On Lommel Matrix Polynomials
Abstract
:1. Introduction
Preliminaries
2. Hypergeometric Matrix Function : Definition and Properties
3. On Lommel’s Matrix Polynomials
4. Modified Lommel Matrix Polynomials
5. Modified Lommel Matrix Polynomials
6. Concluding Remarks
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Von Lommel, E.C.J. Zur Theorie der Bessel’schen Functionen II (Jan. 1971). Math. Ann. 1871, 4, 103–116. [Google Scholar] [CrossRef]
- Von Lommel, E.C.J. Ueber eine mit den Bessel’schen Functionen verwandte Function (Aug. 1975). Math. Ann. 1876, 9, 425–444. [Google Scholar] [CrossRef]
- Von Lommel, E.C.J. Zur Theorie der Bessel’schen Funktionen IV (Oct. 1979). Math. Ann. 1880, 16, 183–208. [Google Scholar]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: London, UK, 1948; p. 294. [Google Scholar]
- Altin, A.; Çekim, B. Some miscellaneous properties for Gegenbauer matrix polynomials. Util. Math. 2013, 92, 377–387. [Google Scholar]
- Çekim, B.; Altin, A. Matrix analogues of some properties for Bessel matrix functions. J. Math. Sci. Univ. Tokyo 2015, 22, 519–530. [Google Scholar]
- Çekim, B.; Altin, A.; Aktas, R. Some new results for Jacobi matrix polynomials. Filomat 2013, 27, 713–719. [Google Scholar] [CrossRef]
- Çekim, B.; Erkuş-Duman, E. Integral represantations for Bessel matrix functions. Gazi Univ. J. Sci. 2014, 27, 663–667. [Google Scholar]
- Chak, A.M. A generalization of Lommel polynomials. Duke Math. J. 1958, 25, 73–82. [Google Scholar] [CrossRef]
- Dickinson, D. On Lommel and Bessel polynomials. Proc. Am. Math. Soc. 1954, 5, 946–956. [Google Scholar] [CrossRef]
- Higueras, I.; Garcia-Celayeta, B. Logarithmic norms for matrix pencils. SIAM J. Matriz Anal. 1999, 20, 646–666. [Google Scholar] [CrossRef]
- Jódar, L.; Sastre, J. On Laguerre matrix polynomials. Util. Math. 1998, 53, 37–48. [Google Scholar]
- Kargin, L.; Veli Kurt, V. Chebyshev-type matrix polynomials and integral transforms. Hacet. J. Math. Stat. 2015, 44, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics, 3nd ed.; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Rao, C.R.; Mitra, S.K. Generalized Inverses of Matrices and its Applications; Wiley: New York, NY, USA, 1971. [Google Scholar]
- Sastre, J.; Jódar, L. Asymptotics of the modified Bessel and incomplete Gamma matrix functions. Appl. Math. Lett. 2003, 16, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Shehata, A. Some relations on Humbert matrix polynomials. Math. Bohem. 2016, 141, 407–429. [Google Scholar] [CrossRef] [Green Version]
- Shehata, A. Some relations on the generalized Bessel matrix polynomials. Asian J. Math. Comput. Res. 2017, 17, 1–25. [Google Scholar]
- Shehata, A. A note on Two-variable Lommel matrix functions. Asian-Eur. J. Math. (AEJM) 2018, 11, 1850041. [Google Scholar] [CrossRef]
- Shehata, A. Some relations on generalized Rice’s matrix polynomials. Int. J. Appl. Appl. Math. 2017, 12, 367–391. [Google Scholar]
- Shehata, A. Some properties associated with the Bessel matrix functions. Konuralp J. Math. (KJM) 2017, 5, 24–35. [Google Scholar]
- Tasdelen, F.; Aktas, R.; Çekim, B. On a multivariable extension of Jacobi matrix polynomials. Comput. Math. Appl. 2011, 61, 2412–2423. [Google Scholar] [CrossRef] [Green Version]
- Mathai, A.M. Some results on functions of matrix argument. Math Nachr. 1978, 84, 171–177. [Google Scholar] [CrossRef]
- Mathai, A.M. Special Functions of Matrix Arguments-III. Proc. Nat. Acad. Sci. India Sect. A. 1995, 65, 367–393. [Google Scholar]
- Mathai, A.M.; Pederzoli, G. Some transformations for functions of matrix arguments. Indian J. Pure Appl. Math. 1996, 27, 277–284. [Google Scholar]
- Singh, V.; Khan, M.A.; Khan, A.H.; Nisar, K.S. A note on modified Hermite matrix polynomials. J. Math. Comput. Sci. 2021, 22, 333–346. [Google Scholar] [CrossRef]
- Hasanov, A.; Younis, J.; Aydi, H. On decomposition formulas Related to the Gaussian hypergeometric functions in three variables. J. Funct. Spaces 2021, 2021, 5538583. [Google Scholar] [CrossRef]
- Younis, J.A.; Aydi, H.; Verma, A. Some formulas for new quadruple hypergeometric functions. J. Math. 2021, 2021, 5596299. [Google Scholar] [CrossRef]
- Shehata, A. Lommel matrix functions. Iran. J. Math. Sci. Inf. 2020, 15, 61–79. [Google Scholar]
- Dunford, N.; Schwartz, J.T. Linear Operators, Part I, General Theory; Interscience Publishers, Inc.: New York, NY, USA, 1958. [Google Scholar]
- Jódar, L.; Cortés, J.C. Some properties of Gamma and Beta matrix functions. Appl. Math. Lett. 1998, 11, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Jódar, L.; Cortés, J.C. On the hypergeometric matrix function. J. Comput. Appl. Math. 1998, 99, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Jódar, L.; Cortés, J.C. Closed form general solution of the hypergeometric matrix differential equation. Math. Comput. Model. 2000, 32, 1017–1028. [Google Scholar] [CrossRef]
- Jódar, L.; Company, R.; Navarro, E. Solving explicitly the Bessel matrix differential equation, without increasing problem dimension. Congr. Numer. 1993, 92, 261–276. [Google Scholar]
- Jódar, L.; Company, R.; Navarro, E. Bessel matrix functions: Explicit solution of coupled Bessel Type equations. Util. Math. 1994, 46, 129–141. [Google Scholar]
- Defez, E.; Jódar, L. Some applications of the Hermite matrix polynomials series expansions. J. Comput. Appl. Math. 1998, 99, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Batahan, R.S. Generalized form of Hermite matrix polynomials via the hypergeometric matrix function. Adv. Linear Algebra Matrix Theory 2014, 4, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Defez, E.; Jódar, L. Chebyshev matrix polynomials and second order matrix differential equations. Util. Math. 2002, 61, 107–123. [Google Scholar]
- Copson, E.T. An Introduction to the Theory of Functions of a Complex Variable; Oxford University Press: London, UK, 1970. [Google Scholar]
- Sayyed, K.A.M. Basic Sets of Polynomials of two Complex Variables and Convergence Propertiess. Ph.D. Thesis, Assiut University, Asyut, Egypt, 1975. [Google Scholar]
- Sayyed, K.A.M.; Metwally, M.S.; Mohammed, M.T. Certain hypergeometric matrix function. Sci. Math. Jpn. 2009, 69, 315–321. [Google Scholar]
- Boas, R.P. Entire Functions; Academic Press Inc.: New York, NY, USA, 1954. [Google Scholar]
- Levin, B.Y.; Lyubarskii, Y.; Sodin, M.; Tkachenko, V. Lectures on Entire Functions; American Mathematical Society: Providence, RI, USA, 1996. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shehata, A. On Lommel Matrix Polynomials. Symmetry 2021, 13, 2335. https://doi.org/10.3390/sym13122335
Shehata A. On Lommel Matrix Polynomials. Symmetry. 2021; 13(12):2335. https://doi.org/10.3390/sym13122335
Chicago/Turabian StyleShehata, Ayman. 2021. "On Lommel Matrix Polynomials" Symmetry 13, no. 12: 2335. https://doi.org/10.3390/sym13122335
APA StyleShehata, A. (2021). On Lommel Matrix Polynomials. Symmetry, 13(12), 2335. https://doi.org/10.3390/sym13122335