Walking Practice Combined with Virtual Reality Contributes to Early Acquisition of Symmetry Prosthetic Walking: An Experimental Study Using Simulated Prosthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Wearing Simulated Prosthesis
2.3. Intervention
- (1)
- VR group: Participants wore a head-mounted display (HMD, Mirage Solo with Daydream, Lenovo, Hong Kong, China) and watched VR images while walking with 3D images of 180° vertically and horizontally and 180° stereoscopic view. The participants were instructed to watch the 3D images as if they were walking and step on the spot along with the images themselves.
- (2)
- Tablet group: A tablet terminal (Tablet, iPad 5th generation, Apple, CA, USA) was set up at eye level, and the participants watched a 2D video on tablet. The participants were instructed to watch the video as if they were walking and step on the spot along with the images themselves.
- (3)
- Control group: Participants were instructed to only step on a spot for 5 min.
2.4. Spatio-Temporal Parameters and Immersion Scoring
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Follow-Up
3.3. Immersion Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gitter, A.; Bosker, G. Upper and lower extremity prosthetics. In Rehabilitation Medicine: Principles and Practice, 4th ed.; DeLisa, J.A., Gans, B.M., Eds.; Lippincot Williams & Wilkins: Philadelphia, PA, USA, 2005; pp. 1325–1354. [Google Scholar]
- Won, S.H.; Chung, C.Y.; Park, M.S.; Lee, T.; Sung, K.H.; Lee, S.Y.; Kim, T.G.; Lee, K.M. Risk factors associated with amputation-free survival in patient with diabetic foot ulcers. Yonsei Med. J. 2014, 55, 1373–1378. [Google Scholar] [CrossRef] [Green Version]
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef]
- Lopes, F.M.; Brito, L.L. Fatores associados ao estado funcional de idosos com amputac¸~ao por diabetes. Rev. Baiana Saude Publica 2009, 33, 402–415. [Google Scholar] [CrossRef]
- Nunes, M.A.; Campos-Neto, I.; Ferraz, L.C.; Lima, C.A.; Rocha, T.O.; Rocha, T.F. Adaptation to prostheses among patients with major lower-limb amputations and its association with sociodemographic and clinical data. Sao Paulo Med. J. 2014, 132, 80–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geertzen, J.H.B.; Martina, J.D.; Rietman, H.S. Lower limb amputation part 2: Rehabilitation-A 10 year literature review. Prosthet. Orthot. Int. 2001, 25, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, H.B.; Effeney, D.J. Gait analysis in amputees. Am. J. Phys. Med. 1985, 64, 82–89. [Google Scholar]
- Lemaire, E.D.; Fisher, F.R. Osteoarthritis and elderly amputee gait. Arch. Phys. Med. Rehabil. 1994, 75, 1094–1099. [Google Scholar] [CrossRef]
- Hurwitz, D.E.; Ryals, A.R.; Block, J.A.; Sharma, L.; Schnitzer, T.J.; Andriacchi, T.P. Knee pain and joint loading in subjects with osteoarthritis of the knee. J. Orthop. Res. 2000, 18, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Ülger, Ö.; Yıldırım Şahan, T.; Çelik, S.E. A systematic literature review of physiotherapy and rehabilitation approaches to lower-limb amputation. Physiother. Theory Pract. 2018, 34, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Munin, M.C.; Guzman, M.C.E.; Boninger, M.L.; Fitzgerald, S.G.; Penrod, L.E.; Singh, J. Predictive factors for successful early prosthetic ambulation among lower-limb amputees. J. Rehabil. Res. Dev. 2001, 38, 379–384. [Google Scholar]
- Traballesi, M.; Porcacchia, P.; Averna, T.; Brunelli, S. Energy cost of walking measurements in subjects with lower limb amputations: A comparison study between floor and treadmill test. Gait Posture 2008, 27, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Van de Meent, H.; Hopman, M.T.; Frölke, J.P. Walking ability and quality of life in subjects with transfemoral amputation: A comparison of osseointegration with socket prostheses. Arch. Phys. Med. Rehabil. 2013, 94, 2174–2178. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.L.; Cooreman, D.; Al Sultan, H.; El Nayal, M.; Saab, I.M.; El Khatib, A. The effect of adding virtual reality training on traditional exercise program on balance and gait in unilateral, traumatic lower limb amputee. Games Health J. 2021, 10, 50–56. [Google Scholar] [CrossRef]
- Sheehan, R.C.; Fain, A.C.; Wilson, J.B.; Wilken, J.M.; Rábago, C.A. Inclusion of a military-specific, virtual reality–based rehabilitation intervention improved measured function, but not perceived function, in individuals with lower limb trauma. Mil. Med. 2021, 186, e777–e783. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Kurumadani, H.; Hirata, J.; Osaka, H.; Senoo, K.; Date, S.; Sunagawa, T. Virtual reality-based action observation facilitates the acquisition of body-powered prosthetic control skills. J. Neuroeng. Rehabil. 2020, 17, 1–12. [Google Scholar] [CrossRef]
- Toyota, A.; Yamasaki, H.; Katou, M.; Miyagi, S.; Yoshiba, T. The effect of difference in the practice methods on the gait skill using trial above-knee prosthesis. Rigakuryoho Kagaku 2007, 23, 67–71. [Google Scholar] [CrossRef] [Green Version]
- G*Power 3.1. Available online: http://www.gpower.hhu.de/en.html (accessed on 10 October 2021).
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Batten, H.R.; McPhail, S.M.; Mandrusiak, A.M.; Varghese, P.N.; Kuys, S.S. Gait speed as an indicator of prosthetic walking potential following lower limb amputation. Prosthet. Orthot. Int. 2019, 43, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, J.T.; Kassan, T.O.; Devaney, L.L.; Colon-Semenza, C.; Joseph, M.F. Test-retest reliability and minimal detectable change for the 10-meter walk test in older adults with Parkinson’s disease. J. Geriatr. Phys. Ther. 2016, 39, 165–170. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Chen, I.; Lin, Y.J.; Chen, Y.; Hsu, W.C. Effects of virtual reality-based physical and cognitive training on executive function and dual-task gait performance in older adults with mild cognitive impairment: A randomized control trial. Front. Aging Neurosci. 2019, 11, 162. [Google Scholar] [CrossRef] [Green Version]
- Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef]
- Dadashi, F.; Mariani, B.; Rochat, S.; Büla, C.J.; Santos-Eggimann, B.; Aminian, K. Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors 2014, 14, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; SAGE Publications Ltd.: London, UK, 2009; pp. 56–57. [Google Scholar]
- VanRoss, E.R.; Johnson, S.; Abbott, C.A. Effects of early mobilization on unhealed dysvascular transtibial amputation stumps: A clinical trial. Arch. Phys. Med. Rehabil. 2009, 90, 610–617. [Google Scholar] [CrossRef]
- Kline, P.W.; Murray, A.M.; Miller, M.J.; Fields, T.; Christiansen, C.L. Error-augmentation gait training to improve gait symmetry in patients with non-traumatic lower limb amputation: A proof-of-concept study. Prosthet. Orthot. Int. 2019, 43, 426–433. [Google Scholar] [CrossRef]
- Palmisano, S.; Allison, R.S.; Schira, M.M.; Barry, R.J. Future challenges for vection research: Definitions, functional significance, measures and neural bases. Front. Psychol. 2015, 6, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delorme, A.; Martin, C. Roles of retinal periphery and depth periphery in linear vection and visual control of standing in humans. Can. J. Psychol. 1986, 40, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, B.; Philipp-Muller, A.E.; Hemmerich, W.; Riecke, B.E.; Campos, J.L. The effect of visual motion stimulus characteristics on vection and visually induced motion sickness. Displays 2019, 58, 71–81. [Google Scholar] [CrossRef]
- Kim, J.; Charbel-Salloum, A.; Perry, S.; Palmisano, S. Effects of display lag on vection and presence in the Oculus Rift HMD. Virtual Real. 2021, 1–12. [Google Scholar] [CrossRef]
- Barr, S.; Howe, T.E. Prosthetic rehabilitation for older dysvascular people following a unilateral transfemoral amputation. Cochrane Database Syst. Rev. 2018, CD005260. [Google Scholar] [CrossRef] [Green Version]
- Lohse, K.R.; Boyd, L.A.; Hodges, N.J. Engaging environments enhance motor skill learning in a computer gaming task. J. Mot. Behav. 2016, 48, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Rohrbach, N.; Chicklis, E.; Levac, D.E. What is the impact of user affect on motor learning in virtual environments after stroke? A scoping review. J. Neuroeng. Rehabil. 2019, 16, 79. [Google Scholar] [CrossRef] [PubMed]
Total (n = 24) | VR (n = 8) | Tablet (n = 8) | Control (n = 8) | p-Value * | |
---|---|---|---|---|---|
Age | 20.5 ± 1.3 | 20.1 ± 1.2 | 20.4 ± 1.1 | 21.0 ± 1.6 | 0.411 |
Height (cm) | 170.1 ± 2.4 | 170.1 ± 0.9 | 170.1 ± 1.5 | 170.0 ± 4.0 | 0.973 |
Body weight (kg) | 60.4 ± 5.7 | 59.1 ± 5.5 | 60.9 ± 6.1 | 61.3 ± 6.0 | 0.741 |
BMI (kg/m2) | 20.9 ± 1.9 | 20.4 ± 1.9 | 21.0 ± 1.9 | 21.2 ± 2.1 | 0.689 |
Pre-Intervention | Post-Intervention | Main Effect (Time) | Interactive Effect (Time * Group) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VR | Tablet | Control | VR | Tablet | Control | F | p-Value | F | p-Value | η2 | |
Gait speed (m/s) | 1.1 ± 0.3 | 1.2 ± 0.3 | 1.3 ± 0.2 | 1.4 ± 0.3 | 1.2 ± 0.3 | 1.4 ± 0.2 | 59.1 | <0.001 | 9.6 | 0.001 | 0.48 |
Cadence (steps/min) | 105.3 ± 11.4 | 105.8 ± 9.69 | 110.9 ± 10.0 | 116.5 ± 11.3 | 111.5 ± 8.9 | 114.8 ± 12.1 | 30.6 | <0.001 | 3 | 0.07 | 0.2 |
Stride length (cm/s) | 1.3 ± 0.17 | 1.2 ± 0.27 | 1.3 ± 0.13 | 1.4 ± 0.15 | 1.3 ± 0.25 | 1.3 ± 0.1 | 8.3 | 0.009 | 1.3 | 0.3 | 0.1 |
Swing speed (m/s) | 3.4 ± 0.7 | 3.4 ± 0.9 | 3.6 ± 0.5 | 3.9 ± 0.6 | 3.5 ± 0.9 | 3.7 ± 0.6 | 28.5 | <0.001 | 6 | 0.008 | 0.4 |
Loading (%Stance) | 13.3 ± 3.2 | 17.3 ± 5.0 | 16.8 ± 5.4 | 16.7 ± 4.7 | 18.3 ± 6.2 | 17.4 ± 4.3 | 9.8 | 0.005 | 2.8 | 0.08 | 0.2 |
VR (n = 8) | Tablet (n = 8) | Control (n = 8) | p-Value | |
---|---|---|---|---|
The improve rate of gait speed (%) | 19.3 [17.4–23.5] | 5.8 [3.1–10.4] | 6.3 [3.2–9.4] | <0.01 a,b |
Immersion score (score) | 71.5 [60.2–81.2] | 50.5 [35.7–65.7] | - | 0.03 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukui, K.; Maeda, N.; Komiya, M.; Tsutsumi, S.; Harada, K.; Kuroda, S.; Morikawa, M.; Urabe, Y. Walking Practice Combined with Virtual Reality Contributes to Early Acquisition of Symmetry Prosthetic Walking: An Experimental Study Using Simulated Prosthesis. Symmetry 2021, 13, 2282. https://doi.org/10.3390/sym13122282
Fukui K, Maeda N, Komiya M, Tsutsumi S, Harada K, Kuroda S, Morikawa M, Urabe Y. Walking Practice Combined with Virtual Reality Contributes to Early Acquisition of Symmetry Prosthetic Walking: An Experimental Study Using Simulated Prosthesis. Symmetry. 2021; 13(12):2282. https://doi.org/10.3390/sym13122282
Chicago/Turabian StyleFukui, Kazuki, Noriaki Maeda, Makoto Komiya, Shogo Tsutsumi, Keita Harada, Sayo Kuroda, Masanori Morikawa, and Yukio Urabe. 2021. "Walking Practice Combined with Virtual Reality Contributes to Early Acquisition of Symmetry Prosthetic Walking: An Experimental Study Using Simulated Prosthesis" Symmetry 13, no. 12: 2282. https://doi.org/10.3390/sym13122282
APA StyleFukui, K., Maeda, N., Komiya, M., Tsutsumi, S., Harada, K., Kuroda, S., Morikawa, M., & Urabe, Y. (2021). Walking Practice Combined with Virtual Reality Contributes to Early Acquisition of Symmetry Prosthetic Walking: An Experimental Study Using Simulated Prosthesis. Symmetry, 13(12), 2282. https://doi.org/10.3390/sym13122282