.70 1.09 2.99 2.8 2.69 1.64
DCPF 1154 59.1 1216 0.428 0.41 —0.041 1.95 1.34 0.65 1.10 2.84 2.63 2.70 1.65
SameIN1 113.4 579 1.144 0.336 0.41 —0.049 1.96 1.34 0.71 1.20 341 291 2.72 1.60
SameIN2 1149 59.8 1.202 0417 0.45 —0.034 1.92 1.37 0.63 1.30 2.88 2.85 2.69 1.61
SameIN3 117.8 60.1 1.217 0.408 0.38 —0.045 1.96 1.37 0.52 0.98 2.98 2.81 2.66 1.61
SamelN4 1150 56.8 1121 0.321 0.47 —0.043 2.02 1.42 0.77 1.49 3.49 3.49 2.61 1.65
SameIN5 1149 583 1.259 0.339 0.41 —0.040 1.97 1.37 0.67 1.20 3.72 3.16 2.60 1.71
SameIN6 116.9 59.7 1.148 0.529 0.43 —0.039 1.96 1.38 1.00 1.02 217 2.37 2.67 1.70
SameIN7 1152 584 1.373 0.369 0.40 —0.042 1.97 1.37 0.67 0.99 3.72 3.06 2.67 1.65
SameIN8 113.1 585 0.994 0.391 0.30 —0.037 1.94 1.31 0.64 1.01 2.54 2.26 2.81 1.69
SameIN9 1187 609 1.287 0.398 0.39 —0.027 1.95 1.38 0.75 1.84 3.23 3.07 2.61 1.69

3.3. Influence on Isospin-Sensitive Observables

As usually the effect of nuclear symmetry energy on various observables is relatively
small, the yield or flow of particles with different isospin are presumed to be sensitive
to the nuclear symmetry energy. For example, the yield ratio of free neutrons respect
to protons N;,/N,, pion yield ratio 71~ /7", the elliptic flow ratio (difference) between
free neutrons and protons v} / vg (vg—vg ), the yield ratio of 5H with respect to 3He, have
been used as sensitive probes to constrain the nuclear symmetry energy. To quantitatively
compare the influences of initialization and the nuclear symmetry energy, N;,/ Ny, v5/ o},
n—/7t, and 3H/3He calculated with different initializations together with the soft and
stiff symmetry energies are listed in the right of Table 1 and plotted in Figure 8. The relative
difference in N,/ N, among different initializations is less than 5% while it is about 50%
for different nuclear symmetry energies, indicating the influence of initialization on this
observable can be neglected. The yields of H and 3He and their ratio are also found
to be insensitive to the initialization. This is because the production of cluster is mainly
determined by the behavior of the nuclear mean-field potential at lower densities. Both
03 /v (v3-05) and = /7t display a distinct difference among different initializations.
The value of v} /vb calculated with the soft symmetry energy varies from 0.52 to 1, while it
varies between 0.98 and 1.84 for the stiff symmetry energy. The largest difference in v} /v}
obtained with the soft and stiff symmetry energies is about 1.09 appeared in SameIN9,
while the smallest one is only about 0.02 appeared in SameIN6. The value of 7~ /7t
also varies largely, from 2.17 in SamelIN6 to 3.72 in SameIN5 and SameIN?7, for the soft
symmetry energy. In most of the cases, 7~ /7t obtained with the soft symmetry energy is
larger than that with the stiff one, but two exceptions can be found in calculations with
SameIN4 and SameIN6 which show the value of 7~ /7t is equal to or less than that
obtained with stiff symmetry energy. The present calculation illustrates that fingerprint of
nuclear symmetry energy on v} /vh and 77~ /7t can be either enhanced or reduced when
different initializations are considered. Figure 8a,b display the elliptic flow difference and
ratio between free neutrons and protons at mid-rapidity (|yp| < 0.1). Again, one finds
that the nuclear symmetry energy effects can be either enhanced or reduced by different
initializations. With SameIN®6, the initialization effect cancels or even reverses the effect of
symmetry energy on both v} /v} (vi-0}) and 7= /7t
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Figure 8. (Color online) The elliptic flow difference vg-vg (a) and ratio v5/ 05 (b) between free
neutrons and protons at midrapidity (Jyo| < 0.1). (c) The total charged pions ratio 77~ /7. The results
calculated with different initializations are compared. The shaded areas represent the standard
deviations from the average result for different initializations.

If one compares the v /05 and 77~ /7" obtained with Normal-IN and DC, it is found
that the introduction of density constraints alone in the initialization displays a negligible
effect. While 77~ /7t" calculated with DCPF is suppressed compared to the ratio obtained
with Normal-IN. This suppression is a result of the reduced initial momentum fluctuation
in DCPF mode. Moreover, the symmetry energy effect on v4 /v, and v4-v} is slightly
increased in the calculation with DCPF mode. It implies that the sampling of nucleon
momentum in the initialization process should be more carefully and consistently treated
when studying isospin-sensitive observables. The importance of initializations of transport
model on these observables also has been found within different models [58-62].

4. Summary and Outlook

By artificially using the same initial nuclei in all collision events, the effect of the
initial fluctuation on various observables is studied within the UrQMD model. It is found
that for pion yield, the directed and elliptic flows of nucleons calculated with different
initializations are different, because of the different density distribution in the compressed
region, which is the result of the tiny difference in density distribution at the initial time.
The yield ratio of free neutrons with respect to free protons N,/ N, and the yield ratio
between 3H and 3He clusters are found to be insensitive to different initializations, while
the yield ratio between pions 77~ /7" and the elliptic flow ratio or difference between
free neutrons and protons v} /v, (v4-v5) displayed distinct differences among different
initializations. It means that a detailed treatment on the initialization of the transport model
is necessary when using these observables to constrain the density-dependent nuclear
symmetry energy.

To further extend the present study to lower (where the nuclear liquid—gas phase
transition may occur) or higher (where a phase transition from hadronic matter to the
quark-gluon plasma (QGP) may occur) energies is also of particular interest. At lower
energies, fluctuations and nuclear symmetry energy in nuclear fragmentation dynamics are
correlated [63]. In relativistic heavy-ion collisions, observables like anisotropic flow, flow
fluctuations and correlations, are expected to be sensitive to the initial fluctuations [64-70].
Because of the rapid development of both nuclear theory and experimental technology,
our understanding of nuclei has become deeper, more and more experimental data about
nuclear structures, e.g., charge density distribution, neutron skin and neutron halo, nuclear
deformation, alpha-clustering, and high momentum tail, are available. It would be of
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particular interest to incorporate all these structures effects in the transport model, and to
investigate whether isospin-sensitive observables can be affected or not.
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