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Abstract: Symmetries play a crucial role in the dynamics of physical systems. As an example,
microworld and quantum physics problems are modeled on principles of symmetry. These problems
are then formulated as equations defined on suitable abstract spaces. Then, these equations can be
solved using iterative methods. In this article, an Ostrowski-type method for solving equations in
Banach space is extended. This is achieved by finding a stricter set than before containing the iterates.
The convergence analysis becomes finer. Due to the general nature of our technique, it can be utilized
to enlarge the utilization of other methods. Examples finish the paper.

Keywords: Ostrowski-type method; Banach space; convergence criterion

1. Introduction

We are concerned with finding x∗ solving

F(x) = 0, (1)

where F : D ⊂ E −→ E1 is an operator acting between Banach spaces E and E1 with
D 6= ∅.

The famous Ostrowski-type method is defined for x0 ∈ D and each n = 0, 1, 2, . . . by

yk = xk − F′(xk)
−1F(xk)

xk+1 = yk − AkF(xk), (2)

where Ak = 2[yk, xk; F]−1− F′(xk)
−1, with [., ., F] : D×D → L(E, E1). There are numerous

results for the convergence of iterative methods utilizing the information (D, x0, F, F′) and
higher order derivatives [1–39]. However, higher order derivatives cannot be found on
method (2). Moreover, these results do not give uniqueness ball or estimates on ‖xk − x∗‖
or ‖xk+1 − xk‖. That is why we are motivated to write this paper, where only hypotheses
on the derivative and divided differences of order one are used. Notice that only these
operators appear on method (2).

The method (2) is shown to be of order four using Taylor expansion and assumptions
on the fifth order derivative of F, which is not on these schemes [5]. So, the assumptions
on the sixth derivative reduce the applicability of this method.

For example: Let E = E1 = R, D = [−0.5, 1.5]. Define λ on D by

λ(t) =
{

t3 log t2 + t5 − t4 i f t 6= 0
0 i f t = 0.
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Then, we get t∗ = 1, and

λ′′′(t) = 6 log t2 + 60t2 − 24t + 22.

Obviously, λ′′′(t) is not bounded on D. So, the convergence of method (2) is not
guaranteed by the previous analyses in [5].

The rest of the study is organized as follows: Section 2 contains results on majorizing
sequences. In Section 3, we develop the semi-local convergence analysis based on ma-
jorizing sequences. The local convergence analysis can be found in Section 4. Numerical
examples can be found in Section 5. The paper ends with some concluding remarks in
Section 6.

2. Majorizing Sequences

We recall the definition of a majorizing sequences.

Definition 1. Let {vk} be a sequence in a complete normed space. Then, a non-decreasing scalar
sequence {dk} is called majorizing for {vk} if

‖vk+1 − vk‖ ≤ dk+1 − dk for each k = 0, 1, 2, . . . .

Then, the convergence of sequence {vk} reduces to studying that of {dk} [40].
Let η ≥ 0 and L, Li, i = 0, 1, 2, 3, 4 be positive parameters. Set M0 = L0L2

2 ,
M = L

2 , M1 = LL2
2 and M2 = LL3

2 . Define sequences {tk}, {sk}, {αk} and {βk} for each
k = 0, 1, 2, . . . by t0 = 0, s0 = η

t1 = s0 +
M0s2

0
1− L1s0

+
M2s3

0
(1− L1s0)(1− L0s0)

+
Ms2

0
1− L0s0

,

s1 = t1 +
M(t1 − t0)

2 + t1 − s0

1− L0t1

tk+1 = sk + αk(sk − tk),

sn+1 = tn+1 +
M(tn+1 − tn)2 + L4tn(tn+1 − sn)

1− L0tn+1
,

αk =
M1(sk − tk)

(1− L1(sk + tk))(1− L0tk)
(3)

+
M2(sk − tk)

(1− L1(sk + t + k))(1− L0sk)
+

M(sk − tk)

1− L0sk
,

βk =
M(tk+1 − tk) + L4tk

1− L0tk+1
.

Moreover, define quadratic polynomials and functions on the interval [0, 1] for some
b > 1

p1(t) = t2 − (1− L0t1)t + L4t1,

p2(t) = t2 + t− (1− 2bL1t1

b− 1
),

p3(t) = t2 + t− (1− L0t1),

g1(t) = (M1b + M2b + M)t

and
g2(t) = Mt((1 + t)t− 1)(1 + t)) + (1 + t)2t2(L4 + L0t2(1 + t)).
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Denote by γ0, γ1 or γ2 or γ3, γ4, the non-negative zeros of p1, p2, p3 if they exist. Further-
more, define sequences of functions on the interval [0, 1] for δ = δ(t) = (1 + t)t by

f (1)n (t) = M1btδn−1t1 + M2btδn−1t1 + Mtδn−1t1 + L0t(1 + δ + . . . + δn)t1 − t

and

f (2)n (t) = M(t2δn−1 + tδn−1)t1 + L4(1 + δ + . . . + δn)t1 + L0t(1 + δ + . . . + δn)t1 − t.

Next, we present two results on the majorizing sequence for method (2).

Lemma 1. Suppose that for each k = 0, 1, 2, . . ., items

sk ≤ tk+1 <
1
L0

(4)

and
sk + tk <

1
L1

(5)

hold. Then, sequences {sk} and {tk} are increasing, bounded from above by 1
L0

and converge to
their unique least upper bound s∗ ∈ [0, 1

L0
].

Proof. It follows from (3)–(5) that sequences {sk}, {tk} are increasing, bounded from above
by 1

L0
and as such they converge to s∗.

Remark 1. Conditions (4) and (5) hold only in some special cases. This is why we present stronger
conditions that can be verified more easily.

We shall use the following set of conditions denoted by (A) in our second result on
majorizing sequences for method (2).

Suppose: there exists γ ∈ S := (0,
√

5−1
2 ), b > 0, η > 0 satisfying

0 ≤ α0 ≤ γ, 0 ≤ β0 ≤ γ,

L0η < 1, L1η < 1, L1t1 <
b− 1

2b
,

γ0 ≤ γ ≤ γ1 if g2(t) ≥ 0 for each t ∈ S,

or

f (2)1 (γ) ≤ 0 if g2(t) ≤ 0 for each t ∈ S,

γ ≤ γ2

and

γ3 ≤ γ ≤ γ4.

Then, under the preceding notation and conditions (A), we can show.

Lemma 2. Under conditions (A), the conclusions of Lemma 1 hold for sequences {sk}, {tk}.
Moreover, the following assertions hold for each k = 0, 1, 2, . . .

0 ≤ sk − tk ≤ γk(1 + γ)k−1(t1 − t0), (6)

0 ≤ tk+1 − sk ≤ γk+1(1 + γ)k−1(t1 − t0), (7)

0 ≤ sk ≤
1− δk+1

1− δ
t1 (8)
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and

0 ≤ tk+1 ≤
1− δn+2

1− δ
t1. (9)

Recall that δ = γ(γ + 1) and δ(t) = δ.

Proof. We shall show using induction on n that the following hold.

0 ≤ αn ≤ γ, (10)

0 ≤ βn ≤ γ, (11)

L0tn ≤ 1, L0sn < 1, L1(sn + tn) < 1, (12)

and
tn ≤ sn ≤ tn+1. (13)

Estimates (10)–(13) hold for n = 0, by the initial conditions and conditions (A). We
also have

0 ≤ s0 − t0 ≤ η, 0 ≤ t1 − s0 ≤ γη, 0 ≤ s1 − t1 ≤ γ(t1 − t0),

0 ≤ t2 − s1 ≤ γ2(t1 − t0),

0 ≤ s2 − t2 ≤ γ2(1 + γ)(t1 − t0),

0 ≤ t3 − s2 ≤ γ3(1 + γ)(t1 − t0),
...

0 ≤ sn − tn ≤ γn(1 + γ)n−1(t1 − t0), (14)

0 ≤ tn+1 − sn ≤ γn+1(1 + γ)n−1(t1 − t0), (15)

tn+1 ≤ sn + γn+1(1 + γ)n−1(t1 − t0) ≤ tn + γn(1 + γ)n−1(t1 − t0)

+γn+1(1 + γ)n−1(t1 − t0)

...

≤ t1 + γ(1 + γ)n−1(t1 − t0) + γ2(1 + γ)(t1 − t0) +

...

+γn(1 + γ)n−1(t1 − t0) + γn+1(1 + γ)n−1(t1 − t0)

≤ (1 + δ + . . . + δn+1)t1 =
1− δn+2

1− δ
t1 (16)

and

sn ≤ tn + γn(1 + γ)n−1t1 ≤ . . . ≤ 1− δn+1

1− δ
t1. (17)

Suppose these estimates hold for all integers smaller or equal to n. Then, evidently,
(10) holds (since 1

1−L1(sn+tn)
≤ b), if we show instead using (14)–(17) that

M1b(sn − tn)

1− L0tn
+

M2b(sn − tn)

1− L0sn
+

M(sn − tn)

1− L0sn
≤ γ (18)

or

M1bγδn−1t1 + M2bγδn−1t1 + Mγδn−1t1

+γL0(1 + δ + . . . + δn)t1 − γ ≤ 0. (19)

Notice that expression (19) is obtained if we replace sn − tn, tn, sn by the right hand
sides of (14), (15) and (17), respectively, in (18), remove denominators and move all terms
at the right hand side of the inequality.



Symmetry 2021, 13, 2281 5 of 14

Estimate (19) motivates us to define functions f (1)n on the interval [0, 1] and show
instead of (19)

f (1)n (t) ≤ 0 at t = γ. (20)

We shall find a relationship between two consecutive functions f (1)n . We can write in
turn that

f (1)n+1(t) = M1btδnt1 + M2btδnt1 + Mtδnt1 + L0t(1 + δ + . . . + δn+1)t1 − t

−M1btδn−1t1 −M2btδn−1t1 −Mtδn−1t1

−L0t(1 + δ + . . . + δn)t1 + t + f (1)n (t)

= f (1)n (t) + (M1btδnt1 −M1btδn−1t1)

+(M2btδnt1 −M2btδn−1t1) + (Mtδnt1 −Mtδn−1t1) + tL0δn+1t1

= f (1)n (t) + (δ− 1)t(M1b + M2b + M)δn−1t1

= f (1)n (t) + (δ− 1)g1(t)δn−1t1

≤ f (1)n (t),

since t ∈ [0,
√

5−1
2 ], so

f (1)n+1(t) ≤ f (1)n (t). (21)

Define function
f (1)∞ (t) = lim

k−→+∞
f (1)k (t). (22)

By the definition of functions f (1)n and f (1)∞ , we get

f (1)∞ (t) =
tL0t1

1− δ
− t. (23)

Then, we can show instead of (20) that

f (1)∞ (t) ≤ 0 at t = γ, (24)

which is true by the definition of p3 and γ3 ≤ γ ≤ γ4. Similarly, (11) holds if

M(γ2δn−1 + γδn−1)t1 + L4(1 + δ + . . . + δn)t1

+L0γ(1 + δ + . . . + δn+1)t1 − γ ≤ 0 (25)

or
f (2)n (t) ≤ 0 at t = γ. (26)

This time, we have

f (2)n+1(t) = M(t2δn + tδn)t1 + L4(1 + δ + . . . + δn+1)t1

+L0t((1 + δ + . . . + δn+2)t1 − t

−M(t2δn−1 + tδn−1)t1 − L4(1 + δ + . . . + δn)t1

−L0t(1 + δ + . . . + δn+1)t1 + t + f (2)n (t)

= f (2)n + M(t2δn + tδn − t2δn−1 − tδn−1)t1

+L4δn+1t1 + L0tδn+2t1

= f (2)n (t) + g2(t)δn−1t1,

so
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f (2)n+1(t) = f (2)n (t) + g2(t)δn−1t1. (27)

Define function
f (2)∞ (t) = lim

k−→+∞
f (2)n (t). (28)

Then, we get

f (2)∞ (t) =
L4t1

1− t
+

L0tt1

1− t
− t. (29)

If γ0 ≤ γ ≤ γ1, then g2(t) ≥ 0 for each t ∈ S and f (2)∞ (t) ≤ 0 holds at t = γ. However,
if g2(t) ≤ 0 for each t ∈ S, then

f (2)n+1(t) ≤ f (2)n (t). (30)

In this case, (26) holds if f (2)1 (t) ≤ 0 at t = γ, which is true. Therefore, the induction
for (10)–(13) is completed. Hence, sequences {sk}, {tk} are non-decreasing, bounded from
above by t1

1−δ t1 and as such they converge to s∗ satisfying s∗ ∈ [η, t1
1−δ ].

3. Semi-Local Convergence

We shall use conditions (H):
Suppose

(H1) There exist x0 ∈ D, η ≥ 0 such that F′(x0) is invertible and

‖F′(x0)
−1F(x0)‖ ≤ η.

(H2) For each u ∈ D
‖F′(x0)

−1(F′(u)− F′(x0))‖ ≤ L0‖u− x0‖.

Set D0 = U(x∗, 1
L0
) ∩ D.

(H3) For each v, w ∈ D0

‖F′(x0)
−1(F′(w)− F′(v))‖ ≤ L‖w− v‖,

‖F′(x0∗)−1([v, w; F]− F′(x0))‖ ≤ L1(‖v− x0‖+ ‖w− x0‖),

‖F′(x0)
−1([v, w; F]− F′(w))‖ ≤ L2‖v− w‖

‖F′(x0)
−1([v, w; F]− F′(v))‖ ≤ L3‖v− w‖.

and
‖F′(x0)

−1F′(w)‖ ≤ L4‖w− x0‖.

(H4) U[x0, s∗] ⊂ D
and

(H5) Conditions of Lemma 1 or Lemma 2 hold.

Then, based on conditions (H), we present the semi-local convergence analysis of
method (2).

Theorem 1. Suppose hypotheses (H) hold. Then, sequences {xk}, {yk} generated by method (2) with
starter x0 are well defined in U[x0, s∗], remain in U[x0, s∗] for each n = 0, 1, 2, . . . and converge to a
solution x∗ ∈ U[x0, s∗] of equation F(x) = 0. Moreover, the following error estimates hold

‖xk − x∗‖ ≤ tn − s∗. (31)

Proof. Mathematical induction is employed to show

‖xk+1 − yk‖ ≤ tk+1 − sk (32)
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and
‖yk − xk‖ ≤ sk − tk. (33)

Iterate y0 is well defined by the first substep of method (2) and (H1). We can write

‖y0 − x0‖ = ‖F′(x0)
−1F(x0)‖ ≤ η = s0 − t0 = s0 ≤ s∗,

so y0 ∈ U[x0, s∗]. Using (H3), we get in turn for v, w ∈ U(x0, s∗)

‖F′(x0)
−1([v, w; F]− F′(x0))‖ ≤ L1(‖v− x0‖+ ‖w− x0‖)

≤ L1(s∗ + s∗) = 2L1s∗ < 1 (34)

by the Lemma on invertible opertors due to Banach [41,42], leading to

‖[v, w; F]−1F′(x0)‖ ≤
1

1− L1(‖v− x0‖+ ‖w− x0‖)
. (35)

Similarly, iterate x1 is well defined by the second substep of method (2). We also have
by (H2) for w ∈ U(x0, s∗)

‖F′(x0)
−1(F′(w)− F′(x0))‖ ≤ L0‖w− x0‖ ≤ L0s∗ < 1,

so F′(w)−1 ∈ L(E1, E) and

‖F′(w)−1F′(x0)‖ ≤
1

1− L0‖w− x0‖
. (36)

Hence, by (35) for v = y0 and w = x0 and (36) for w = x0, we have

x1 − y0 = −[y0, x0; F]−1(F′(x0)− [y0, x0; F])F′(x0)
−1F(y0)

−[y0, x0; F]−1(F′(y0)− [y0, x0; F])F′(y0)
−1F(y0)

−F′(y0)
−1F(y0). (37)

In view of (H3), (35), (36) (for v = y0, w = x0), (37) and triangle inequality, we get in turn

‖x1 − y0‖ ≤
LL2‖y0 − x0‖‖y0 − x0‖2

2(1− L1(‖y0 − x0‖+ ‖x0 − x0‖))(1− L0‖x0 − x0‖)

+
LL3‖y0 − x0‖‖y0 − x0‖2

2(1− L1(‖y0 − x0‖+ ‖x0 − x0‖))(1− L0‖y0 − x0‖)

+
L‖y0 − x0‖2

2(1− L0‖y0 − x0‖)
≤ α0(s0 − t0) = t1 − s0, (38)

and
‖x1 − x0‖ ≤ ‖x1 − y0‖+ ‖y0 − x0‖ ≤ t1 − s0 + s0 − t0 = t1 ≤ s∗,

so x1 ∈ U[x0, s∗]. Thus, estimates (32) and (33) hold for n = 0, where we also used

‖F′(x0)
−1F(y0)‖ = ‖

∫ 1

0
F′(x0)

−1(F′(x0 + θ(y0 − x0))− F′(x0))(y0 − x0)dθ‖

≤ L0

2
‖y0 − x0‖2 ≤ L

2
(s0 − t0)

2. (39)
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We know that (36) holds for w = x1, so iterate y1 is well defined by the first substep of
method (2) for n = 1, and we can write

F(x1) = F(x1)− F(x0)− F′(x0)(x1 − x0)

+F′(x0)(x1 − y0)

=
∫ 1

0
(F′(x0 + θ(x1 − x0))− F′(x0))(x1 − x0)dθ + F′(x0)(x1 − y0). (40)

Then, we obtain by method (2), (36) (for w = x1), (40) and the triangle inequality

‖y1 − x1‖ ≤
L
2 ‖x1 − x0‖2 + ‖x1 − y0‖

1− L0‖x1 − x0‖

≤ M(t1 − t0)
2 + t1 − s0

1− L0t1
= s1 − t1. (41)

Then, we have

‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − x0‖ ≤ s1 − t1 + t1 = s1 ≤ s∗,

so y1 ∈ U[x0, s∗]. Suppose estimates (32) and (33) hold for all integers smaller or equal to
n− 1. Then, simply repeat the preceding calculations with x0, y0, x1 replaced by xm, ym, xm+1,
respectively, and use the induction hypotheses to terminate the proof for (32) and (33). By the
Lemma sequence {tk} is Cauchy in a Banach space E and as such it converges to some
x∗ ∈ U[x0, s∗] since it is a closed set. Finally, using (40), we get

‖F′(x0)
−1F(xk+1)‖ ≤

L
2
‖xk+1 − xk‖2

+L4‖xk − x0‖‖xk+1 − xk‖

≤ L
2
(tk+1 − tk)

2 + L4tk(tk+1 − sk) −→ 0

as n −→ +∞ implying F(x∗) = 0 (by the continuity of F).

The point s∗ can be replaced by 1
L0

or t1
1−δ , respectively, given in closed form.

Next, a uniqueness of the solution x∗ of equation F(x) = 0 is presented.

Proposition 1. Suppose:
(a) There exists a solution x∗ ∈ D of equation F(x) = 0;
(b) There exists s ≥ s∗ such that

L0

2
(s + s∗) < 1. (42)

Set D1 = U[x0, s∗] ∩ D. Then, the only solution of equation F(x) = 0 in the region D1 is x∗.

Proof. Let x∗∗ ∈ D1 with F(x∗∗) = 0. Set M =
∫ 1

0 F′(x∗∗ + θ(x∗ − x∗∗))dθ. Using (H2) and
(42), we obtain in turn that

‖F′(x0)
−1(M− F′(x0))‖ ≤ L0

∫ 1

0
((1− θ)‖x∗ − x0‖+ θ‖x∗∗ − x0‖)dθ

≤ L0

∫ 1

0
(1− θ)sdθ + L0

∫ 1

0
θs∗dθ

≤ L0

2
(s + s∗) < 1, (43)

so x∗∗ = x∗ follows from the invertability of linear operator M and the identity
M(x∗ − x∗∗) = F(x∗)− F(x∗∗) = 0− 0 = 0.
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4. Local Convergence

Let `, `j, j = 0, 1, 2, 3, 4 be positive parameters. Define function ψ1 : [0, 1
`0
) −→ [0,+∞)

by

ψ1(t) =
`t

2(1− `0t)

and set
ρA =

2
2`0 + `

. (44)

Define functions q : [0, 1
`0
) −→ [0,+∞) by

q(t) = `4(1 + ψ1(t))t− 1.

By this definition, we have q(0) = −1 and q(t) −→ +∞ as t −→ 1
`0

−
. It then follows

from the intermediate value theorem that function q has zeros in (0, 1
`0
). Denote by ρq the

smallest such zero. Similarly, denote by ρp the smallest zero of function p : [0, 1
`0
) −→

[0,+∞) defined by p(t) = `0ψ1(t)t− 1. Set ρ̄ = min{ρq, ρp}. Moreover, define function
ψ2 : [0, ρ̄) −→ [0,+∞) by

ψ2(t) =

[
`ψ1(t)t

2(1− `0ψ1(t)t)

+
`3`4(1 + ψ1(t)t)ψ1(t)t

(1− `0ψ1(t)t)(1− `1(1 + ψ1(t))t)

+
`2`4(1 + ψ1(t))

(1− `1(1 + ψ1(t))t))2

]
ψ1(t)t.

Set
µ(t) = ψ2(t)− 1.

We have again µ(0) = −1 and µ(t) −→ +∞ as t −→ ρ̄−. Denote by ρµ the smallest
zero of function µ in (0, ρ̄). We shall show that

ρ∗ = min{ρA, ρµ} (45)

is a convergence radius for method (2). Set T = [0, ρ∗). Then, it follows from these
definitions that for each t ∈ T

0 ≤ `0t < 1, (46)

0 ≤ q(t) < 1, (47)

0 ≤ p(t) < 1, (48)

and
0 ≤ ψi(t) < 1, i = 1, 2. (49)

The conditions (C) shall be used together with the preceding notation provided that
x∗ is a simple solution of equation F(x) = 0.

Suppose:

(C1) For each u ∈ D
‖F′(x∗)−1(F′(u)− F′(x∗))‖ ≤ `0‖u− x0‖.

Set D2 = U(x∗, 1
`0
) ∩ D.

(C2) For each v, w ∈ D2

‖F′(x∗)−1(F′(w)− F′(v))‖ ≤ `‖w− v‖,

‖F′(x∗)−1F′(v)‖ ≤ `1‖v− x∗‖,



Symmetry 2021, 13, 2281 10 of 14

‖F′(x∗)−1([w, v; F]− F′(v))‖ ≤ `2(‖w− v‖),

‖F′(x∗)−1([w, v; F]− F′(w))‖ ≤ `3‖w− v‖

and
‖F′(x∗)−1([w, v; F]− F′(x∗))‖ ≤ `4(‖w− x∗‖+ ‖v− x∗‖).

(C3) U[x∗, ρ∗] ⊂ D.

Next, we present the local convergence analysis of method (2).

Theorem 2. Under the conditions (C) further suppose that x0 ∈ U(x∗, ρ∗)− {x∗}. Then, we
have limk−→+∞ xk = x∗.

Proof. We shall use mathematical induction to show

‖yn − x∗‖ ≤ ψ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ∗ (50)

and
‖xn+1 − x∗‖ ≤ ψ2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖. (51)

where functions ψi are given previously and radius ρ∗ is defined by (45). Let z ∈ U(x∗, ρ∗)−
{x∗}. Then, using (C1), (45) and (46), we obtain

‖F′(x∗)−1(F′(z)− F′(x∗))‖ ≤ `0‖z− x∗‖ ≤ `0ρ∗ < 1,

so F′(z) is invertible with

‖F′(z)−1F′(x∗)‖ ≤
1

1− `0‖z− x∗‖
, (52)

and iterate y0 exists by (52) for z = x0. Then, we can write

y0 − x∗ =
∫ 1

0
F′(x0)

−1(F′(x∗ + θ(x0 − x∗))− F′(x0))dθ(x0 − x∗),

so by (C1), (C2) and (52) (for z = x0), we get

‖y0 − x∗‖ ≤
`‖x0 − x∗‖2

2(1− `0||x0 − x∗‖)
≤ ψ1(‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖ < ρ∗, (53)

so y0 ∈ U(x∗, r) and (50) hold for n = 0. As in (52), we also show

‖F′(y0)
−1F′(x∗)‖ ≤

1
1− `0‖y0 − x∗‖

(54)

and
‖[y0, x0; F]−1F′(x∗)‖ ≤

1
1− `4(‖y0 − x∗‖+ ‖x0 − x∗‖)

, (55)
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so iterate x1 exists. Then, we can write in turn by the second substep of method (2) that

x1 − x∗ = y0 − x∗ − F′(y0)
−1F(y0)

+(F′(y0)
−1 − [y0, x0; F]−1)F(y0)

+([y0, x0; F]−1 − F′(x0)
−1)F(y0)

= y0 − x∗ − F′(y0)
−1F(y0)

+F′(y0)
−1([y0, x0; F]− F′(y0))[y0, x0; F]−1F(y0)

+[y0, x0; F]−1(F′(x0)− [y0, x0; F])F′(x0)
−1F(y0). (56)

Then, in view of (45), (49) (C2), (52) (for z = y0) and (54)–(56), we get in turn that

‖x1 − x∗‖ ≤
`‖y0 − x∗‖2

2(1− `0‖y0 − x∗‖)

+
`3‖y0 − x0‖`4‖y0 − x∗‖

(1− `0‖y0 − x∗‖)(1− `1(‖y0 − x∗‖+ ‖x0 − x∗‖))

+
`2||y0 − x0‖`4‖y0 − x∗‖

(1− `1(‖y0 − x∗‖+ ‖x0 − x∗‖))2

≤ ψ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (57)

showing (51) for n = 0 and x1 ∈ U(x∗, ρ∗), where we also used (53) and

‖y0 − x0‖ ≤ ‖y0 − x∗‖+ ‖x∗ − x0‖
≤ ψ1(‖x0 − x∗‖)‖x0 − x∗‖+ ‖x0 − x∗‖
= (1 + ψ1(‖x0 − x∗‖))‖x0 − x∗‖.

If we exchange x0, y0, x1 by xm, ym, xm+1, respectively, in the previous calculations we
complete the induction for (50) and (51). Then, from the estimate

‖xm+1 − x∗‖ ≤ λ1‖xm − x∗‖, (58)

where λ1 = ψ2(‖x0 − x∗‖) ∈ [0, 1), we conclude limm−→+∞ xm = x∗. We also have

‖ym − x∗‖ ≤ λ2‖xm − x∗‖ < ρ∗, (59)

where λ2 = ψ1(‖x0 − x∗‖) ∈ [0, 1), solimm−→+∞ ym = x∗.

Next, we present a uniqueness of the solution result.

Proposition 2. Suppose:
(a) x∗ ∈ D is a simple solution of equation F(x) = 0.
(b) There exists s̃ ≥ 0 such that

`0

2
s̃ < 1. (60)

Set D4 = D ∩U[x∗, s̃]. Then, the only solution of equation F(x) = 0 in the region D4 is x∗.

Proof. Let x∗∗ ∈ D4 with F(x∗∗) = 0. Set Q =
∫ 1

0 F′(x∗ + θ(x∗∗ − x∗))dθ. Then, using (C1)
and (60), we obtain

‖F′(x∗)−1(Q− F′(x∗))‖ ≤
`0

2
‖x∗∗ − x∗‖

≤ `0

2
s̃ < 1,

so x∗∗ = x∗, since Q−1 ∈ L(E1, E) and Q(x∗∗ − x∗) = F(x∗∗)− F(x∗) = 0− 0 = 0.
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5. Numerical Experiments

We provide some examples, showing that the old convergence criteria are not verified,
but ours are. The divided difference is chosen by

[u, v; F] =
∫ 1

0
F′(v + θ(u− v))dθ.

Example 1. Define function

h(t) = c0t + c1 + c2 sin c3t, t0 = 0,

where cj, j = 0, 1, 2, 3 are parameters. Then, clearly for c3 large and c2 small, L0
L can be small

(arbitrarily).

Example 2. Let E = E1 = H([0, 1]) the domain of functions given on [0, 1], which are continuous.
We consider the max-norm. Choose D = U(0, d), d > 1. Define G on D be

G(x)(s) = x(s)− w(s)− ε
∫ 1

0
P(s, t)x3(t)dt, (61)

x ∈ E, s ∈ [0, 1], w ∈ E is given, ε is a parameter and P is the Green’s kernel given by

P(ε2, ε1) =

{
(1− ε2)ε1, ε1 ≤ ε2
ε2(1− ε1), ε2 ≤ ε1.

By (61), we have

(G′(x)(z))(s) = z(s)− 3ε
∫ 1

0
P(s, t)x2(t)z(t)dt,

t ∈ E, s ∈ [0, 1]. Consider x0(s) = w(s) = 1 and |ε| < 8
3 . We get

‖I − G′(x0)‖ <
3
8
|ε|, G′(x0)

−1 ∈ L(E1, E),

‖F′(x0)
−1‖ ≤ 8

8− 3|ε| , η =
|ε|

8− 3|ε| , L0 =
12|ε|

8− 3|ε| ,

and L = 6η|ε|
8−3|ε| .

Example 3. Let E, E1 and D be as in the Example 5.3. It is well known that the boundary value
problem [4]

ξ(0) = 0, (1) = 1,

ξ ′′ = −ξ − λξ2

can be given as a Hammerstein-like nonlinear integral equation

ξ(s) = s +
∫ 1

0
K(s, t)(ξ3(t) + λξ2(t))dt

where λ is a parameter. Then, define F : D −→ E1 by

[F(x)](s) = x(s)− s−
∫ 1

0
K(s, t)(x3(t) + λx2(t))dt.
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Choose ξ0(s) = s and D = U(ξ0, ρ0). Then, clearly U(ξ0, ρ0) ⊂ U(0, ρ0 + 1), since
‖ξ0‖ = 1. Suppose 2λ < 5. Then, conditions (A) are satisfied for

L0 =
2λ + 3ρ0 + 6

8
, L =

λ + 6ρ0 + 3
4

and η = 1+λ
5−2λ . Notice that L0 < L.

Example 4. Consider the motion system

T′1(x) = ex, T′2(y) = (e− 1)y + 1, T′3(z) = 1

with T1(0) = T2(0) = T3(0) = 0. Let T = (T1, T2, T3). Let E = E1 = R3, D = B[0, 1], x∗ =
(0, 0, 0)T . Define function T on D for w = (x, y, z)T by

T(w) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, we get

T′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

,

so `0 = e− 1, ` = e
1

e−1 = `1, `2 = `3 = `
2 , `4 = `0

2 . Then, the radii are:

ρA = 0.3827 = ρ∗, ρµ = 1.7156.

6. Conclusions

A finer convergence analysis is presented for method (2) utilizing generalized condi-
tions. This analysis includes weaker criteria of convergence and computable error bounds
not given in earlier papers.
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