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Abstract: From the past to the present, various works have been dedicated to Simpson’s inequality
for differentiable convex functions. Simpson-type inequalities for twice-differentiable functions have
been the subject of some research. In this paper, we establish a new generalized fractional integral
identity involving twice-differentiable functions, then we use this result to prove some new Simpson’s-
formula-type inequalities for twice-differentiable convex functions. Furthermore, we examine a few
special cases of newly established inequalities and obtain several new and old Simpson’s-formula-
type inequalities. These types of analytic inequalities, as well as the methodologies for solving them,
have applications in a wide range of fields where symmetry is crucial.

Keywords: Simpson-type inequalities; convex function; fractional integrals

1. Introduction

Simpson’s inequality is widely used in many areas of mathematics. For four times con-
tinuously differentiable functions, the classical Simpson’s inequality is expressed as follows:

Theorem 1. Suppose that f : [a,b] — R is a four times continuously differentiable mapping on

(a,b), and suppose also that Hf(‘*) H = sup ‘f(4) (x)‘ < oo. Then, one has the inequality
* )

xe€(ab

B (252 g

Many researchers have studied various Simpson’s inequalities. More precisely, some
studies have focused on Simpson’s type for the convex function, because this focus has
been an effective and powerful way to solve many problems in inequality theory and
other areas of mathematics. For example, Alomari et al. established some inequalities of
Simpson’s type for s-convex functions by using differentiable functions [1]. Subsequently,
Sarikaya et al. established new variants of Simpson’s-type inequalities based on differ-
entiable convex functions in [2,3]. Additionally, some papers have listed Simpson’s-type
inequalities in various convex classes [4-8]. Moreover, in the papers [9,10], researchers ex-
tended the Simpson inequalities for differentiable functions to Riemann-Liouville fractional
integrals. Thereupon, several mathematicians studied fractional Simpson inequalities for
these kinds of fractional integral operators [11-19]. For more studies related to different
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integral operator inequalities, one can see [20-31]. In addition, Sarikaya et al. obtained
several Simpson-type inequalities for mappings whose second derivatives are convex [32].
In this article, after giving the definition of the generalized fractional integral operators, we
construct a new identity for twice-differentiable functions. Using this equality, we prove
several Simpson-type inequalities for functions whose second derivatives are convex. Then,
with the help of special choices, the main results in this paper are shown to generalize many
studies. In addition to all these, new results for k-Riemann-Liouville fractional integrals are
also obtained.

First of all, general definitions and theorems that are used throughout the article
are presented.

Definition 1. Let us consider f € Lq|a,b]. The Riemann—Liouville integrals J;, f and J;_f of
order o > 0 with a > 0 are defined by

Bf () = g [ =0 0, x>0,

and . ,
B F) = 5 [ =, x <,

respectively. Here, T (x) is the gamma function and JO, f(x) = J)_f(x) = f(x).

For further information and several properties of Riemann-Liouville fractional inte-
grals, please refer to [33-35].

In [36], Budak et al. prove the following identity for twice-differentiable functions and
they also prove corresponding Simpson-type inequalities.

Lemma 1 ([36]). Let f : [a,b] — R be a twice-differentiable mapping (a,b) such that f" €
L1([a,b]). Then, the following equality holds:

1

s a5

=17 (n
)10 =GR ) SO+ T S0

1
_ @ ‘6”)2 /w(t)f”(tb +(1— a)dt,
0

where
(1—m"‘), te [0%]

(1-t(1-322

w(t) =

In [37], Hezenci et al. prove another version of the results given in [36].
However, the generalized fractional integrals were introduced by Sarikaya and Er-
tugral as follows:

Definition 2 ([38]). Let us note that a function ¢ : [0,00) — [0, 00) satisfies the following condition:

1
/ @dt<oo
0 t

We consider the following left-sided and right-sided generalized fractional integral operators

(px—t

1
po— dt, x>a, M

a+I<Pf
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and ,
v Tof0) = [ D foyar, <, @

t—x

respectively.

The most important feature of generalized fractional integrals is that they gener-
alize some types of fractional integrals such as Riemann-Liouville fractional integrals,
k-Riemann-Liouville fractional integrals, Hadamard fractional integrals, Katugampola
fractional integrals, conformable fractional integrals, etc. These significant special cases of
the integral operators (1) and (2) are used as follows:

1. For ¢(t) = t, the operators (1) and (2) reduce to the Riemann integral.

% and a« > 0, then the operators (1) and (2) reduce to the
Riemann-Liouville fractional integrals J*, f(x) and J;_f(x), respectively. Here, T is
the gamma function.

1

3.  Letus consider ¢(t) = Wt% and «,k > 0. Then, the operators (1) and (2) reduce
to the k-Riemann-Liouville fractional integrals oy f(x)and J b xf (x), respectively.

Here, I'y is k-gamma function.

2. If we assign ¢(t) =

In recent years, several papers have been devoted to obtaining inequalities for gener-
alized fractional integrals; for some of them please refer to [39-45].

Inspired by the ongoing studies, we give the generalized fractional version of the in-
equalities proved by Budak et al. in [36] for twice-differentiable convex functions. The fun-
damental benefit of these inequalities is that they can be turned into classical integral
inequalities of Simpson’s type [32], Riemann-Liouville fractional integral inequalities of
Simpson’s type [36], and k-Riemann-Liouville fractional integral inequalities of Simpson’s
type without having to prove each one separately.

2. Simpson’s-Type Inequalities for Twice-Differentiable Functions

In this section, we prove some new inequalities of Simpson’s type for twice-differentiable
convex functions via the generalized fractional integrals. For brevity in the rest of the paper,
we define

t
Alt) = / T(s)ds,
0

where

T(s) = /Mdu.

Lemma 2. Let f : [a,b] — R be a twice-differentiable mapping (a, b) such that f" € Ly([a, b]).
Then, the following equality for generalized fractional integrals holds:

@ ar(5) s - 2T1> [(es0) Tof(0) + (2 Tof ()]

¢

1
- (b;”)z /a)(t)f”(tb+(1—t)a)dt,
0

where

t—%(/tz)), te [0%]

@(t) =

3A(1—t
1-t= 30 re (3]
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Proof. Using integration by parts, we obtain

1/2

L = 0/(1‘— ;g;tz))>f”(tb+ (1—t)a)dt

B (t_ 3A(F) >f’(tb—|—(1—t)u) :
T(1/2) b—a o
1/2

b 1 p O/ (1 - ﬁ(?/?))fl(tb + (1 —t)a)dt
S
1 [(1— 3T(t) >f(tb+(1—t)a)

1/2

b—a T(1/2) (b—a) 0

1/2
+b161 / (13/2) (P((bt_a)t)f(tb-i-(l—f))dt]

_ bl_g(l 3A11//22 >f,<a+b> )2f<a+b>
(bf£a3)2+ (1/2)?19 a)? 7 (242)-1of ().

Similarly, we have

1
L = / (1 —t— 3?((11/_2;))]”’(1%19 + (1 —t)a)dt

1/2

= e T ) () ()
fb) 3
(b-a)®  T(1/2)(b~a)®

_|_

(23t)+ 1o (0)

If I; and I, are added and then multiplied by (b=a) ) , the desired result is obtained. [
Remark 1. If we take ¢(t) = t in Lemma 2, then Lemma 2 reduces to [32] (Lemma 2.1).

Remark 2. Let us note that ¢(t) = %, « > 0in Lemma 2, then Lemma 2 reduces to Lemma 1.

r

@

Corollary 1. If we choose ¢(t) = %, a,k > 0in Lemma 2, then the following equality for
k-Riemann—Liouville fractional integrals holds:

s+ ("57) +10] - EL T ) SO+ gy
(-

1
- - O/m(t)f”(tb+ (1—t)a)dt,
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Proof. For ¢(7)

a (Kz—Kl)% 3
WTe(w) © Ttk ®

A(l/Z) — (:(2 _Kl)k (4)

Z%Fk(DC—Fk)
and .
_(Kz—Kl)?/ o k(kg—x))F _agy
A0 = T ath / S e oS LU
Then it follows that

©)

which completes the proof. [

@(1) = m(1)

Theorem 2. Assume that the assumptions of Lemma 2 hold. Assume also that the mapping |f" | is

convex on [a, b]. Then, we have the following Simpson-type inequality for generalized fractional integrals

s ar(“£2) + 0 ZTE%)[(H W)+
: O/Z’t_ /tz))‘dt [ @)+ | (b)]].

Proof. By taking the modulus in Lemma 2, we have

st

s

o) _Lof (a)] |

[ (a5t Lo f () + (M)_I(pf(a)]‘
1 2 2
" ()

< 221 O/Iw(t)llf”(tb+(1—f e

1
2
/t
0

"(tb+ (1 — t)a)|dt

1
1
2

(6)
‘|f” th+ (1 —t)a)|dt

With the help of the convexity of |f”'|, we obtain

@ e () )] - —

(%) [(%) lof(0)+ (

%b)flqof(ﬂ)}



N ot
< b= 0/ - o)+ (4= 01
 fh-1- 2o+ -l
e |dt+/\ Sl |
+ j“‘”‘f— ‘d”/l‘t’ - A<(11/2>)’dt £l
_ <b—6ﬂ>2 _0/%” ]m/\ 1/2 \ [1F" @]+ 1 ®)]]

—a)? 2
_ =) o/t

This completes the proof of Theorem 2. O

Wl | 15" @) + 0]

Remark 3. Consider ¢(t) = t in Theorem 2, then Theorem 2 reduces to [32] (Theorem 2.2).

Remark 4. If we assign ¢(t) = t( Q> 0 in Theorem 2, then we obtain the following Simpson-
type inequality for Riemann—Liouville fractional integrals

@ rar () +rw] - E e ) 50+ Ty f0)]|

o (b-ay

L[| (a)] + |7 ®)]].

1 x+1\: 3 1
6(“)_4(a+2)<“( 3 ) +tx—|—1>_8’ @

which is given by Budak et al. in [36].

Here,

Corollary 2. For ¢(t) = kr (,x) k,o > 0 in Theorem 2, we have the following Simpson-type
inequality for k-Riemann—Lzouvzlle fractional integrals

s+ (157) 0] T ) O+ gy ,,ﬂa)H
EPAYA
< C Do @]+ 1),
where

k a+k\e 3k ) 1
©la,k) = 4(zx+2k)<k( 3k> +uc+k>_8' ®)
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Proof. Let ¢(7) =

ik By the equalities (3)—(5), we have

kl"k(
! ! ,
‘ 3k-2k o
/T— = /T— Tk|dT
. a+k
0 0

_k f(afarr\E sk 1
 4(a+2k)\ K\ 3k a+k 8

This completes the proof. [
Theorem 3. Suppose that the assumptions of Lemma 2 hold. Suppose also that the mapping

|f"17, ¢ > 1, is convex on [a,b]. Then, the following Simpson-type inequality for generalized
fractional integrals

a+b

s+ af(S50) 450

1

2
/ t_
0

) [(If”(b)lq +3f"<a>q>5 - (ALor If”(a)l">‘l’]

[N

2

_ 1 ) {(a+b>+l¢f(b) (¢ +b),l<pf( )}|

8 8
. . 1,1 _
is valid. Here, 3 + 7= 1.

Proof. By applying the Holder inequality in inequality (6), we obtain

slro (50 + )] -

1
/2
0

1 1
1 P 1 q

- /1—t—3‘;((11/_2)t)’pdt /|f”(tb+(1—t)a)|th

2

1
2T<>{ (252)+ Lo f(B) + (a;b)_f(pf(a)}‘

N\»—l

1 1
q
p

1
2
dt /\f” (tb+ (1 —t)a)|"at
0

1/2)

2

By using the convexity of |f”|7, we obtain

slr@+ar(50) 4 rw)] - — )W)wﬂb) (e3t) Lo (0]

21 )
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1

% 1 0
0

& (2 - \)

) {(If”(b)q +3/ () )3  (ALOr e )]

8 8

This finishes the proof of Theorem 3. [

Remark 5. If we choose ¢(t) = t in Theorem 3, then we obtain

s +ar () +rm) -

1

2 2
M /tP|1 — 3t\pdt

0

) [(W(bw a 3|f”<a>|‘7)5 - (ALor If”(a)q>‘l7],

which is given by Budak et al. in [36].

Remark 6. Let us consider ¢(t) = « > 0 in Theorem 3, then the Simpson-type inequality

F(a) ’
for Riemann—Liouville fractional integrals

’é [f( )+4f(a+b> +f(b)] - W {I‘E‘a;bﬂf(b) +]'gu2+b)f(a)H
My(a’p) [(If”(b)lq +3f”(a)|q>5 N (3|f”(b)”7 + |f"(a)|q>3]

6 8 8

is valid. Here, % + % =1and

==

p

3.2¢
dt

a+1

Y(a,p) = 1-— t*

o o
-
<

which is given by Budak et al. in [36].

Corollary 3. If we choose ¢(t) = kr (“), «,k > 0 in Theorem 3, then we have the following
Simpson-type inequality for k-Riemann—Lzouvzlle fractional integrals

Hf( )+4f(a+b) +f(b)} _zzkr(u;;k){ (%)Hf( )+]‘(‘%) /kf(a)H
< O= Dy (e S >3 <3f"<b>|q;|f"<a>|q)3]_
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1,1 _
Here,?—l—ﬁ—land

P
dt

1
2 @
Y(a,p k)= /t’” 1-— 3;{4'_2]: tk
0

==

Proof. For ¢(7) = m, the proof can be seen easily by the equalities (3)-(5). O

Theorem 4. Assume that the assumptions of Lemma 2 hold. If the mapping | f"|", g > 1 is convex
on [a, b], then we have the following Simpson-type inequality for generalized fractional integrals

2 2

sl f@ar () s - — ) [(egt) Lo 0) + (M)I¢f<a>}|

' % 340 | e
t— T(1/2) ’dt ‘f (b)’q + 0/(1 - t)‘t - T(l/Z) ‘dt |f (a)q]

+ j(l—t)‘t—;(’;‘yz))‘dt | (0)]7 + O/Ztt

| |1 @

Proof. By applying the power-mean inequality in (6), we obtain

1 a+b 1
slrorar(57) v o) - =0 [ (ot Tof )+ a3y Tof (@)] ‘ ©)
1 -
=

1
q

X O/t— ﬁg(/tz))‘|f”(tb+(1—t)a)|th

1 -3

: 3A(1—1)
+ 1/1—t—T(1/2) ’dt

. 1
X l/ltW’\f”(tbﬂlt)a)\"dt
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Since |f"|7 is convex, we obtain
O/t— ;g(/tz))’]f”(tb—i—(l—t)a)]th (10)
< - O [ @r+ a -l @) a
e [l B3AW e [l 3A®) |
7@ [ o}t = |+ @I [@ = o)t g
0 0
and similarly
1
/1—t—?”;((11/_2;)‘|f”(tb+(1—t)a)|th (11)
1 1
" 3A(1—1t) " 3A(1—1t)
< |f (b)’ql/tltT(l/z)‘dt+‘f (a)\ql/ut)’ltm/z)’dt
— |f”(b)]q/(1—t)‘t— ,ﬁg(/tz))‘dw \f”(a)|‘7/t t— :ﬁ(‘i%)‘dt.
0 0

IN

If we substitute the inequalities (10) and (11) in (9), then we obtain the desired result. [J
Remark 7. Consider ¢(t) = t in Theorem 4, then Theorem 4 reduces to [32] (Theorem 2.5).

Remark 8. If we take ¢(t) = %;), « > 01in Theorem 4, then we obtain the following Simpson-type
inequality for Riemann—Liouville fractional integrals

a5+ r] - EEE D e 500+ Ty )

2

2 . 1 1
L2 @) | (Bl o) + 0w @) + (AW B+ 2w @) 1)

Here, ©(a) is defined as in (7) and

_ 1 [afa+1\7 3 1
2) = 4(a+3) 3( 3 ) ar| 2w
Qa) = O(a) —E(r)
1 a+1\=* 3
- 4(zx+2)<“< 3 ) +0c+1>
1 Jafa+1\% 3 1
1w 1 3) 3< 3 ) iy | 12

which is given by Budak et al. in [36].
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Corollary 4. Let us consider ¢(t) = ( B k > 0 in Theorem 4, then the following Simpson-

i,
type inequality for k-Riemann—Liouville fmctzonal integrals holds:

‘ép()+4f<a+b>+jﬂﬁ]—thfz;k)[(gwkf()+Izé)kfwﬂ|

—a 2 1 1 1
< w6)(@ww»1q“ﬂm@ﬁ%@ﬁ+ﬂ@kﬂﬂwﬂﬁq+@X&HV%MW+M&HV%@VY]
where O(a, k) is defined as in (8) and
ko [a/a+k\e 3k
4(x + 3K) %(%) MEITEYS
Qe k) = O(w, k) —E(a k)

ko [afatk\E 3k
= et 20 k((%) Atk
ko [afatk\e 3k
3k< 3k > +2(1x+k)

~4(a+3k)
Proof. Let (1) = = —. By the equalities (3)~(5), we have

1
24’

E(a, k)

1
12

3A(T)
A(1/2) ’

3k-2F
Tk|dT
o +k

« a+k 371{+ 3k
3k \ 3k 2(a+k)

k
4(a + 3k)

1
2

and

3k 2k %
a+k

_k (eferk\E sk
 Ala+2k) \ K\ 3k a+k

kb Jafasr)t s
4(a+3k) | 3k \ 3k 2(a+k)

1
12

O

3. Conclusions

For twice-differentiable functions, we have developed a generalized fractional version
of the Simpson-type inequality in this paper. After that, we explained how our findings
generalize a number of inequalities found in previous research. For k-Riemann-Liouville



Symmetry 2021, 13, 2249 12 of 13

fractional integrals, we additionally provided novel Simpson-type inequalities. The findings
of this study can be utilized in symmetry. The results for the case of symmetric convex func-
tions can be obtained in future studies. In future studies, researchers can obtain generalized
versions of our results by utilizing other kinds of convex function classes or different types
of generalized fractional integral operators.
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