On the Semi-Local Convergence of an Ostrowski-Type Method for Solving Equations
Abstract
:1. Introduction
2. Majorizing Sequences
3. Semi-Local Convergence
- (H1)
- There exist such that is invertible and
- (H2)
- For eachSet
- (H3)
- For each
- (H4)
- and
- (H5)
- Conditions of Lemma 1 or Lemma 2 hold.
- (a)
- There exists a solution of equation ;
- (b)
- There exists such that
4. Local Convergence
- (C1)
- For eachSet
- (C2)
- For each
- (C3)
- (a)
- is a simple solution of equation
- (b)
- There exists such that
5. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chen, X.; Yamamoto, T. Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. Optim. 1989, 10, 37–48. [Google Scholar] [CrossRef]
- Ðukić, D.; Paunović, L.; Radenović, S. Convergence of iterates with errors of uniformly quasi-Lipschitzian mappings in cone metric spaces. Kragujev. J. Math. 2011, 35, 399–410. [Google Scholar]
- Ezquerro, J.A.; Gutiérrez, J.M.; Hernández, M.A.; Romero, N.; Rubio, M.J. The Newton method: From Newton to Kantorovich (Spanish). Gac. R. Soc. Mat. Esp. 2010, 13, 53–76. [Google Scholar]
- Ezquerro, J.A.; Hernandez, M.A. Newton’s Method: An Updated Approach of Kantorovich’s Theory; Birkhäuser: Cham, Switzerland, 2018. [Google Scholar]
- Grau-Sánchez, M.; Àngela, G.; Noguera, M. Ostrowski type methods for solving systems of nonlinear equations. Appl. Math. Comput. 2011, 218, 2377–2385. [Google Scholar] [CrossRef]
- Magréñan, A.A.; Gutiérrez, J.M. Real dynamics for damped Newton’s method applied to cubic polynomials. J. Comput. Appl. Math. 2015, 275, 527–538. [Google Scholar] [CrossRef]
- Nashed, M.Z.; Chen, X. Convergence of Newton-like methods for singular operator equations using outer inverses. Numer. Math. 1993, 66, 235–257. [Google Scholar] [CrossRef]
- Proinov, P.D. New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complex. 2010, 26, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Todorcević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature AG: Cham, Switzerland, 2019. [Google Scholar]
- Yamamoto, T. A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 1987, 51, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K. On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Math. 2004, 169, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K. Computational Theory of Iterative Methods; Series: Studies in Computational Mathematics; Chui, C.K., Wuytack, L., Eds.; Elsevier Publ. Co.: New York, NY, USA, 2007; Volume 15. [Google Scholar]
- Argyros, I.K. Convergence and Applications of Newton-Type Iterations; Springer: Berlin, Germany, 2008. [Google Scholar]
- Argyros, I.K.; Hilout, S. Weaker conditions for the convergence of Newton’s method. J. Complex. 2012, 28, 364–387. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K.; Hilout, S. On an improved convergence analysis of Newton’s method. Appl. Math. Comput. 2013, 225, 372–386. [Google Scholar] [CrossRef]
- Argyros, I.K.; Magréñan, A.A. Iterative Methods and Their Dynamics with Applications; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Argyros, I.K.; Magréñan, A.A. A Contemporary Study of Iterative Methods; Elsevier (Academic Press): New York, NY, USA, 2018. [Google Scholar]
- Behl, R.; Maroju, P.; Martinez, E.; Singh, S. A study of the local convergence of a fifth order iterative method. Indian J. Pure Appl. Math. 2020, 51, 439–455. [Google Scholar]
- Cătinaş, E. The inexact, inexact perturbed, and quasi-Newton methods are equivalent models. Math. Comp. 2005, 74, 291–301. [Google Scholar] [CrossRef]
- Dennis, J.E., Jr. On Newton-like methods. Numer. Math. 1968, 11, 324–330. [Google Scholar] [CrossRef]
- Dennis, J.E., Jr.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; SIAM: Philadelphia, PA, USA, 1996. [Google Scholar]
- Deuflhard, P.; Heindl, G. Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal. 1979, 16, 1–10. [Google Scholar] [CrossRef]
- Deuflhard, P. Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms; Springer Series in Computational Mathematics; Springer: Berlin, Germany, 2004; Volume 35. [Google Scholar]
- Gutiérrez, J.M.; Magreñán, Á.A.; Romero, N. On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions. Appl. Math. Comput. 2013, 221, 79–88. [Google Scholar] [CrossRef]
- Hernandez, M.A.; Romero, N. On a characterization of some Newton-like methods of R-order at least three. J. Comput. Appl. Math. 2005, 183, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Magréñan, A.A.; Argyros, I.K.; Rainer, J.J.; Sicilia, J.A. Ball convergence of a sixth-order Newton-like method based on means under weak conditions. J. Math. Chem. 2018, 56, 2117–2131. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; SIAM Publ.: Philadelphia, PA, USA, 2000. [Google Scholar]
- Proinov, P.D. General local convergence theory for a class of iterative processes and its applications to Newton’s method. J. Complex. 2009, 25, 38–62. [Google Scholar] [CrossRef] [Green Version]
- Rheinboldt, W.C. An Adaptive Continuation Process of Solving Systems of Nonlinear Equations; Polish Academy of Science, Banach Center Publisher: Warsaw, Poland, 1978; Volume 3, pp. 129–142. [Google Scholar]
- Shakhno, S.M.; Gnatyshyn, O.P. On aan iterative algorithm of order 1.839… for solving nonlinear least squares problems. Appl. Math. Appl. 2005, 161, 253–264. [Google Scholar]
- Shakhno, S.M.; Iakymchuk, R.P.; Yarmola, H.P. Convergence analysis of a two step method for the nonlinear squares problem with decomposition of operator. J. Numer. Appl. Math. 2018, 128, 82–95. [Google Scholar]
- Sharma, J.R.; Guha, R.K.; Sharma, R. An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 2013, 62, 307–323. [Google Scholar] [CrossRef]
- Soleymani, F.; Lotfi, T.; Bakhtiari, P. A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 2014, 8, 1001–1015. [Google Scholar] [CrossRef]
- Steffensen, J.F. Remarks on iteration. Skand Aktuar Tidsr. 1993, 16, 64–72. [Google Scholar] [CrossRef]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: Hoboken, NJ, USA, 1964. [Google Scholar]
- Traub, J.F.; Werschulz, A.G. Complexity and Information; Lincei Lectures; Cambridge University Press: Cambridge, UK, 1998; xii+139pp.; ISBN 0-521-48506-1. [Google Scholar]
- Traub, J.F.; Wozniakowski, H. Path integration on a quantum computer. Quantum Inf. Process 2002, 1, 356–388. [Google Scholar] [CrossRef]
- Verma, R. New Trends in Fractional Programming; Nova Science Publisher: New York, NY, USA, 2019. [Google Scholar]
- Zabrejko, P.P.; Nguen, D.F. The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optim. 1987, 9, 671–684. [Google Scholar] [CrossRef]
- Potra, F.A.; Pták, V. Nondiscrete Induction and Iterative Processes; Research Notes in Mathematics; Pitman (Advanced Publishing Program): Boston, MA, USA, 1984; Volume 103. [Google Scholar]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, C.I.; Argyros, I.K.; Joshi, J.; Regmi, S.; George, S. On the Semi-Local Convergence of an Ostrowski-Type Method for Solving Equations. Symmetry 2021, 13, 2281. https://doi.org/10.3390/sym13122281
Argyros CI, Argyros IK, Joshi J, Regmi S, George S. On the Semi-Local Convergence of an Ostrowski-Type Method for Solving Equations. Symmetry. 2021; 13(12):2281. https://doi.org/10.3390/sym13122281
Chicago/Turabian StyleArgyros, Christopher I., Ioannis K. Argyros, Janak Joshi, Samundra Regmi, and Santhosh George. 2021. "On the Semi-Local Convergence of an Ostrowski-Type Method for Solving Equations" Symmetry 13, no. 12: 2281. https://doi.org/10.3390/sym13122281
APA StyleArgyros, C. I., Argyros, I. K., Joshi, J., Regmi, S., & George, S. (2021). On the Semi-Local Convergence of an Ostrowski-Type Method for Solving Equations. Symmetry, 13(12), 2281. https://doi.org/10.3390/sym13122281