Standardized Biomechanical Investigation of Posture and Gait in Pisa Syndrome Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Instruments and Kinematic Models
2.3. Tasks
2.4. Data Analysis
3. Results
3.1. Static Posture
3.2. Gait Trails
4. Discussion
4.1. Static Posture
4.2. Gait Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Digo, E.; Agostini, V.; Pastorelli, S.; Gastaldi, L.; Panero, E. Gait Phases Detection in Elderly using Trunk-MIMU System. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, Vienna, Austria, 11–13 February 2021; Scitepress—Science and Technology Publications: Southampton, UK, 2021; pp. 58–65. [Google Scholar]
- Morris, M.E.; Huxham, F.; McGinley, J.; Dodd, K.; Iansek, R. The biomechanics and motor control of gait in Parkinson disease. Clin. Biomech. 2001, 16, 459–470. [Google Scholar] [CrossRef]
- Debû, B.; Godeiro, C.D.O.; Lino, J.C.; Moro, E. Managing Gait, Balance, and Posture in Parkinson’s Disease. Curr. Neurol. Neurosci. Rep. 2018, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Doherty, K.M.; van de Warrenburg, B.P.; Peralta, M.C.; Moriyama, L.S.; Azulay, J.-P.; Gershanik, O.S.; Bloem, B.R. Postural deformities in Parkinson’s disease. Lancet Neurol. 2011, 10, 538–549. [Google Scholar] [CrossRef]
- Di Matteo, A.; Fasano, A.; Squintani, G.; Ricciardi, L.; Bovi, T.; Fiaschi, A.; Barone, P.; Tinazzi, M. Lateral trunk flexion in Parkinson’s disease: EMG features disclose two different underlying pathophysiological mechanisms. J. Neurol. 2010, 258, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, L.; Thomas, A.M.; Varanese, S.; Scorrano, V.; Onofrj, M. Botulinum toxin treatment of lateral axial dystonia in parkinsonism. Mov. Disord. 2007, 22, 2097–2103. [Google Scholar] [CrossRef]
- Tinazzi, M.; Geroin, C.; Gandolfi, M.; Smania, N.; Tamburin, S.; Morgante, F.; Fasano, A. Pisa syndrome in Parkinson’s disease: An integrated approach from pathophysiology to management. Mov. Disord. 2016, 31, 1785–1795. [Google Scholar] [CrossRef]
- Castrioto, A.; Piscicelli, C.; Pérennou, D.; Krack, P.; Debû, B. The pathogenesis of Pisa syndrome in Parkinson’s disease. Mov. Disord. 2014, 29, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Doherty, K.M.; Davagnanam, I.; Molloy, S.; Moriyama, L.S.; Lees, A.J. Pisa syndrome in Parkinson’s disease: A mobile or fixed deformity? J. Neurol. Neurosurg. Psychiatry 2013, 84, 1400–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brognara, L.; Palumbo, P.; Grimm, B.; Palmerini, L. Assessing Gait in Parkinson’s Disease Using Wearable Motion Sensors: A Systematic Review. Diseases 2019, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarchi, D.; Pope, J.; Lee, T.K.M.; Tamjidi, L.; Mirzaei, A.; Sanei, S. A Review on Accelerometry-Based Gait Analysis and Emerging Clinical Applications. IEEE Rev. Biomed. Eng. 2018, 11, 177–194. [Google Scholar] [CrossRef]
- Celik, Y.; Stuart, S.; Woo, W.; Godfrey, A. Gait analysis in neurological populations: Progression in the use of wearables. Med. Eng. Phys. 2021, 87, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Leban, B.; Deidda, M.; Putzolu, F.; Porta, M.; Coghe, G.; Cocco, E. Kinematic Analysis of Lower Limb Joint Asymmetry During Gait in People with Multiple Sclerosis. Symmetry 2021, 13, 598. [Google Scholar] [CrossRef]
- Higgs, J.; Diamond, L.; Saxby, D.; Constantinou, M.; Barrett, R. Individuals with Unilateral Mild-to-Moderate Hip Osteoarthritis Exhibit Lower Limb Kinematic Asymmetry during Walking But Not Sit-to-Stand. Symmetry 2021, 13, 768. [Google Scholar] [CrossRef]
- Kim, W.-S.; Choi, H.; Jung, J.-W.; Yoon, J.S.; Jeoung, J.H. Asymmetry and Variability Should Be Included in the Assessment of Gait Function in Poststroke Hemiplegia With Independent Ambulation During Early Rehabilitation. Arch. Phys. Med. Rehabil. 2021, 102, 611–618. [Google Scholar] [CrossRef]
- Carollo, J.; De, S.; Akuthota, V. Evidence-Based Physiatry: Clinical Decision-Making with Instrumented Gait Analysis. Am. J. Phys. Med. Rehabil. 2020, 99, 265–266. [Google Scholar] [CrossRef]
- Zanardi, A.P.J.; Martinez, F.G.; da Silva, E.S.; Casal, M.Z.; Martins, V.F. Effects of nordic walking on gait symmetry in mild Parkinson’s disease. Symmetry 2019, 11, 1481. [Google Scholar] [CrossRef] [Green Version]
- Di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring. Sensors 2020, 20, 3529. [Google Scholar] [CrossRef]
- Nardello, F.; Bertoli, E.; Bombieri, F.; Bertucco, M.; Monte, A. The Effect of a Secondary Task on Kinematics during Turning in Parkinson’s Disease with Mild to Moderate Impairment. Symmetry 2020, 12, 1284. [Google Scholar] [CrossRef]
- Ye, X.; Lou, D.; Ding, X.; Xie, C.; Gao, J.; Lou, Y.; Cen, Z.; Xiao, Y.; Miao, Q.; Xie, F.; et al. A clinical study of the coronal plane deformity in Parkinson disease. Eur. Spine J. 2017, 26, 1862–1870. [Google Scholar] [CrossRef]
- Huh, Y.E.; Kim, K.; Chung, W.-H.; Youn, J.; Kim, S.; Cho, J.W. Pisa Syndrome in Parkinson’s Disease: Pathogenic Roles of Verticality Perception Deficits. Sci. Rep. 2018, 8, 1804. [Google Scholar] [CrossRef] [Green Version]
- Todisco, M.; Pozzi, N.G.; Zangaglia, R.; Minafra, B.; Servello, D.; Ceravolo, R.; Alfonsi, E.; Fasano, A.; Pacchetti, C. Pisa syndrome in Idiopathic Normal Pressure Hydrocephalus. Park. Relat. Disord. 2019, 66, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Tinazzi, M.; Juergenson, I.; Squintani, G.; Vattemi, G.; Montemezzi, S.; Censi, D.; Barone, P.; Bovi, T.; Fasano, A. Pisa syndrome in Parkinson’s disease: An electrophysiological and imaging study. J. Neurol. 2013, 260, 2138–2148. [Google Scholar] [CrossRef]
- Geroin, C.; Smania, N.; Schena, F.; Dimitrova, E.; Verzini, E.; Bombieri, F.; Nardello, F.; Tinazzi, M.; Gandolfi, M. Does the Pisa syndrome affect postural control, balance, and gait in patients with Parkinson’s disease? An observational cross-sectional study. Park. Relat. Disord. 2015, 21, 736–741. [Google Scholar] [CrossRef]
- Tinazzi, M.; Gandolfi, M.; Artusi, C.A.; Lanzafame, R.; Zanolin, E.; Ceravolo, R.; Capecci, M.; Andrenelli, E.; Ceravolo, M.G.; Bonanni, L.; et al. Validity of the wall goniometer as a screening tool to detect postural abnormalities in Parkinson’s disease. Park. Relat. Disord. 2019, 69, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formaggio, E.; Masiero, S.; Volpe, D.; Demertzis, E.; Gallo, L.; Del Felice, A. Lack of inter-muscular coherence of axial muscles in Pisa syndrome. Neurol. Sci. 2019, 40, 1465–1468. [Google Scholar] [CrossRef]
- Margraf, N.G.; Rogalski, M.; Deuschl, G.; Kuhtz-Buschbeck, J.P. Trunk muscle activation pattern in parkinsonian camptocormia as revealed with surface electromyography. Park. Relat. Disord. 2017, 44, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Sawa, N.; Ueno, S. Identification of a new target muscle for treatment in patients with Parkinson’s disease who have lateral trunk flexion? J. Neurol. Sci. 2015, 358, 435–439. [Google Scholar] [CrossRef]
- Frazzitta, G.; Balbi, P.; Gotti, F.; Maestri, R.; Sabetta, A.; Caremani, L.; Gobbi, L.; Capobianco, M.; Bera, R.; Giladi, N.; et al. Pisa Syndrome in Parkinson’s Disease: Electromyographic Aspects and Implications for Rehabilitation. Park. Dis. 2015, 2015, 437190. [Google Scholar] [CrossRef] [Green Version]
- Cano-De-La-Cuerda, R.; Vela-Desojo, L.; Moreno-Verdú, M.; Ferreira-Sánchez, M.D.R.; Macías-Macías, Y.; Miangolarra-Page, J.C. Trunk Range of Motion Is Related to Axial Rigidity, Functional Mobility and Quality of Life in Parkinson’s Disease: An Exploratory Study. Sensors 2020, 20, 2482. [Google Scholar] [CrossRef] [PubMed]
- Schlenstedt, C.; Boße, K.; Gavriliuc, O.; Wolke, R.; Granert, O.; Deuschl, G.; Margraf, N.G. Quantitative assessment of posture in healthy controls and patients with Parkinson’s disease. Park. Relat. Disord. 2020, 76, 85–90. [Google Scholar] [CrossRef]
- Tramonti, C.; Di Martino, S.; Unti, E.; Frosini, D.; Bonuccelli, U.; Rossi, B.; Ceravolo, R.; Chisari, C. Gait dynamics in Pisa syndrome and Camptocormia: The role of stride length and hip kinematics. Gait Posture 2017, 57, 130–135. [Google Scholar] [CrossRef]
- Crawford, N.R.; Yamaguchi, G.T.; Dickman, C.A. A new technique for determining 3-D joint angles: The tilt/twist method. Clin. Biomech. 1999, 14, 153–165. [Google Scholar] [CrossRef]
- Leardini, A.; Biagi, F.; Merlo, A.; Belvedere, C.; Benedetti, M.G. Multi-segment trunk kinematics during locomotion and elementary exercises. Clin. Biomech. 2011, 26, 562–571. [Google Scholar] [CrossRef]
- Needham, R.; Naemi, R.; Healy, A.; Chockalingam, N. Multi-segment kinematic model to assess three-dimensional movement of the spine and back during gait. Prosthet. Orthot. Int. 2016, 40, 624–635. [Google Scholar] [CrossRef]
- Crosbie, J.; Vachalathiti, R.; Smith, R. Patterns of spinal motion during walking. Gait Posture 1997, 5, 6–12. [Google Scholar] [CrossRef]
- Panero, E.; Digo, E.; Ferrarese, V.; Dimanico, U.; Gastaldi, L. Multi-Segments Kinematic Model of the Human Spine during Gait. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021. [Google Scholar]
- Ratner, B. The correlation coefficient: Its values range between 1/1, or do they. J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Vicon|Award Winning Motion Capture Systems. Available online: https://www.vicon.com/ (accessed on 1 July 2021).
- Oberg, T.; Karsznia, A.; Oberg, K. Basic gait parameters: Reference data for normal subjects, 10–79 years of age. J. Rehabil. Res. Dev. 1993, 30, 210–223. [Google Scholar] [PubMed]
- Bohannon, R.W.; Andrews, A.W. Normal walking speed: A descriptive meta-analysis. Physiotherapy 2011, 97, 182–189. [Google Scholar] [CrossRef] [PubMed]
Subjects | Deviation Side and Level | PD Duration (Years) | Pisa Duration (Years) | Hoenhn and Yahr Stage | Dopaminergic Therapy |
---|---|---|---|---|---|
M01 | Right L3 | 10 | 4 | 2 | LEDD: 1344 Levodopa-LEDD: 1064 DA-LEDD: 180 |
F02 | Right T12 | 11 | 3 | 2 | LEDD: 750 Levodopa-LEDD: 600 DA-LEDD: 150 |
F03 | Right L3–L4 | 27 | 3 | 3 | LEDD: 1091 Levodopa-LEDD: 931 DA-LEDD: 160 |
F04 | Right T10 | 7 | 7 | 3 | LEDD: 775 Levodopa-LEDD: 700 DA-LEDD: 75 |
M05 | Right L2–L3 | 16 | 5 | 2 | LEDD: 1675 Levodopa-LEDD: 1000 DA-LEDD: 150 |
M06 | Left T12 | 6 | 2 | 3 | LEDD: 575 Levodopa-LEDD: 475 DA-LEDD: 0 |
M07 | Right L2–L3 | 3 | 1 | 2 | LEDD: 1480 Levodopa-LEDD: 1330 DA-LEDD: 150 |
M08 | Left L3–L4 | 20 | 20 | 3 | LEDD: 1480 Levodopa-LEDD: 1330 DA-LEDD: 150 |
Spine Relative Angle (°) | ||||||||
---|---|---|---|---|---|---|---|---|
Subjects | Sagittal | Frontal | ||||||
Tk sup–Tk Inf | Tk Inf–Pelvis | Tk Sup–Tk Inf | Tk inf–Pelvis | |||||
Natural | Correct | Natural | Correct | Natural | Correct | Natural | Correct | |
M01 | 36.1° | 14.7° | −0.5° | 6.1° | −8.4° | −5.8° | 10.0° | 8.3° |
F02 | 13.0° | 10.8° | 1.1° | 1.5° | 22.5° | 22.0° | −3.3° | −4.6° |
F03 | 19.7° | 17.0° | 4.1° | 6.2° | 7.0° | 7.6° | −0.5° | −0.1° |
F04 | 21.5° | 18.1° | −8.3° | −8.8° | 28.9° | 26.9° | −6.8° | −7.2° |
M05 | 22.4° | 15.2° | 1.4° | 3.7° | 25.8° | 25.8° | −3.2° | −4.4° |
M06 | 41.0° | 37.3° | −15.4° | −13.7° | −9.1° | −2.1° | 7.1° | 6.4° |
M07 | 4.3° | 2.5° | −1.7° | 0.5° | 4.2° | 0.5° | −6.0° | −5.3° |
M08 | 25.5° | 23.6° | −5.2° | −5.2° | −1.1° | −2.0° | 14.0° | 13.8° |
Spatio-Temporal Parameters Mean (SD) | |||
---|---|---|---|
Walking Speed (m/s) | 0.71 (0.22) | ||
Omolateral | Controlateral | |Δ| | |
Stride Time (s) | 1.19 (0.17) | 1.19 (0.17) | 0.02 |
Step Time (s) | 0.59 (0.08) | 0.60 (0.10) | 0.05 |
Stance Time (s) | 0.76 (0.14) | 0.76 (0.12) | 0.03 |
Swing Time (s) | 0.42 (0.09) | 0.42 (0.09) | 0.03 |
Stride Length (m) | 0.83 (0.26) | 0.83 (0.27) | 0.01 |
Step Length (m) | 0.40 (0.13) | 0.43 (0.14) | 0.04 |
Step Width (m) | 0.08 (0.03) | 0.09 (0.03) | 0.01 |
Limp Index | 0.99 (0.04) | 1.00 (0.04) | 0.07 |
Stance Duration (%GC) | 64.00 (5.49) | 64.42 (4.22) | 2.36 |
Swing Duration (%GC) | 35.23 (5.75) | 35.31 (5.05) | 2.44 |
ROM (°) Mean (SD) | ||||||
---|---|---|---|---|---|---|
Hip | Knee | Ankle | ||||
Omo | Contro | Omo | Contro | Omo | Contro | |
Frontal plane | 9.22 (2.58) | 10.17 (3.87) | 17.80 (7.81) | 20.41 (13.21) | 2.19 (1.74) | 3.55 (1.68) |
Physiological | 12.30 | 6.98 | - | |||
Sagittal plane | 28.69 (7.75) | 29.74 (9.62) | 44.61 (12.63) | 42.62 (10.77) | 24.93 (7.19) | 27.40 (11.16) |
Physiological | 42.48 | 55.11 | 31.63 | |||
Transverse plane | 21.54 (6.60) | 29.54 (9.03) | 17.16 (3.57) | 21.69 (7.04) | 19.10 (11.14) | 23.54 (6.94) |
Physiological | 6.51 | 11.04 | 12.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panero, E.; Dimanico, U.; Artusi, C.A.; Gastaldi, L. Standardized Biomechanical Investigation of Posture and Gait in Pisa Syndrome Disease. Symmetry 2021, 13, 2237. https://doi.org/10.3390/sym13122237
Panero E, Dimanico U, Artusi CA, Gastaldi L. Standardized Biomechanical Investigation of Posture and Gait in Pisa Syndrome Disease. Symmetry. 2021; 13(12):2237. https://doi.org/10.3390/sym13122237
Chicago/Turabian StylePanero, Elisa, Ugo Dimanico, Carlo Alberto Artusi, and Laura Gastaldi. 2021. "Standardized Biomechanical Investigation of Posture and Gait in Pisa Syndrome Disease" Symmetry 13, no. 12: 2237. https://doi.org/10.3390/sym13122237
APA StylePanero, E., Dimanico, U., Artusi, C. A., & Gastaldi, L. (2021). Standardized Biomechanical Investigation of Posture and Gait in Pisa Syndrome Disease. Symmetry, 13(12), 2237. https://doi.org/10.3390/sym13122237