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Abstract: A response analysis method for nonlinear beams with spatial distribution parameters and
non-periodic supports was developed. The proposed method is implemented in four steps: first,
the nonlinear partial differential equation of the beams is transformed into linear partial differential
equations with space-varying parameters by using a perturbation method; second, the space-varying
parameters are separated into a periodic part and a non-periodic part describing the periodicity
defect, and the linear partial differential equations are separated into equations for the periodic
and non-periodic parts; third, the equations are converted into ordinary differential equations with
multiple modes coupling by using the Galerkin method; fourth, the equations are solved by using
a harmonic balance method to obtain vibration responses, which are used to discover dynamic
characteristics including the amplitude–frequency relation and spatial mode. The proposed method
considers multiple vibration modes in the response analysis of nonlinear non-periodic structures
and accounts for mode-coupling effects resulting from structural nonlinearity and parametric non-
periodicity. Thus, it can handle nonlinear non-periodic structures with a high parameter-varying
wave in wide frequency vibration. In numerical studies, a nonlinear beam with non-periodic supports
(resulting in non-periodic distribution parameters or periodicity defect) under harmonic excitations
was explored using the proposed method, which revealed some new dynamic response characteristics
of this kind of structure and the influences of non-periodic parameters. The characteristics include
remarkable variation in frequency response and spatial mode, and in particular, vibration localization
and anti-localization. The results have potential applications in vibration control and the support
damage detection of nonlinear structures with non-periodic supports.

Keywords: non-periodically supported beam; nonlinear vibration; amplitude–frequency characteristics;
multi-mode coupling; support periodicity defect; vibration localization

1. Introduction

Many engineering structures such as continuous girder viaducts and synchrotron
radiation bridges can be simplified as a beam with multi-supports in dynamics analysis.
The beam is usually symmetric and becomes asymmetric after a change in the stiffness
of some supports, e.g., stiffness reduction due to damage. The changeability of dynamic
characteristics such as frequency response and spatial mode (or mode component) is
important for structural optimization design (or vibration control) and anomaly diagnosis
(or damage detection). Periodic structures with spatial distribution parameters such as
periodic geometric parameters, periodic physical parameters and periodic constraints
have special dynamics which are different from those of common structures with uniform
distribution parameters. Parametric periodicity has outstanding influence on structural
dynamic responses because of the coupling of periodic time-varying (or harmonic) response
and periodic distribution parameters. Numerous studies have reported characteristic
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frequencies [1–4], modal localization and buckling [5–14], quasi-periodic distribution
parameter effects [15–18] and application [19–27] based on transfer matrix method, spatial
(Bloch) harmonic expansion method, (Floquet–Bloch and Galerkin) double expansion
method and finite element method, etc. Waves and vibration in beams with non-uniform
distribution parameters have also been pursued using a fundamental solution, semi-
analysis and finite element methods [28–34]. Perturbation and multiple scale methods were
applied for weakly periodic parameter cases [35,36]. The periodic beam is an important
engineering structure or structural component, and its dynamics including finite-size and
boundary effects have been addressed [37–40]. Compared with periodic structures, quasi-
periodic structures are likely to afford highly variable dynamic responses because period-
structural dynamics have certain instability and are sensitive to periodicity perturbation
(or defect). However, in the aforementioned investigations, only the dynamics of linear
periodic and quasi-periodic structures and the corresponding linear dynamic characteristics
were addressed.

Under certain large loads, engineering structures will produce nonlinear vibrations
because of inherent geometric and physical nonlinearity. The nonlinear dynamic character-
istics of periodic and non-periodic structures are a subject of research interest. Research
on the wave propagation of periodic structures modeled by nonlinear single-degree-of-
freedom systems has been pursued based on periodicity conditions, in which the multiple
scales method, perturbation method, linearization method and harmonic balance method
were adopted [41–47]. A nonlinear periodic structure with cycle symmetry was studied
by converting it into independent nonlinear single-degree-of-freedom systems using non-
linear normal modes for frequency response analysis, and its mode localization under
weak coupling was discovered by asymptotic approximation [48,49]. The nonlinear vibra-
tion of non-uniform beams and dynamic stability of sandwich beams on nonlinear elastic
foundations have also been studied using the finite element and harmonic balance meth-
ods, Galerkin and iterative numerical methods, linearization and Chebyshev collocation
methods, Bolotin method and Hamiltonian approach, respectively [50–54]. A differential
quadrature method was applied to the nonlinear vibration analysis of sandwich beams
where vibration modes were obtained using a numerical iterative algorithm [55,56]. Non-
periodic dynamics of complex systems with fractional derivatives have been studied [57,58].
However, only a few studies have addressed the nonlinear dynamics of finite-size periodic
beams. An asymptotic tolerance averaging technique was applied to the nonlinear vibra-
tion analysis of a beam with geometric nonlinearity and periodic distribution parameters,
but this study was limited to low-frequency vibration and a high parameter-varying wave
because of the averaging in a periodic unit [59,60]. Those analysis methods have limitations
in the number of used vibration modes which can affect the accuracy and reliability of
results as the nonlinearity and periodicity will induce the coupling of linear structural
modes. Recently, a multimode perturbation method for the frequency response analysis of
nonlinear beams with periodic distribution parameters has been proposed, and some novel
dynamic response characteristics including remarkable variations of amplitude–frequency
relation and spatial mode of nonlinear periodic beams were obtained [61]. However, the
study only considered the dynamics of periodic beams. The dynamics of nonlinear non-
periodic beams, e.g., with non-periodic supports (or support periodicity defect, that can
be viewed as variation of periodicity), need to be further studied and to this end, the
corresponding analysis method needs to be developed. Non-periodic or quasi-periodic
beams are more realistic structures in engineering fields, and they would have dynamic
responses which would greatly differ from those of periodic beams based on the results
of linear periodic and quasi-periodic structures. This study of the dynamics of nonlinear
non-periodic structures also has potential applications in vibration control and support
damage detection [14,15,18,20–23,62–66].

In this paper, the vibrational amplitude–frequency characteristics of nonlinear multi-
support beams with non-periodic supports (resulting in non-periodic distribution parame-
ters or periodicity defect) under harmonic excitations was studied. A response analysis
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method for nonlinearly vibrational beams with spatial distribution parameters and non-
periodic supports was developed by combining perturbation, periodic and non-periodic
separation, Galerkin expansion and harmonic balance methods. First, a partial differential
equation with space-varying parameters is elicited for a nonlinear non-periodic beam. The
nonlinear equation is transformed into a set of linear partial differential equations by using
a perturbation method. Second, the spatial distribution parameters are separated into
periodic part and non-periodic part describing the periodicity defect. The linear partial
differential equations are separated into a set of differential equations for the periodic beam
with periodic part parameters and another set of differential equations for the non-periodic
beam with the non-periodic part parameters. Third, the equations are converted into ordi-
nary differential equations with coupling multiple modes by using the Galerkin method.
Multiple vibration modes are considered and thus the equations are suited for the nonlinear
vibration of non-periodic structures with high parameter-varying wave in a wide frequency
band. Fourth, the ordinary differential equations are solved by using a harmonic balance
method to obtain vibration responses of the beam with non-periodic parameters under
harmonic excitations, which are used for characteristics analysis of amplitude–frequency
relation and spatial mode. Finally, resulting graphs for a non-periodic beam with vari-
ous support stiffness and damping are provided to illustrate effective application of the
proposed method and to reveal frequency response characteristics. New response charac-
teristics including remarkable variations in frequency response and spatial mode for the
nonlinearly vibrational beam with different non-periodic supports, particularly vibration
localization and vibration anti-localization, were discovered for the first time.

2. Nonlinear Vibration Equation of Beam with Non-Periodic Supports

Consider a horizontal elastic beam with spatial distribution parameters and non-
periodic supports under vertical external excitation, as shown in Figure 1. Its material is
isotropic, and normal stress in the z direction is small and neglected, where z denotes a
vertical coordinate. Vertical displacement is assumed as unvarying with z and the cross-
section is perpendicular to the central axis as the initial x, where x denotes the horizontal
coordinate. Longitudinal and rotational inertias are small and neglected. For large ex-
citation acting on a long beam, the vertical vibration in the (x,z) plane exhibits certain
geometric nonlinearity, and the nonlinear longitudinal normal strain can be expressed as

εs = −z
∂2w
∂x2 +

1
2

(
∂w
∂x

)2
+

1
2

z
∂2w
∂x2

(
∂w
∂x

)2
(1)

where w is vertical displacement. Longitudinal normal stress is σs = Eεs, where E is Young’s
modulus. Axial force FN, shear force FS and bending moment M of the beam can be calcu-
lated using the normal stress σs. For a long beam in low and middle frequency vibration,
a mechanical model based on the Bernoulli–Euler theory can be applied. Considering
the vertical middle support forces, vertical inertia force and damping force, the nonlinear
vibration equation of the beam is obtained as

ρA0
∂2w
∂t2 + cd

∂w
∂t + ∂

∂x

[
FS cos

(
∂w
∂x

)]
cos
(

∂w
∂x

)
− ∂

∂x

[
FN sin

(
∂w
∂x

)]
cos
(

∂w
∂x

)
+

Np

∑
i=1

(csi
∂w
∂t + ksiw)δ(x− xsi) = fe(x, t)

(2)

where ρ is the mass density, A0 is the cross-sectional area, cd is the damping coefficient, ksi,
csi, xsi are, respectively, the stiffness, damping and coordinate of the ith support except two
end constraints, δ(·) is the Dirac-delta function, Np is the support number, fe is the external
force and t is the time variable. Equation (2) can be simplified by neglecting high-order
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nonlinear terms and using the condition that the beam height (h) is much smaller than
beam length (L). The non-dimensional nonlinear vibration equation is [61]:

mb
∂2w
∂t2 + cb

∂w
∂t + ∂2

∂x2

(
EI ∂2w

∂x2

)
− ∂

∂x

[
EA
(

∂w
∂x

)3
]

+
Np

∑
i=1

(csi
∂w
∂t + ksiw)δ(x− xsi) = F(x, t)

(3)

where:
x = x/L, w = w/Wa, mb = ρA0L, cb = cdL, I = I0/L3,

A = A0W2
a /2L3, F = feL/Wa

(4)

in which I0 is the cross-sectional second moment and Wa is a small displacement amplitude
under unit excitation. For the beam with uniform distribution parameters, mb, EA and EI
are constants. For the case of non-periodic supports, there are supports whose coordinates
xsi 6= i/(Np + 1) or the stiffness ksi and damping csi differ from the others.
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Figure 1. Beam with spatial distribution parameters and non-periodic middle supports under
external excitation.

The partial differential Equation (3) describes the nonlinear vibration of the beam
with spatial distribution parameters and non-periodic supports. Under Wa << 1, rewrite
nonlinear coefficient as EA = −εB10/3, where ε is a small parameter. Equation (3) can be
expressed in the following form to facilitate a common solution:

B1
∂2w
∂t2 + B2

∂w
∂t +

3
∑

k=1
Bk+2

∂(5−k)w
∂x(5−k)

+εB10
∂2w
∂x2

(
∂w
∂x

)2
+ εB11

(
∂w
∂x

)3

+
Np

∑
i=1

(D1i
∂w
∂t + D2iw)δ(x− xi) = F(x, t)

(5)

where coefficients Bk and Dji are determined by Equation (3), and xi = xsi. Consider two
ends of the beam having simply supported constraints. The boundary conditions are:

w(0, t) = w(1, t) = 0,
∂2w(0, t)

∂x2 =
∂2w(1, t)

∂x2 = 0 (6)

Vibration responses can be obtained by solving Equation (5) with conditions (6).
However, Equation (5) is a nonlinear partial differential equation with space-varying
parameters. Conventional analysis methods can only consider a few modes and actually
use several coupled nonlinear ordinary differential equations. The effect of limited modes
on response accuracy increases with the wave number of varying parameters and supports
and vibration frequency. Therefore, an improved analysis method [61] combined with
periodic and non-periodic separation analysis method was developed herein. The analysis
method can use multiple vibration modes and is suitable for the nonlinear vibration of
non-periodic structures with a high parameter-varying wave in a wide frequency band,
which is described in the following sections.
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3. Perturbation and Separation Solutions to Nonlinear Vibration of Non-Periodically
Supported Beam

A perturbation method was first applied to transform nonlinear partial differential
Equation (5) into a set of linear partial differential equations. The dimensionless displace-
ment w, which depends on the small parameter ε, can be expanded as

w(x, t) =
∞

∑
j=1

εj−1wj(x, t) (7)

where wj is the jth-order approximation. Substituting Equation (7) into Equation (5) (see
Appendix A as Equation (A1)) and balancing each power term of the small parameter yield
the following linear differential equations:

B1
∂2w1
∂t2 + B2

∂2w1
∂t2 +

3
∑

k=1
Bk+2

∂(5−k)w1
∂x(5−k)

+
Np

∑
i=1

(D1i
∂w1
∂t + D2iw1)δ(x− xi) = F

(8)

B1
∂2w2
∂t2 + B2

∂w2
∂t +

3
∑

k=1
Bk+2

∂(5−k)w2
∂x(5−k) +

Np

∑
i=1

(D1i
∂w2
∂t

+D2iw2)δ(x− xi) = −B10
∂2w1
∂x2

(
∂w1
∂x

)2
− B11

(
∂w1
∂x

)3
(9)

B1
∂2w3
∂t2 + B2

∂w3
∂t +

3
∑

k=1
Bk+2

∂(5−k)w3
∂x(5−k) +

Np

∑
i=1

(D1i
∂w3
∂t

+D2iw3)δ(x− xi) = −B10

[
∂2w2
∂x2

(
∂w1
∂x

)2

+2 ∂2w1
∂x2

∂w1
∂x

∂w2
∂x

]
− 3B11

(
∂w1
∂x

)2
∂w2
∂x

......

(10)

The above equations can be solved to obtain an asymptotic solution. The vibration
displacement is generally determined by the first several approximate wj. For the beam
with spatial distribution parameters and non-periodic supports, Bk, Dji, xi and F can be
regarded as periodicity defect parameters. The parameters are separated into a spatial
periodic part and non-periodic part (which describes the periodicity defect) as

Bk = Bpk + ∆Bk, D1i = Dp1 + ∆D1i, D2i = Dp2 + ∆D2i,

yi = ypi + ∆yi, F = Fp + ∆F
(11)

where subscript “p” denotes the periodic part and “∆” denotes the non-periodic part. The
separation yields a periodic beam with the periodic part parameters and a non-periodic
beam with non-periodic part parameters (or periodicity defect). The approximate displace-
ment wj can be separated accordingly into:

wj = wpj + ∆wj (12)

Substituting expressions (11) and (12) into Equations (8)–(10) yields a set of differential
equations for the periodic part displacement wpj of the periodic beam and another set of
differential equations for the non-periodic part displacement ∆wj of the non-periodic beam.
The linear partial differential equations for the periodic part are:

Bp1
∂2wp1

∂t2 + Bp2
∂2wp1

∂t2 +
3
∑

k=1
Bp,k+2

∂(5−k)wp1

∂x(5−k)

+
Np

∑
i=1

(Dp1
∂wp1

∂t + Dp2wp1)δ(x− xpi) = Fp

(13)
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Bp1
∂2wp2

∂t2 + Bp2
∂wp2

∂t +
3
∑

k=1
Bp,k+2

∂(5−k)wp2

∂x(5−k)

+
Np

∑
i=1

(Dp1
∂wp2

∂t + Dp2wp2)δ(x− xpi)

= −Bp10
∂2wp1

∂x2

(
∂wp1

∂x

)2
− Bp11

(
∂wp1

∂x

)3

(14)

Bp1
∂2wp3

∂t2 + Bp2
∂wp3

∂t +
3
∑

k=1
Bp,k+2

∂(5−k)wp3

∂x(5−k)

+
Np

∑
i=1

(Dp1
∂wp3

∂t + Dp2wp3)δ(x− xpi)

= −Bp10

[
∂2wp2

∂x2

(
∂wp1

∂x

)2
+ 2

∂2wp1

∂x2
∂wp1

∂x
∂wp2

∂x

]
−3Bp11

(
∂wp1

∂x

)2 ∂wp2
∂x

......

(15)

The linear partial differential equations for the non-periodic part (or periodicity defect)
are:

B1
∂2∆w1

∂t2 + B2
∂∆w1

∂t +
3
∑

k=1
Bk+2

∂(5−k)∆w1
∂x(5−k)

+
Np

∑
i=1

(D1i
∂∆w1

∂t + D2i∆w1)δ(x− xi)

= ∆F− ∆B1B−1
p1 Fp + (∆B1B−1

p1 Bp2 − ∆B2)
∂wp1

∂t

+
3
∑

k=1
(∆B1B−1

p1 Bp,k+2 − ∆Bk+2)
∂(5−k)wp1

∂x(5−k)

+
Np

∑
i=1

[(1 + ∆B1B−1
p1 )(Dp1

∂wp1
∂t + Dp2wp1)δ(x− xpi)

−(D1i
∂wp1

∂t + D2iwp1)δ(x− xi)]

(16)

B1
∂2∆w2

∂t2 + B2
∂∆w2

∂t +
3
∑

k=1
Bk+2

∂(5−k)∆w2
∂x(5−k) +

Np

∑
i=1

(D1i
∂∆w2

∂t

+D2i∆w2)δ(x− xi) = (∆B1B−1
p1 Bp2 − ∆B2)

∂wp2
∂t

+
3
∑

k=1
(∆B1B−1

p1 Bp,k+2 − ∆Bk+2)
∂(5−k)wp2

∂x(5−k)

+
Np

∑
i=1

[(1 + ∆B1B−1
p1 )(Dp1

∂wp2
∂t + Dp2wp2)δ(x− xpi)

−(D1i
∂wp2

∂t + D2iwp2)δ(x− xi)]−
[

B10
∂2w1
∂x2

(
∂w1
∂x

)2

− (1 + ∆B1B−1
p1 )Bp10

∂2wp1

∂x2

(
∂wp1

∂x

)2
]

−
[

B11

(
∂w1
∂x

)3
− (1 + ∆B1B−1

p1 )Bp11

(
∂wp1

∂x

)3
]

(17)
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B1
∂2∆w3

∂t2 + B2
∂∆w3

∂t +
3
∑

k=1
Bk+2

∂(5−k)∆w3
∂x(5−k) +

Np

∑
i=1

(D1i
∂∆w3

∂t

+D2i∆w3)δ(x− xi) = (∆B1B−1
p1 Bp2 − ∆B2)

∂wp3
∂t

+
3
∑

k=1
(∆B1B−1

p1 Bp,k+2 − ∆Bk+2)
∂(5−k)wp3

∂x(5−k)

+
Np

∑
i=1

[(1 + ∆B1B−1
p1 )(Dp1

∂wp3
∂t + Dp2wp3)δ(x− xpi)

−(D1i
∂wp3

∂t + D2iwp3)δ(x− xi)]− B10

[
∂2w2
∂x2

(
∂w1
∂x

)2

+2 ∂2w1
∂x2

∂w1
∂x

∂w2
∂x

]
+ (1 + ∆B1B−1

p1 )Bp10

[
∂2wp2

∂x2

(
∂wp1

∂x

)2

+2
∂2wp1

∂x2
∂wp1

∂x
∂wp2

∂x

]
− 3
[

B11

(
∂w1
∂x

)2
∂w2
∂x

−(1 + ∆B1B−1
p1 )Bp11(

∂wp1
∂x )2 ∂wp2

∂x

]
......

(18)

These equations can be solved to obtain the periodic part and non-periodic part of
the asymptotic solution. The boundary conditions (6) can be expanded and separated,
corresponding to displacements (7) and (12) for determining the linear vibration modes
of the beam. The linear partial differential Equations (13)–(18) for the beam with partial
distribution parameters and non-periodic supports can be further converted into linear
ordinary differential equations by using the modes for obtaining modal displacement
responses.

4. Mode Expansions of Asymptotic Solutions to Linear Partial Differential Equations
for Periodic and Non-Periodic Beams

The Galerkin method was applied to convert the linear partial differential
Equations (13)–(18) into a set of ordinary differential equations. Spatial distribution
parameters and non-periodic supports of the beam result in the coupling of the differential
equations, and multiple vibration modes need to be used in the transformation. The linear
vibration modes of the beam can be determined based on boundary conditions (6). The
dimensionless displacement w and then approximate displacement wj can be expanded
into series using the modes. The approximate displacement expansion is:

wj(x, t) =
Nm

∑
n=1

φn(x)qjn(t) = Φ(x)Qj(t) (19)

where ϕn is the nth linear vibration mode, qjn is the nth modal displacement of the jth-order
approximation, Φ = [ϕ1, ϕ2, . . . , ϕNm] is the mode vector, Qj = [qj1, qj2, . . . , qjNm]T is the
modal displacement vector and Nm is mode number. For the simply supported beam with
boundary conditions (6), the mode function is φn(x) = sin nπx. The periodic part and
non-periodic part of the displacement expansion (19) based on Equation (12) are:

wpj(x, t) =
Nm

∑
n=1

φn(x)qpjn(t) = Φ(x)Qpj(t) (20)

∆wj(x, t) =
Nm

∑
n=1

φn(x)∆qjn(t) = Φ(x)∆Qj(t) (21)

where qpjn is the periodic part of the modal displacement qjn corresponding to the periodic
beam, ∆qjn is the non-periodic (or periodicity defect) part of the modal displacement qjn

corresponding to the non-periodic beam, Qpj = [qpj1, qpj2, . . . , qpjNm]T and ∆Qj = [∆qj1, ∆qj2,
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. . . , ∆qjNm]T are the periodic part and non-periodic part vectors of modal displacements,
respectively.

According to the Galerkin method, substituting expression (20) into Equations (13)–(15),
multiplying the equations by ΦT and integrating them with respect to x yield the following
linear ordinary differential equations in matrix form for the periodic part:

Mp1
∂2Qpj

∂t2 + Cp1
∂Qpj

∂t
+ Kp1Qpj = Fpj(t) (22)

where Mp1, Cp1, Kp1 are the modal mass, damping and stiffness matrices for the periodic
part, respectively, and Fpj is the modal excitation vector for the periodic part. Their
expressions are given in Appendix A as Equation (A2).

Similarly, substituting expressions (20) and (21) into Equations (16)–(18) yields the
following linear ordinary differential equations in matrix form for the non-periodic part:

M1
∂2∆Qj

∂t2 + C1
∂∆Qj

∂t
+ K1∆Qj = Fj(t) (23)

where M1, C1, K1 are the modal mass, damping and stiffness matrices for the non-periodic
part, respectively, and Fj is the modal excitation vector for the non-periodic part. Their
expressions are given in Appendix A as Equation (A3).

The linear ordinary differential Equations (22) and (23) have coupling damping and
stiffness, and can incorporate multiple vibration modes in accordance with Equations (A2)
and (A3). The modal displacement Qj (Qpj with ∆Qj) and then approximate displacement
wj (wpj with ∆wj) can be obtained by solving these equations. Solution accuracy for the
high parameter-varying wave and high frequency vibration will increase with the number
of used modes. The effect of support periodicity defect on the vibration response of the
beam can be explored based on the displacement solution with the periodicity defect part
of the non-periodic beam.

5. Harmonic Balance Solutions to Ordinary Differential Equations for Multi-Mode
Coupling Vibrations of Periodic and Non-Periodic Beams

To obtain amplitude–frequency characteristics, the beam is considered subjected to
harmonic excitation F. Modal excitation Fp1 in Equation (22) is harmonic due to F or Fp
based on Equation (A2). Let Fp1 be:

Fp1(t) = Ep11s sin ωt (24)

where Ep11s = [Ep11s,1, Ep11s,2, . . . , Ep11s,Nm]T is a constant vector and ω is the excitation
frequency. According to the harmonic balance method, the stationary response of the
modal displacement of the first-order approximation for the periodic beam is obtained by
Equation (22) (j = 1) as

Qp1 = Rp11s sin ωt + Rp11c cos ωt (25)

where Rp11s = [Rp11s,1, Rp11s,2, . . . , Rp11s,Nm]T, Rp11c = [Rp11c,1, Rp11c,2, . . . , Rp11c,Nm]T and:

Rp11 =

[
Rp11s
Rp11c

]
= ∆−1

p1

[
Ep11s

0

]
, ∆p1 =

[
Kp1 −ω2Mp1 −ωCp1

ωCp1 Kp1 −ω2Mp1

]
(26)

By using Equations (A2) and (22) for j = 2, 3, . . . , modal excitations Fp2, Fp3, . . .
can be determined and stationary responses of modal displacements of the high-order
approximations Qp2, Qp3, . . . for the periodic beam can be obtained. They are:

Fpj =
2j−1

∑
l=1,3

(Epjls sin lωt + Epjlc cos lωt) (27)
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Qpj =
2j−1

∑
l=1,3

(Rpjls sin lωt + Rpjlc cos lωt) (28)

where Epjls = [Epjls,1, Epjls,2, . . . , Epjls,Nm]T and Epjlc = [Epjlc,1, Epjlc,2, . . . , Epjlc,Nm]T are con-
stant vectors, Rpjls = [Rpjls,1, Rpjls,2, . . . , Rpjls,Nm]T, Rpjlc = [Rpjlc,1, Rpjlc,2, . . . , Rpjlc,Nm]T,
and:

Rpjl =

[
Rpjls
Rpjlc

]
= ∆−1

pl

[
Epjls
Epjlc

]
, ∆pl =

[
Kp1 − l2ω2Mp1 −lωCp1

lωCp1 Kp1 − l2ω2Mp1

]
(29)

Similarly, for the non-periodic beam, modal excitations Fj (j = 1, 2, 3, . . . ) can be
determined and stationary responses of modal displacements of the approximations
∆Qj (j = 1, 2, 3, . . . ) for the non-periodic (or periodicity defect) part can be obtained
by Equations (A3) and (23). They are:

Fj =
2j−1

∑
l=1,3

(Ejls sin lωt + Ejlc cos lωt) (30)

∆Qj =
2j−1

∑
l=1,3

(Rjls sin lωt + Rjlc cos lωt) (31)

where Ejls = [Ejls,1, Ejls,2, . . . , Ejls,Nm]T and Ejlc = [Ejlc,1, Ejlc,2, . . . , Ejlc,Nm]T are constant
vectors, Rjls = [Rjls,1, Rjls,2, . . . , Rjls,Nm]T, Rjlc = [Rjlc,1, Rjlc,2, . . . , Rjlc,Nm]T, and:

Rjl =

[
Rjls
Rjlc

]
= ∆−1

l

[
Ejls
Ejlc

]
, ∆l =

[
K1 − l2ω2M1 −lωC1

lωC1 K1 − l2ω2M1

]
(32)

By using Equations (19)–(21), (28) and (31), frequency responses of the approximate
displacement wj in multi-mode coupling vibration can be obtained as a function of ω and
x, which is used to reveal amplitude–frequency characteristics and spatial mode. The
response includes periodic part wpj (for the beam with periodic parameters and supports)
and non-periodic part ∆wj (for the beam with periodicity defect or non-periodic parameters
and supports). Then, the dimensionless displacement response w of the nonlinearly vibra-
tional beam with spatial distribution parameters and non-periodic supports is obtained by
Equation (7) as

w(x, t) =
∞

∑
j=1

εj−1Φ(x)Qj(t) (33)

From Equation (12), the periodic part and non-periodic part of the displacement
response are obtained as

wp(x, t) =
∞

∑
j=1

εj−1Φ(x)Qpj(t) (34)

∆w(x, t) =
∞

∑
j=1

εj−1Φ(x)∆Qj(t) (35)

For certain large nonlinear vibrations, principal harmonic response is dominant
and the response amplitude is determined by constant vectors Rpj1s, Rpj1c, Rj1s and Rj1c
(j = 1, 2, . . . ) with the mode vector Φ. The above analysis method for the nonlinear
vibration responses of non-periodic beams has no limit on the number of modes and is thus
suitable for accurate numerical computation. The proposed method is particularly applica-
ble to the nonlinear vibration of non-periodic structures with a high parameter-varying
wave in wide frequency vibration. The nonlinear vibration of non-periodic structures
under harmonic excitation has the coupling of multiple modes, and its dynamic stability is
related to the parametrically excited stability of a multi-degree-of-freedom system with
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periodic time-varying parameters. The stability problem can be solved by using a direct
eigenvalue analysis approach [61].

6. Results on Response Amplitude–Frequency Characteristics of Nonlinear
Multi-Support Beam with Support Periodicity Defect

To illustrate the application of the proposed method and the response characteristics
of non-periodic structures, consider a simply supported beam with a uniform distribution
parameters and periodicity defect supports under harmonic excitation which models, e.g.,
a continuous girder viaduct. The nonlinear vibration of the beam is described by Equation
(3) where mb, EA and EI are constants. In the case of periodic supports, the dimensionless
coordinate of the ith support is xsi = i/(Np + 1) (i = 1, 2, . . . , Np). By using dimensionless
time τ = t/ω0, Equation (3) can be rewritten as

∂2w
∂τ2 + cu

∂w
∂τ + 1

π4
∂4w
∂x4 − ku

∂2w
∂x2

(
∂w
∂x

)2

+
Np

∑
i=1

(cusi
∂w
∂τ + kusiw)δ(x− xsi) = Fu(x, τ)

(36)

where:

ω0 = π2

√
EI0

ρA0L4 , ku =
3W2

a A0

2π4 I0
, cu =

cb
mbω0

, kusi =
ksiL3

π4EI0
,

cusi =
csiω0L3

π4EI0
, Fu =

FL3

π4EI

(37)

By comparing Equation (36) with Equation (5), there are B1 = 1, B2 = cu, B3 = 1/π4,
B4 = B5 = 0, B10 = −ku/ε, B11 = 0, D1i = cusi, D2i = kusi and F is replaced by Fu. Boundary
conditions are as given by Equation (6). Equation (36) is a nonlinear partial differential
equation with spatial varying parameters due to non-periodic supports. The proposed
method was applied to obtain the dimensionless displacement responses of the non-
periodic beam in nonlinear multi-mode coupling vibration. The response amplitude is
a function of dimensionless frequency ω and coordinate x, which is used to explore the
characteristics of the amplitude–frequency relation and spatial mode.

Harmonic excitation on point ye is considered as Fu = F0δ(x − ye) sin ωτ. For two
middle supports, Np = 2. Basic parameter values are ku = 0.1, ε = 0.01, kusi = 0.1, cusi = 0.02,
ye = 0.4, F0 = 0.01, and the modal damping coefficient is 0.04 [14]. Results obtained by the
proposed method for linear vibration are verified by exact theoretical solution and those for
nonlinear vibration are verified by direct numerical simulation. The first four dimensionless
natural frequencies of the linearly vibrational beam without damping and middle supports
are 1, 4, 9 and 16. For dimensionless frequency ω ∈ [0, 20], the corresponding dimensionless
response covers the first four resonances, and its accurate results are obtained by using
the proposed method with the mode number Nm = 10 which corresponds to the natural
frequency with the upper limit ω = 100.

6.1. Effects of Support Periodicity Defect on Response Amplitude–Frequency Characteristics

Results on dimensionless response amplitude–frequency relations of the nonlinearly
vibrational beam with periodic supports and with non-periodic supports are given for
comparison. Figure 2 shows the amplitude–frequency relations on the point x = 0.4 of
the beam with periodic supports and with non-periodic supports (i.e., the left support
deviation to the right ∆xs1 = 0.1/3 and left support deviation to the left ∆xs1 = −0.1/3)
under the harmonic excitation. It can be seen that the first response peak increases with
local span due to the support deviation. Figure 3 illustrates the relative variation of the
response amplitudes of the non-periodic beam with left support deviation to the right
(∆xs1 = 0.1/3) to the beam with periodic supports under harmonic excitation. The first
response peak is reduced from 0.115 to 0.110 at the dimensionless frequency ω = 1.14
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with a relative reduction of 4.52%, and the maximal relative reduction is 6.06% at ω = 1.10.
Therefore, the small deviation of periodic supports has a slight effect on the response
amplitudes of the nonlinearly vibrational beam.

 

1 

 

Figure 2. Response amplitudes W of the beam with periodic supports and with non-periodic supports
under excitation frequency ω (black dotted line: beam with periodic supports; blue dashed line: non-
periodic beam with left support deviation to the right ∆xs1 = 0.1/3; and red solid line: non-periodic
beam with left support deviation to the left ∆xs1 = −0.1/3).
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Figure 3. Relative variation of the response amplitudes W of non-periodic beam with left support
deviation to the right (∆xs1 = 0.1/3) to the beam with periodic supports under excitation frequency ω.

Figure 4 shows the amplitude–frequency relations on the point x = 0.4 of the beam
with periodic supports and with non-periodic supports (i.e., left support stiffness kus1 = 0.6
and left support stiffness kus1 = 1.1) under the harmonic excitation. It can be seen that the
first response peak decreases with the increase in the support stiffness and the first resonant
frequency increases with the support stiffness. As the left support stiffness increases from
0.1 to 1.1, the first response peak is reduced from 0.115 (at ω = 1.14) to 0.068 (at ω = 1.62) and
the relative reduction is 41.0%. However, high-order resonant and anti-resonant responses
have relatively small effects. Figure 5 shows the amplitude–frequency relations on the
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point x = 0.4 of the beam with periodic supports and with non-periodic supports (i.e., left
support damping cus1 = 0.12 and left support damping cus1 = 0.22) under the harmonic
excitation. It can be observed that the first and second response peaks decrease with the
increase in the support damping and the resonant frequencies have small variation. As
the left support damping increases from 0.02 to 0.12, the first response peak is reduced
from 0.115 (at ω = 1.14) to 0.055 (at ω = 1.12) and the relative reduction is 52.1%. Therefore,
increasing the stiffness and damping of several supports (as support periodicity defect)
can especially reduce the first and second resonant responses of the nonlinearly vibrational
beam, which has potential application to nonlinear structural vibration control.
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Figure 4. Response amplitudes W of the beam with periodic supports and with non-periodic supports
(different left support stiffnesses kus1) under excitation frequency ω (black dotted line: beam with
periodic supports; green dashed line: non-periodic beam with kus1 = 0.6; and blue dash-dotted line:
non-periodic beam with kus1 = 1.1).
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Figure 5. Response amplitudes W of the beam with periodic supports and with non-periodic supports
(different left support damping cus1) under excitation frequency ω (black dotted line: beam with
periodic supports; green dashed line: non-periodic beam with cus1 = 0.12; and blue dash-dotted line:
non-periodic beam with cus1 = 0.22).
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Particularly, it can be observed that the third resonant response and resonant frequency
remain unchanged against the increasing support stiffness. The dynamic characteristics
of the frequency response of the beam with the support periodicity defect (i.e., several
support stiffness variations) will determine the outstanding variation of vibration response
distribution and jump or the alteration of mode component orders. The alteration of mode
component orders caused by varying support stiffness has been demonstrated for beams
with periodic supports [61]. It will be further demonstrated in the following subsections
for the nonlinear beam with non-periodic supports (or support periodicity defect).

6.2. Effects of Non-Periodic Support Stiffness Increase on Amplitude–Frequency Characteristics
and Vibration Anti-Localization

Special dimensionless amplitude–frequency characteristics and low-order mode com-
ponent jump of the nonlinearly vibrational beam with non-periodic supports (i.e., a support
stiffness larger than the others) are explored by increasing a support stiffness. Figure 6
shows the amplitude–frequency relations on the point x = 0.4 of the beam with non-periodic
supports under the harmonic excitation for different left support stiffnesses (i.e., left sup-
port stiffness kus1 = 10.1, kus1 = 20.1, kus1 = 30.1, kus1 = 45.1, and kus1 = 0.1 as periodic
support for comparison). It is obtained that the second resonant frequency increases with
the support stiffness and the increment is larger than that of the first resonant frequency.
However, the third resonant frequency remains unchanged, and thus the second resonant
frequency will reach the third resonant frequency as the support stiffness increases. The
original third resonant response vanishes when the left support stiffness kus1 > 30. However,
the original third resonant response reappears when the left support stiffness kus1 > 40, and
the resonant response then becomes the second resonant response in accordance with the
corresponding frequency order.
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Figure 6. Response amplitudes W of the beam with non-periodic supports under excitation frequency
ω for different left support stiffnesses kus1 (black dotted line: kus1 = 10.1; green dashed line: kus1 = 20.1;
blue dash-dotted line: kus1 = 30.1; red solid line: kus1 = 45.1; and grey dash-dot-dashed line: kus1 = 0.1
as periodic support for comparison).

Figures 7 and 8 show, in the case of the left support stiffness kus1 = 10.1, the vibration
response distributions (absolute amplitude values) and the corresponding mode compo-
nents (first three components relevant to ϕn) of the beam with non-periodic supports (i.e.,
the left support stiffness is larger than the others) under the harmonic excitation with
a dimensionless frequency close to the second and third resonant frequencies (ω = 5.0
and 9.0), respectively. The vibration response distributions of the beam without periodic
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support were also given for comparison. The second and third resonant responses have
dominant components of the second and third modes, respectively. The second resonant
response at the support (x = 1/3, 2/3) is large, but the third resonant response at the
support (x = 1/3, 2/3) is close to zero, as shown in Figures 7 and 8. Figure 9 shows, in
the case of the left support stiffness kus1 = 45.1, the vibration response distribution and
the corresponding mode components of the beam with non-periodic supports under the
harmonic excitation with a dimensionless frequency close to the second resonant frequency
(ω = 8.9). The second resonant response has a dominant component of the third mode.
Then, the original third mode component (for left support stiffness kus1 = 10.1) becomes
the second mode component (for left support stiffness kus1 = 45.1), and the original second
mode component becomes the third mode component. This is the mode component jump
or alteration of mode component orders, which yields outstanding variation of the vibra-
tion response distribution due to the changing stiffness of a non-periodic support. The left
support stiffness kus1 = 40 is called critical stiffness for the mode alteration as the support
periodicity defect. The current second resonant response at the support (x = 1/3, 2/3) is
close to zero, which is called local weak coupling between adjacent spans.
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Figure 7. Vibration response distribution W(y,ω) (ω = 5.0) and mode components qfi(y) of the beam
with non-periodic supports for left support stiffness kus1 = 10.1 (black solid line: response amplitude
W; red dotted line: first mode component qf1; blue dashed line: second mode component qf2; green
dash-dotted line: third mode component qf3; and grey dotted line: response amplitude without
periodic support) (y = x).

By the comparison of the vibration response distributions in Figures 7 and 9, the large
variation of the spatial distribution of the second resonant response is obtained, particularly,
at the supports as the non-periodic support stiffness increases to exceed the critical stiffness.
The comparison of the amplitude–frequency relations in Figure 6 results in the large
variation of the second resonant response versus frequency as the non-periodic support
stiffness increases. Figure 10 shows the evolution of the vibration response distribution
of the beam with increasing left support stiffness (kus1) for ω = 8.9 near the original third
resonant frequency. It is observed that the third mode component changes from dominance
to puniness and returns dominance in the response. The remarkable variation of frequency
response and the mode component jump or alteration of mode component orders for
nonlinear beams with varying non-periodic supports (as non-periodic support stiffness
increases) are revealed for the first time. The vibration response distribution (for the second
resonant response) changes from the non-dominant third mode component (response at
the support is large) to the dominant third mode component (response at the support is
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close to zero); this phenomenon is called vibration anti-localization. The anti-localization
has potential application, e.g., in the vibration control of nonlinearly vibrational structures
with non-periodic supports.
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Figure 8. Vibration response distribution W(y,ω) (ω = 9.0) and mode components qfi(y) of the beam
with non-periodic supports for left support stiffness kus1 = 10.1 (black solid line: response amplitude
W; red dotted line: first mode component qf1; blue dashed line: second mode component qf2; green
dash-dotted line: third mode component qf3; and grey dotted line: response amplitude without
periodic support) (y = x).
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6.3. Effects of Non-Periodic Support Stiffness Reduction on Amplitude–Frequency Characteristics
and Vibration Localization

Dimensionless amplitude–frequency characteristics and the low-order mode com-
ponent jump of the nonlinearly vibrational beam with non-periodic supports (there is a
support with its stiffness smaller than the others) are explored here by considering changes
in large support stiffness. Figure 11 shows the amplitude–frequency relations at the point
x = 0.4 of the beam with periodic supports under the harmonic excitation for different large
support stiffnesses (kus1 = kus2) (the support stiffness is, respectively, kus1 = 10, kus1 = 23,
kus1 = 31, and kus1 = 40). It can be seen that, as the support stiffness increases, the origi-
nal second resonant response vanishes when the support stiffnesses kus1 = kus2 > 24, and
the original second and third resonant responses vanish when the support stiffnesses
kus1 = kus2 > 31. However, the original third resonant response reappears when the support
stiffnesses kus1 = kus2 > 38, but the resonant response becomes the first resonant response
and the original first resonant response then becomes the second resonant response in
terms of the frequency order.

The beam with periodic supports of large support stiffnesses kus1 = kus2 = 45 has local
weak coupling where the first resonant response at the support is close to zero. Now
consider a support stiffness reduction for the periodic beam, e.g., due to damage, which is
the support periodicity defect. Figure 12 illustrates the amplitude–frequency relations at
the point x = 0.4 of the beam with non-periodic supports under the harmonic excitation
for different left support stiffnesses (the left support stiffness is, respectively, kus1 = 40,
kus1 = 38, kus1 = 25, and kus1 = 45 in the periodic support case for comparison). It can be
seen that as the support stiffness decreases, the second resonant response reappears when
the left support stiffness kus1 < 40. The resonant response peak increases and the resonant
frequency decreases with the left support stiffness. The original first resonant response (for
the periodic beam) vanishes when the left support stiffness kus1 < 38. However, the original
first resonant response reappears when the left support stiffness kus1 < 25, and the resonant
response then becomes the second resonant response in terms of the frequency order.
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Figure 11. Response amplitudes W of the beam with periodic supports under excitation frequency ω
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blue dash-dotted line: kus1 = 31; and red solid line: kus1 = 40).
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Figure 12. Response amplitudes W of the beam with non-periodic supports under excitation fre-
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Figure 13 shows, in the case of the periodic support stiffnesses kus1 = kus2 = 45, the
vibration response distribution (absolute amplitude values) and the corresponding mode
components (first three components relevant to ϕn) of the beam under the harmonic
excitation with a dimensionless frequency close to the first resonant frequency (ω = 8.9).
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It is observed that the first resonant response has a dominant component of the third
mode, and the resonant response at the support (x = 1/3, 2/3) is close to zero (local
weak coupling). Figure 14 shows, in the case of the non-periodic supports with left
support stiffness kus1 = 25, the vibration response distribution and the corresponding mode
components of the beam under the harmonic excitation with dimensionless frequency close
to the first resonant frequency (ω = 8.0). It is observed that the first resonant response has
dominant components of the first and second modes, and the resonant response at the
left support (x = 1/3) is large. Therefore, the original second and third mode components
(with support stiffness kus1 = kus2 = 45) then become the first and second mode components
(with left support stiffness kus1 = 25), and the original first mode component then becomes
the third mode component. This is the mode component jump or alteration of mode
component orders (support stiffness kus1 = 25 is called critical stiffness), which yields
outstanding variation of the vibration response distribution due to the stiffness reduction
of a non-periodic support.
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By the comparison of the vibration response distributions in Figures 13 and 14, the
large variation in the spatial distribution of the first resonant response (particularly at
the support) is obtained, and the comparison of the amplitude–frequency relations in
Figure 12 results in the large variation of the first resonant response versus frequency as the
non-periodic support stiffness decreases below the critical stiffness. Figure 15 shows the
evolution of the vibration response distribution of the beam with the reducing left support
stiffness (kus1) for ω = 8.9 near the original first resonant frequency. The observation similar
to Figure 10 was obtained. The outstanding variation of the frequency response and the
mode component jump or alteration of mode component orders for nonlinear beams with
varying non-periodic supports (as non-periodic support stiffness decreases) are revealed
for the first time. The vibration response distribution (for the first resonant response)
changes from the dominant third mode component (response at the support is close to
zero) to the non-dominant third mode component (response at the support is large); this is
called vibration localization. The localization has a potential application, e.g., to support
the damage detection of nonlinearly vibrational structures with non-periodic supports.
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7. Conclusions

A response analysis method for nonlinearly vibrational beams with spatial distribu-
tion parameters and non-periodic supports (or support periodicity defect) was developed
by combining perturbation, periodic and non-periodic separation, Galerkin expansion and
harmonic balance methods, and applied to analyze the amplitude–frequency characteristics
of non-periodic beams with multi-mode coupling vibration. The proposed method has the
following main advantages: (i) it separates a non-periodic structure and its response into
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periodic and non-periodic (or periodicity defect) parts; (ii) it takes multiple vibration modes
for the response analysis of nonlinear non-periodic structures; (iii) it considers the coupling
effects of vibration modes owing to structural nonlinearity and parametric periodicity;
(iv) it is applicable to nonlinear non-periodic structures with a high-parameter-varying
wave in a wide frequency vibration; and (v) it is suitable for effective numerical computa-
tion. The proposed method can be extended for the dynamic response analysis of other
nonlinear structures with periodic and non-periodic distribution parameters.

Nonlinear beams with non-periodic supports (resulting in non-periodic distribution
parameters or periodicity defect) under harmonic excitation have been studied to demon-
strate the application of the proposed method which has good convergence and accuracy
with increasing expansion terms. Graphical results on the amplitude–frequency charac-
teristics of a non-periodic beam with various support stiffness and damping demonstrate
that: (i) a small deviation of periodic supports has a slight effect on the response, and
the increasing stiffness and damping of several supports can remarkably reduce the first
and second resonant responses which has a potential application to nonlinear structural
vibration control; (ii) for the local strong coupling case, the second resonant frequency
largely increases with non-periodic support stiffness, but the third resonant frequency with
the response remains almost unchanged against increasing non-periodic support stiffness;
(iii) for the local strong coupling case, the second resonant response and spatial distribution
have remarkable variation as the non-periodic support stiffness increases to exceed the
critical stiffness, and the mode component jump or alteration of mode component orders
gives rise to the outstanding variation or vibration anti-localization, which has a potential
application to nonlinear structural vibration control; (iv) for the local weak coupling case,
the first resonant response increases and the resonant frequency largely decreases with
non-periodic support stiffness when it is smaller than the critical stiffness, and there is
the mode component jump or alteration of mode component orders; and (v) for the local
weak coupling case, the first resonant response and spatial distribution have remarkable
variation as the non-periodic support stiffness decreases below the critical stiffness, and the
mode component jump yields the vibration localization, which has a potential application
to support damage detection of nonlinear structures with non-periodic supports. Some
salient dynamic characteristics including outstanding frequency response variation and
the mode component jump for nonlinearly vibrational beams with non-periodic supports
(or support periodicity defect) were discovered for the first time.
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0 φm(y)(∆B1B−1
p1 Bp2 − ∆B2)

[
Φ(y)

∂Qp1
∂t

]
dy

+
∫ 1

0 φm(y)
3
∑

k=1
(∆B1B−1

p1 Bp,k+2 − ∆Bk+2)

·
[

∂(5−k)Φ(y)
∂y(5−k) Qp1

]
dy +

Np

∑
i=1

{
φm(ypi)(1 + ∆B1B−1

p1 )

·[Dp1Φ(ypi)
∂Qp1

∂t + Dp2Φ(ypi)Qp1]− φm(yi)

·[D1iΦ(yi)
∂Qp1

∂t + D2iΦ(yi)Qp1]
}

F2,m =
∫ 1

0 φm(y)(∆B1B−1
p1 Bp2 − ∆B2)

[
Φ(y)

∂Qp2
∂t

]
dy

+
∫ 1

0 φm(y)
3
∑

k=1
(∆B1B−1

p1 Bp,k+2 − ∆Bk+2)

·
[

∂(5−k)Φ(y)
∂y(5−k) Qp2

]
dy +

Np

∑
i=1

{
φm(ypi)(1 + ∆B1B−1

p1 )

·[Dp1Φ(ypi)
∂Qp2

∂t + Dp2Φ(ypi)Qp2]− φm(yi)

·[D1iΦ(yi)
∂Qp2

∂t + D2iΦ(yi)Qp2]
}
−
∫ 1

0 φm(y)

·
{

B10(y)
[

∂2Φ(y)
∂y2 Q1

][
∂Φ(y)

∂y Q1

]2
− (1 + ∆B1B−1

p1 )

·Bp10(y)
[

∂2Φ(y)
∂y2 Qp1

][
∂Φ(y)

∂y Qp1

]2
}

dy

−
∫ 1

0 φm(y)
{

B11(y)
[

∂Φ(y)
∂y Q1

]3

− (1 + ∆B1B−1
p1 )Bp11(y)

[
∂Φ(y)

∂y Qp1

]3
}

dy
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F3,m =
∫ 1

0 φm(y)(∆B1B−1
p1 Bp2 − ∆B2)

[
Φ(y)

∂Qp3
∂t

]
dy

+
∫ 1

0 φm(y)
3
∑

k=1
(∆B1B−1

p1 Bp,k+2 − ∆Bk+2)

·
[

∂(5−k)Φ(y)
∂y(5−k) Qp3

]
dy +

Np

∑
i=1

{
φm(ypi)(1 + ∆B1B−1

p1 )

·[Dp1Φ(ypi)
∂Qp3

∂t + Dp2Φ(ypi)Qp3]− φm(yi)

·[D1iΦ(yi)
∂Qp3

∂t + D2iΦ(yi)Qp3]
}
−
∫ 1

0 φm(y)

·B10(y)
{[

∂2Φ(y)
∂y2 Q2

][
∂Φ(y)

∂y Q1

] 2

+2
[

∂Φ(y)
∂y Q2

][
∂2Φ(y)

∂y2 Q1

][
∂Φ(y)

∂y Q1

]}
dy

+
∫ 1

0 φm(y)(1 + ∆B1B−1
p1 )Bp10(y)

{[
∂2Φ(y)

∂y2 Qp2

]
·
[

∂Φ(y)
∂y Qp1

]2
+ 2
[

∂Φ(y)
∂y Qp2

][
∂2Φ(y)

∂y2 Qp1

]
·
[

∂Φ(y)
∂y Qp1

]}
dy− 3

∫ 1
0 φm(y){B11(y)

·
[

∂Φ(y)
∂y Q2

][
∂Φ(y)

∂y Q1

]2
− (1 + ∆B1B−1

p1 )Bp11(y)

·
[

∂Φ(y)
∂y Qp2

][
∂Φ(y)

∂y Qp1

]2
}

dy

ypi = xpi, yi = xi

m, n = 1, 2, . . . , Nm; j = 1, 2, 3
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