Fisher and Skew Information Correlations of Two Coupled Trapped Ions: Intrinsic Decoherence and Lamb-Dicke Nonlinearity
Abstract
:1. Introduction
2. The Trapped-Ion Physical Model
3. Correlation Quantifiers
3.1. Logarithmic Negativity (LGN)
3.2. Local Quantum Fisher Information (LQFI)
3.3. Local Quantum Uncertainty
4. Dynamics of Correlations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Jozsa, R.; Linden, N. On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. A 2003, 459, 2011. [Google Scholar] [CrossRef] [Green Version]
- Lanyon, B.; Barbieri, M.; Almeida, M.; White, A. Experimental Quantum Computing without Entanglement. Phys. Rev. Lett. 2008, 101, 200501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, A.; Vidal, G. Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 2007, 75, 042310. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Bernstein, H.J.; Popescu, S.; Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 1996, 53, 2046. [Google Scholar] [CrossRef] [Green Version]
- Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. A 2002, 65, 032314. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar] [CrossRef] [Green Version]
- Melkikh, A.V. Quantum system: Wave function, entanglement and the uncertainty principle. Mod. Phys. Lett. B 2021, 35, 2150222. [Google Scholar] [CrossRef]
- Ollivier, H.; Zurek, W.H. Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Eleuch, H. Quantum correlation control for two semiconductor microcavities connected by an optical fiber. Phys. Scr. 2017, 92, 065101. [Google Scholar] [CrossRef]
- Virzi, S.; Rebufello, E.; Avella, A.; Piacentini, F.; Gramegna, M.; Berchera, I.R.; Degiovanni, I.P.; Genovese, M. Optimal estimation of entanglement and discord in two-qubit states. Sci. Rep. 2019, 9, 3030. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Eleuch, H.; Ooi, C.H.R. Non-locality Correlation in Two Driven Qubits Inside an Open Coherent Cavity: Trace Norm Distance and Maximum Bell Function. Sci. Rep. 2019, 9, 19632. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aty, A.-H.; Kadry, H.; Mohamed, A.-B.A.; Eleuch, H. Correlation dynamics of nitrogen vacancy centers located in crystal cavities. Sci. Rep. 2020, 10, 16640. [Google Scholar] [CrossRef]
- A Obada, A.-S.F.; Mohamed, A.-B.A. Quantum correlations of two non-interacting ion’s internal electronic states with intrinsic decoherence. Opt. Commun. 2013, 309, 236. [Google Scholar] [CrossRef]
- Wigner, E.P.; Yanase, M.M. Information Contents Of Distributions. Proc. Natl. Acad. Sci. USA 1963, 49, 910. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-X.; Zhang, J.; Yu, C.-S.; Song, H.-S. Uncertainty-induced quantum nonlocality. Phys. Lett. A 2014, 378, 344. [Google Scholar] [CrossRef] [Green Version]
- Toóth, G. Multipartite entanglement and high-precision metrology. Phys. Rev. A 2012, 85, 022322. [Google Scholar] [CrossRef] [Green Version]
- Girolami, D.; Souza, A.M.; Giovannetti, V.; Tufarelli, T.; Filgueiras, J.G.; Sarthour, R.S.; Soares-Pinto, D.O.; Oliveira, I.S.; Adesso, G. Quantum Discord Determines the Interferometric Power of Quantum States. Phys. Rev. Lett. 2014, 112, 210401. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.-L.; Hu, X.; Wang, J.; Peng, Y.; Zhang, Y.-R.; Fan, H. Quantum coherence and geometric quantum discord. Phys. Rep. 2018, 762, 1. [Google Scholar] [CrossRef] [Green Version]
- Taddei, M.M.; Escher, B.M.; Davidovich, L.; de Matos Filho, R.L. Quantum Speed Limit for Physical Processes. Phys. Rev. Lett. 2013, 110, 050402. [Google Scholar] [CrossRef]
- Sun, Z.; Ma, J.; Lu, X.-M.; Wang, X. Fisher information in a quantum-critical environment. Phys. Rev. A 2010, 82, 022306. [Google Scholar] [CrossRef] [Green Version]
- Chapeau-Blondeau, F. Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A Fisher information analysis. Phys. Lett. A 2017, 381, 1369. [Google Scholar] [CrossRef] [Green Version]
- Dhar, H.S.; Bera, M.N.; Adesso, G. Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A 2015, 991, 032115. [Google Scholar] [CrossRef] [Green Version]
- Slaoui, A.; Bakmou, L.; Daoud, M.; AhlLaamara, R. A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg XY model. Phys. Lett. A 2019, 383, 2241. [Google Scholar] [CrossRef] [Green Version]
- Luo, S. Wigner-Yanase Skew Information and Uncertainty Relations. Phys. Rev. Lett. 2003, 91, 180403. [Google Scholar] [CrossRef]
- Gu, X.; Kockum, A.F.; Miranowicz, A.; Liu, Y.-X.; Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep. 2017, 718–719, 1. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Hessian, H.A.; Mohamed, A.-B.A.; Homid, A.H. Efficient protocol of N-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator. Quantum Inf. Process. 2014, 13, 475. [Google Scholar] [CrossRef]
- Denchev, V.S.; Boixo, S.; Isakov, S.V.; Ding, N.; Babbush, R.; Smelyanskiy, V.; Martinis, J.; Neven, H. What is the Computational Value of Finite-Range Tunneling? Phys. Rev. X 2016, 6, 031015. [Google Scholar] [CrossRef]
- Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum simulation. Rev. Mod. Phys. 2014, 86, 153. [Google Scholar] [CrossRef] [Green Version]
- Häffner, H.; Roos, C.F.; Blatt, R. Quantum computing with trapped ions. Phys. Rep. 2008, 469, 155. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.R.; Chiaverini, J.; Sage, J.M.; Häffner, H. Materials challenges for trapped-ion quantum computers. Nat. Rev. Mater. 2021. [Google Scholar] [CrossRef]
- Cirac, J.I.; Zoller, P. Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 1995, 74, 4091. [Google Scholar] [CrossRef]
- van Mourik, M.W.; Martinez, E.A.; Gerster, L.; Hrmo, P.; Monz, T.; Schindler, P.; Blatt, R. Coherent rotations of qubits within a surface ion-trap quantum computer. Phys. Rev. A 2020, 102, 022611. [Google Scholar] [CrossRef]
- Wei, L.F.; Nori, F. New exclusion limits on dark gauge forces from proton Bremsstrahlung in beam-dump data. Phys. Lett. A 2003, 320, 131. [Google Scholar] [CrossRef] [Green Version]
- Li, L.-X.; Guo, G.-C. Quantum logic gate operation between different ions in a trap. Phys. Rev. A 1999, 60, 696. [Google Scholar] [CrossRef]
- Blockley, C.A.; Walls, D.F. Cooling of a trapped ion in the strong-sideband regime. Phys. Rev. A 1993, 47, 2115. [Google Scholar] [CrossRef]
- Cirac, J.I.; Blatt, R.; Parkins, A.S.; Zoller, P. Quantum collapse and revival in the motion of a single trapped ion. Phys. Rev. A 1994, 49, 1202. [Google Scholar] [CrossRef]
- Jaynes, E.T.; Cummings, F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 1963, 51, 89. [Google Scholar] [CrossRef] [Green Version]
- Blockey, C.A.; Walls, D.F.; Risken, H. Quantum Collapses and Revivals in a Quantized Trap. Europhys. Lett. 1992, 17, 509. [Google Scholar] [CrossRef]
- Vogel, W.; de Matos Filho, R.L. Nonlinear Jaynes-Cummings dynamics of a trapped ion. Phys. Rev. A 1995, 52, 4214. [Google Scholar] [CrossRef]
- Krumm, F.; Vogel, W. Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion. Phys. Rev. A 2018, 97, 043806. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.-H.; Arrazola, I.; Pedernales, J.S.; Lamata, L.; Chen, X.; Solano, E. Nonlinear quantum Rabi model in trapped ions. Phys. Rev. A 2018, 97, 023624. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, J.-Q.; Wu, W.; Bao, W.-S.; Guo, C. Fast cooling of trapped ion in strong sideband coupling regime. New J. Phys. 2021, 23, 023018. [Google Scholar] [CrossRef]
- Hessian, H.A.; Mohamed, A.-B.A. Quasi-Probability Distribution Functions for a Single Trapped Ion Interacting with a Mixed Laser Field. Laser Phys. 2008, 18, 1217. [Google Scholar] [CrossRef]
- Wei, L.F.; Liu, Y.-X.; Nori, F. Engineering quantum pure states of a trapped cold ion beyond the Lamb-Dicke limit. Phys. Rev. A 2004, 70, 063801. [Google Scholar] [CrossRef] [Green Version]
- Simeonov, L.S.; Vitanov, N.V.; Ivanov, P.A. Compensation of the trap-induced quadrupole interaction in trapped Rydberg ions. Sci. Rep. 2019, 9, 7340. [Google Scholar] [CrossRef]
- Harlander, M.; Lechner, R.; Brownnutt, M.; Blatt, R.; Hänsel, W. Trapped-ion antennae for the transmission of quantum information. Nature 2011, 471, 200. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Lesanovsky, I. Entangling quantum gate in trapped ions via Rydberg blockade. App. Phys. B 2014, 114, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Q.; Xiong, W.; Zhang, S.; Li, Y.; Feng, M. Generating the Schrodinger cat state in a nanomechanical resonator coupled to a charge qubit. Ann. Phys. 2015, 527, 180. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A.; Hashem, M.; Eleuch, H. Enhancing the Generated Stable Correlation in a Dissipative System of Two Coupled Qubits inside a Coherent Cavity via Their Dipole-Dipole Interplay. Entropy 2019, 21, 672. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.S.; Sharma, N.K. Intrinsic decoherence effects on tripartite GHZ state generation using a trapped ion coupled to an optical cavity. J. Opt. B Quantum Semiclass. Opt. 2005, 7, 230. [Google Scholar] [CrossRef]
- Milburn, G.J. Intrinsic decoherence in quantum mechanics. Phys. Rev. A 1991, 44, 5401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Retzker, A.; Solano, E.; Reznik, B. Tavis-Cummings model and collective multiqubit entanglement in trapped ions. Phys. Rev. A 2007, 75, 022312. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A.; Hessian, H.A.; Obada, A.-S.F. Nonclassical effects in a nonlinear two trapped-particles system under intrinsic decoherence. Chaos Solitons Fractals 2021, 146, 110857. [Google Scholar] [CrossRef]
- Solano, E.; Milman, P.; Filho, R.L.d.; Zagury, N. Manipulating motional states by selective vibronic interaction in two trapped ions. Phys. Rev. A 2000, 62, 021401. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A.; Eleuch, H.; Raymond Ooi, C.H. Quantum coherence and entanglement partitions for two driven quantum dots inside a coherent micro cavity. Phys. Lett. A 2019, 383, 125905. [Google Scholar] [CrossRef]
- Rai, A.; Das, S.; Agarwal, G.S. Quantum entanglement in coupled lossy waveguides. Opt. Express 2010, 18, 6241. [Google Scholar] [CrossRef] [Green Version]
- Girolami, D.; Tufarelli, T.; Adesso, G. Characterizing Nonclassical Correlations via Local Quantum Uncertainty. Phys. Rev. Lett. 2013, 110, 240402. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A. Quantum correlation of correlated two qubits interacting with a thermal field. Phys. Scr. 2012, 85, 055013. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Metwally, N. Non-classical correlations based on skew information for an entangled two qubit-system with non-mutual interaction under intrinsic decoherence. Ann. Phys. 2017, 381, 137. [Google Scholar] [CrossRef]
- Yu, T.; Eberly, J.H. Sudden Death of Entanglement. Science 2009, 323, 598. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A. Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: Trace distance discord and Bell’s non-locality. Quantum Inf. Process 2018, 17, 96. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Eleuch, H. Generation and robustness of bipartite non-classical correlations in two nonlinear microcavities coupled by an optical fiber. J. Opt. Soc. Am. B 2018, 35, 47. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Farouk, A.; Yassen, M.F.; Eleuch, H. Quantum Correlation via Skew Information and Bell Function Beyond Entanglement in a Two-Qubit Heisenberg XYZ Model: Effect of the Phase Damping. Appl. Sci. 2020, 10, 3782. [Google Scholar] [CrossRef]
- Xu, J.-S.; Xu, X.-Y.; Li, C.-F.; Zhang, C.-J.; Zou, X.-B.; Guo, G.-C. Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 2010, 1, 7. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.-B.A.; Farouk, A.; Yassen, M.F.; Eleuch, H. Fisher and Skew Information Correlations of Two Coupled Trapped Ions: Intrinsic Decoherence and Lamb-Dicke Nonlinearity. Symmetry 2021, 13, 2243. https://doi.org/10.3390/sym13122243
Mohamed A-BA, Farouk A, Yassen MF, Eleuch H. Fisher and Skew Information Correlations of Two Coupled Trapped Ions: Intrinsic Decoherence and Lamb-Dicke Nonlinearity. Symmetry. 2021; 13(12):2243. https://doi.org/10.3390/sym13122243
Chicago/Turabian StyleMohamed, Abdel-Baset A., Ahmed Farouk, Mansour F. Yassen, and Hichem Eleuch. 2021. "Fisher and Skew Information Correlations of Two Coupled Trapped Ions: Intrinsic Decoherence and Lamb-Dicke Nonlinearity" Symmetry 13, no. 12: 2243. https://doi.org/10.3390/sym13122243
APA StyleMohamed, A. -B. A., Farouk, A., Yassen, M. F., & Eleuch, H. (2021). Fisher and Skew Information Correlations of Two Coupled Trapped Ions: Intrinsic Decoherence and Lamb-Dicke Nonlinearity. Symmetry, 13(12), 2243. https://doi.org/10.3390/sym13122243